Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69182
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor李克強(Eric Lee)
dc.contributor.authorHsin-Yuan Leeen
dc.contributor.author李心源zh_TW
dc.date.accessioned2021-06-17T03:10:13Z-
dc.date.available2020-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-18
dc.identifier.citation1. 劉陽橋, 奈米粉體的分散及表面改性. 五南圖書出版股份有限公司: 2005.
2. Masliyah, J. H.; Bhattacharjee, S., Electrokinetic and Colloid Transport Phenomena. John Wiley & Sons, Inc.: 2005.
3. Shaw, D. J., Introduction to Colloid and Surface Chemistry. Butterworth-Heinemann: Oxford, 1992.
4. Hunter, R., Foundations of Colloid Science. Oxford University Press.: 1987; Vol. 1.
5. Derjaguin, B.; Landau, L., Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS 1941, 14 (6), 633-662.
6. Verwey, E. J. W.; Overbeek, J. T. G.; Van Nes, K., Theory of the Stability of Lyophobic Colloids: the Interaction of Sol Particles Having an Electric Double Layer. Elsevier New York: 1948.
7. Everett, D. H.; Everett, D., Basic principles of colloid science. Royal Society of Chemistry London: 1988; Vol. 144.
8. Helmholtz, H., Ueber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche. Annalen der Physik 1853, 165 (6), 211-233.
9. Gouy, G., Constitution of the electric charge at the surface of an electrolyte. Journal of Physics 1910, 9 (4), 457-467.
10. Chapman, D. L., LI. A contribution to the theory of electrocapillarity. Philosophical Magazine Series 6 1913, 25 (148), 475-481.
11. Delgado, A., Interfacial electrokinetics and electrophoresis. CRC: 2002.
12. Prieve, D. C.; Anderson, J. L.; Ebel, J. P.; Lowell, M. E., MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .2. ELECTROLYTES. J. Fluid Mech. 1984, 148 (NOV), 247-269.
13. Lechnick, W. J.; Shaeiwitz, J. A., MEASUREMENT OF DIFFUSIOPHORESIS IN LIQUIDS. J. Colloid Interface Sci. 1984, 102 (1), 71-87.
14. Anderson, J. L.; Lowell, M. E.; Prieve, D. C., MOTION OF A PARTICLE GENERATED BY CHEMICAL GRADIENTS .1. NON-ELECTROLYTES. J. Fluid Mech. 1982, 117 (APR), 107-121.
15. Zhang, X. G.; Hsu, W. L.; Hsu, J. P.; Tseng, S. J., Diffusiophoresis of a Soft Spherical Particle in a Spherical Cavity. Journal of Physical Chemistry B 2009, 113 (25), 8646-8656.
16. Dukhin, S.; Derjaguin, B., Surface and Colloid Science. by E. Matjevic, Wiley, New York 1974, 7, 36.
17. Bakanov, S. P.; Roldughin, V. I., Diffusiophoresis in Gases. Aerosol Science and Technology 1987, (7), 249-255.
18. Pilat, M. J.; Prem, A., Effect of diffusiophoresis and thermophoresis on overall particle collection efficiency of spray droplet scrubbers. Journal of the Air Pollution Control Association 1977, (27), 982-988.
19. Jaworek, A.; Balachandran, W.; Krupa, A.; Kulon, J.; Lackowski, M., Wet Electroscrubbers for State of the Art Gas Cleaning. Environmental Science and Technology 2006, (40), 6197-6207.
20. Dukhin, S. S.; Ulberg, Z. R.; Dvornichenko, G. L.; Deryagin, B. V., DIFFUSIOPHORESIS IN ELECTROLYTE-SOLUTIONS AND ITS APPLICATION TO THE FORMATION OF SURFACE-COATINGS. Bulletin of the Academy of Sciences of the Ussr Division of Chemical Science 1982, 31 (8), 1535-1544.
21. Deryagin, B.; Dukhin, S.; Korotkova, A., INFLUENCE OF NATURE OF ELECTROLYTES IN LATEX ON THE PROCESS OF FILM FORMATION BY IONIC DEPOSITION. COLLOID JOURNAL OF THE USSR 1978, 40 (4), 531-536.
22. Prieve, D. C.; Smith, R. E.; Sander, R. A.; Gerhart, H. L., Chemiphoresis: Acceleration of hydrosol deposition by ionic surface reactions. J. Colloid Interface Sci. 1979, 71 (2), 267-272.
23. Prieve, D. C.; Gerhart, H. L.; Smith, R. E., CHEMIPHORESIS - METHOD FOR DEPOSITION OF POLYMER-COATINGS WITHOUT APPLIED ELECTRIC-CURRENT. Industrial & Engineering Chemistry Product Research and Development 1978, 17 (1), 32-36.
24. Ulberg, Z.; Dukhin, A., Electrodiffusiophoresis-film formation in Ac and Dc electrical fields and its application for bactericidal coatings. Progress in organic coatings 1990, 18 (1), 1-41.
25. Abécassis, B.; et al., Osmotic manipulation of particles for microfluidic applications. New Journal of Physics 2009, 11 (7), 075022.
26. Abecassis, B.; Cottin-Bizonne, C.; Ybert, C.; Ajdari, A.; Bocquet, L., Boosting migration of large particles by solute contrasts. Nat. Mater. 2008, 7 (10), 785-789.
27. Anderson, J. L.; Lowell, M. E.; Prieve, D. C., Motion of a particle generated by chemical gradients .1. Non-electrolytes. J. Fluid Mech. 1982, (117), 101-121.
28. Prieve, D. C.; Roman, R., DIFFUSIOPHORESIS OF A RIGID SPHERE THROUGH A VISCOUS ELECTROLYTE SOLUTION. Journal of the Chemical Society-Faraday Transactions Ii 1987, 83, 1287-1306.
29. Obrien, R. W.; White, L. R., Electrophoretic Mobility of a Spherical Colloidal Particle. Journal of the Chemical Society-Faraday Transactions Ii 1978, 74, 1607-1626.
30. Pawar, Y.; Solomentsev, Y. E.; Anderson, J. L., POLARIZATION EFFECTS ON DIFFUSIOPHORESIS IN ELECTROLYTE GRADIENTS. J. Colloid Interface Sci. 1993, 155 (2), 488-498.
31. Lou, J.; Shih, C. Y.; Lee, E., Diffusiophoresis of Concentrated Suspensions of Spherical Particles with Charge-regulated Surface: Polarization Effect with Nonlinear Poisson-Boltzmann Equation. Langmuir 2010, 26 (1), 47-55.
32. Lou, J.; Shih, C. Y.; Lee, E., Diffusiophoresis of a spherical particle normal to an air-water interface. J. Colloid Interface Sci. 2009, 331 (1), 227-235.
33. Lou, J.; Lee, E., Diffusiophoresis of a spherical particle normal to a plane. Journal of Physical Chemistry C 2008, 112 (7), 2584-2592.
34. Chang, Y. C.; Keh, H. J., Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls. J. Colloid Interface Sci. 2008, 322 (2), 634-653.
35. Keh, H. J.; Li, Y. L., Diffusiophoresis in a suspension of charge-regulating colloidal spheres. Langmuir 2007, 23 (3), 1061-1072.
36. Hsu, J. P.; Lou, J.; He, Y. Y.; Lee, E., Diffusiophoresis of concentrated suspensions of spherical particles with distinct ionic diffusion velocities. Journal of Physical Chemistry B 2007, 111 (10), 2533-2539.
37. Lou, J.; He, Y. Y.; Lee, E., Diffusiophoresis of concentrated suspensions of spherical particles with identical ionic diffusion velocities. J. Colloid Interface Sci. 2006, 299 (1), 443-451.
38. Chen, P. Y.; Keh, H. J., Diffusiophoresis and electrophoresis of a charged sphere parallel to one or two plane walls. J. Colloid Interface Sci. 2005, 286 (2), 774-791.
39. Wei, Y. K.; Keh, H. J., Diffusiophoresis in a suspension of spherical particles with arbitrary double-layer thickness. J. Colloid Interface Sci. 2002, 248 (1), 76-87.
40. Chen, P. Y.; Keh, H. J., Diffusiophoresis of a colloidal sphere in nonelectrolyte gradients parallel to one or two plane walls. Chemical Engineering Science 2002, 57 (15), 2885-2899.
41. Wei, Y. K.; Keh, H. J., Diffusiophoresis and electrophoresis in concentrated suspensions of charged colloidal spheres. Langmuir 2001, 17 (5), 1437-1447.
42. Keh, H. J.; Wei, Y. K., Diffusiophoretic mobility of spherical particles at low potential and arbitrary double-layer thickness. Langmuir 2000, 16 (12), 5289-5294.
43. Keh, H. J.; Luo, S. C., Particle interactions in diffusiophoresis: Axisymmetric motion of multiple spheres in electrolyte gradients. Langmuir 1996, 12 (3), 657-667.
44. Keh, H. J.; Jan, J. S., Boundary effects on diffusiophoresis and electrophoresis: Motion of a colloidal sphere normal to a plane wall. J. Colloid Interface Sci. 1996, 183 (2), 458-475.
45. Staffeld, P. O.; Quinn, J. A., DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .1. ELECTROLYTES. J. Colloid Interface Sci. 1989, 130 (1), 69-87.
46. Staffeld, P. O.; Quinn, J. A., DIFFUSION-INDUCED BANDING OF COLLOID PARTICLES VIA DIFFUSIOPHORESIS .2. NON-ELECTROLYTES. J. Colloid Interface Sci. 1989, 130 (1), 88-100.
47. Ebel, J. P.; Anderson, J. L.; Prieve, D. C., DIFFUSIOPHORESIS OF LATEX-PARTICLES IN ELECTROLYTE GRADIENTS. Langmuir 1988, 4 (2), 396-406.
48. Lechnick, W. J.; Shaeiwitz, J. A., ELECTROLYTE CONCENTRATION-DEPENDENCE OF DIFFUSIOPHORESIS IN LIQUIDS. J. Colloid Interface Sci. 1985, 104 (2), 456-470.
49. Shaeiwitz, J. A.; Lechnick, W. J., TERNARY DIFFUSION FORMULATION FOR DIFFUSIOPHORESIS. Chemical Engineering Science 1984, 39 (5), 799-807.
50. Fuoss, R. M., POLYELECTROLYTES. Science 1948, 108 (2812), 545-550.
51. Darcy, H., Les Fontaines Publiques de la Ville de Dijon. Dalmont: Paris, 1856.
52. Brinkman, H. C., A CALCULATION OF THE VISCOUS FORCE EXERTED BY A FLOWING FLUID ON A DENSE SWARM OF PARTICLES. Applied Scientific Research Section a-Mechanics Heat Chemical Engineering Mathematical Methods 1947, 1 (1), 27-34.
53. Debye, P.; Bueche, A. M., Intrinsic viscosity, diffusion, and sedimentation rate of polymers in solution. The Journal of Chemical Physics 1948, 16, 573.
54. Kirkwood, J. G.; Riseman, J., The intrinsic viscosities and diffusion constants of flexible macromolecules in solution. The Journal of Chemical Physics 1948, 16, 565.
55. Felderhof, B.; Deutch, J., Frictional properties of dilute polymer solutions. I. Rotational friction coefficient. The Journal of Chemical Physics 1975, 62, 2391.
56. Dukhin, S. S.; Zimmermann, R.; Duval, J. F. L.; Werner, C., On the applicability of the Brinkman equation in soft surface electrokinetics. J. Colloid Interface Sci. 2010, 350 (1), 1-4.
57. Hermans, J. J., Sedimentation and electrophoresis of porous spheres. Journal of Polymer Science 1955, 18 (90), 527-534.
58. Hermans, J. J.; Fujita, H., Electrophoresis of charged polymer molecules with partial free drainage. Koninklijke Nederlandse Akademie Wetenschappen Proceedings 1955, Series B58, 182.
59. Overbeek, J. T. G.; Stigter, D., ELECTROPHORESIS OF POLYELECTROLYTES WITH PARTIAL DRAINAGE. Recl. Trav. Chim. Pays-Bas-J. Roy. Neth. Chem. Soc. 1956, 75 (4), 543-554.
60. Nagasawa, M.; Soda, A.; Kagawa, I., Electrophoresis of polyelectrolyte in salt solutions. Journal of Polymer Science 1958, 31 (123), 439-451.
61. Imai, N.; Iwasa, K., THEORY OF ELECTROPHORESIS OF POLYELECTROLYTES. Isr. J. Chem. 1973, 11 (2-3), 223-233.
62. Miller, N. P.; Berg, J. C.; O'Brien, R. W., The electrophoretic mobility of a porous aggregate. J. Colloid Interface Sci. 1992, 153 (1), 237.
63. Ohshima, H., Electrophoretic mobility of soft particles in concentrated suspensions. J. Colloid Interface Sci. 2000, 225 (1), 233-242.
64. He, Y. Y.; Lee, E., Electrophoresis in concentrated dispersions of charged porous spheres. Chemical Engineering Science 2008, 63 (23), 5719-5727.
65. Zhang, X. G.; Hsu, J. P.; Chen, Z. S.; Yeh, L. H.; Ku, M. H.; Tseng, S., Electrophoresis of a Charge-Regulated Soft Sphere in a Charged Cylindrical Pore. Journal of Physical Chemistry B 2010, 114 (4), 1621-1631.
66. Hsu, H.-P.; Lee, E., Counterion condensation of a polyelectrolyte. Electrochemistry Communications 2012, 15 (1), 59-62.
67. Huang, C. H.; Hsu, H. P.; Lee, E., Electrophoretic motion of a charged porous sphere within micro- and nanochannels. Physical chemistry chemical physics : PCCP 2012, 14 (2), 657-67.
68. Yeh, L. H.; Liu, K. L.; Hsu, J. P., Importance of Ionic Polarization Effect on the Electrophoretic Behavior of Polyelectrolyte Nanoparticles in Aqueous Electrolyte Solutions. The Journal of Physical Chemistry C 2012, 116, 367-373.
69. Wei, Y. K.; Keh, H. J., Diffusiophoretic mobility of charged porous spheres in electrolyte gradients. J. Colloid Interface Sci. 2004, 269 (1), 240-250.
70. Liu, K.-L.; Hsu, J.-P.; Hsu, W.-L.; Yeh, L.-H.; Tseng, S., Diffusiophoresis of a polyelectrolyte in a salt concentration gradient. ELECTROPHORESIS 2012, 33 (6), 1068-1078.
71. Faxén, H., About T. Bohlin's paper: On the drag on rigid spheres, moving in a viscous liquid inside cylindrical tubes. Kolloid-Zeitschrift 1959, 167 (2), 146-146.
72. Heard, D. H.; Seaman, G. V. F., THE INFLUENCE OF PH AND IONIC STRENGTH ON THE ELECTROKINETIC STABILITY OF THE HUMAN ERYTHROCYTE MEMBRANE. J. Gen. Physiol. 1960, 43 (3), 635-654.
73. Wilkins, D. J.; Ottewill, R. H., FLOCCULATION OF SHEEP LEUCOCYTES .1. ELECTROPHORETIC STUDIES. J. Theor. Biol. 1962, 2 (2), 165-&.
74. Nelson, D. L.; Lehninger, A. L.; Cox, M. M., Lehninger principles of biochemistry. Macmillan: 2008.
75. Wilson, K.; Walker, J. M., Principles and techniques of biochemistry and molecular biology. Cambridge University Press: 2010.
76. Ninham, B. W.; Parsegia.Va, ELECTROSTATIC POTENTIAL BETWEEN SUFRACES BEARING IONIZABLE GROUPS IN IONIC EQUILIBRIUM WITH PHYSIOLOGIC SALINE SOLUTION. J. Theor. Biol. 1971, 31 (3), 405-&.
77. Chan, D.; Healy, T. W.; White, L. R., ELECTRICAL DOUBLE-LAYER INTERACTIONS UNDER REGULATION BY SURFACE IONIZATION EQUILIBRIA-DISSIMILAR AMPHOTERIC SURFACES. Journal of the Chemical Society-Faraday Transactions I 1976, 72, 2844-2865.
78. Chan, D.; Perram, J. W.; White, L. R.; Healy, T. W., REGULATION OF SURFACE-POTENTIAL AT AMPHOTERIC SURFACES DURING PARTICLE-PARTICLE INTERACTION. Journal of the Chemical Society-Faraday Transactions I 1975, 71 (5), 1046-1057.
79. Usui, S., Electrical double-layer interaction between oppositely charged dissimilar oxide surfaces with charge regulation and Stern-Grahame layers. J. Colloid Interface Sci. 2008, 320 (1), 353-359.
80. Chan, D. Y.; Healy, T. W.; Supasiti, T.; Usui, S., Electrical double layer interactions between dissimilar oxide surfaces with charge regulation and Stern-Grahame layers. J Colloid Interface Sci 2006, 296
(1), 150-8.
81. Usui, S., Interaction between dissimilar double layers with like signs under charge regulation on the basis of the Gouy-Chapman-Stern-Grahame model. J Colloid Interface Sci 2004, 280 (1), 113-9.
82. Carnie, S. L.; Chan, D. Y. C.; Stankovich, J., COMPUTATION OF FORCES BETWEEN SPHERICAL COLLOIDAL PARTICLES - NONLINEAR POISSON-BOLTZMANN THEORY. J. Colloid Interface Sci. 1994, 165 (1), 116-128.
83. Carnie, S. L.; Chan, D. Y. C., INTERACTION FREE-ENERGY BETWEEN IDENTICAL SPHERICAL COLLOIDAL PARTICLES - THE LINEARIZED POISSON-BOLTZMANN THEORY. J. Colloid Interface Sci. 1993, 155 (2), 297-312.
84. Carnie, S. L.; Chan, D. Y. C., INTERACTION FREE-ENERGY BETWEEN PLATES WITH CHARGE REGULATION - A LINEARIZED MODEL. J. Colloid Interface Sci. 1993, 161 (1), 260-264.
85. Krozel, J. W.; Saville, D. A., ELECTROSTATIC INTERACTIONS BETWEEN 2 SPHERES - SOLUTIONS OF THE DEBYE-HUCKEL EQUATION WITH A CHARGE REGULATION BOUNDARY-CONDITION. J. Colloid Interface Sci. 1992, 150 (2), 365-373.
86. Davis, J. A.; James, R. O.; Leckie, J. O., SURFACE IONIZATION AND COMPLEXATION AT OXIDE-WATER INTERFACE .1. COMPUTATION OF ELECTRICAL DOUBLE-LAYER PROPERTIES IN SIMPLE ELECTROLYTES. J. Colloid Interface Sci. 1978, 63 (3), 480-499.
87. Prieve, D. C.; Ruckenstein, E., SURFACE-POTENTIAL OF A DOUBLE-LAYER INTERACTION FORCE BETWEEN SURFACES CHARACTERIZED BY MULTIPLE IONIZABLE GROUPS. J. Theor. Biol. 1976, 56 (1), 205-228.
88. Tsai, P.; Fang, H.; Lee, E., Electrophoresis of a Charge-Regulated Sphere Normal to an Air-Water Interface. Journal of Physical Chemistry B 2011, 115 (20), 6484-6494.
89. Tang, Y. P.; Chih, M. H.; Lee, E.; Hsu, J. P., Electrophoretic motion of a charge-regulated sphere normal to a plane. J. Colloid Interface Sci. 2001, 242 (1), 121-126.
90. Lee, E.; Yen, F. Y.; Hsu, J. P., Electrophoretic mobility of concentrated spheres with a charge-regulated surface. Electrophoresis 2000, 21 (3), 475-480.
91. Ohshima, H., Theory of colloid and interfacial electric phenomena. Academic Press: 2006.
92. Ohshima, H.; Kondo, T., Electrostatic repulsion of ion penetrable charged membranes: Role of Donnan potential. J. Theor. Biol. 1987, 128 (2), 187-194.
93. Ohshima, H.; Kondo, T., Membrane potential and Donnan potential. Biophysical Chemistry 1988, 29 (3), 277-281.
94. Nakamura, M.; Ohshima, H.; Kondo, T., Charge distribution in the surface region of chicken and goose erythrocytes. Colloids and Surfaces B: Biointerfaces 1994, 2 (5), 445-449.
95. Morita, K.; Muramatsu, N.; Ohshima, H.; Kondo, T., Electrophoretic behavior of rat lymphocyte subpopulations. J. Colloid Interface Sci. 1991, 147 (2), 457-461.
96. Tseng, S.; Hsieh, T.-H.; Yeh, L.-H.; Wang, N.; Hsu, J.-P., Electrophoresis of a charge-regulated soft sphere: Importance of effective membrane charge. Colloids and Surfaces B: Biointerfaces 2013, 102 (0), 864-870.
97. Chiarot, P. R.; Sullivan, P.; Ben Mrad, R., An overview of electrospray applications in MEMS and microfluidic systems. Microelectromechanical Systems, Journal of 2011, 20 (6), 1241-1249.
98. Hernàndez-Navarro, S.; Tierno, P.; Ignés-Mullol, J.; Sagués, F., AC electrophoresis of microdroplets in anisotropic liquids: transport, assembling and reaction. Soft Matter 2013, 9 (33), 7999-8004.
99. Komino, T.; Kuwabara, H.; Ikeda, M.; Yahiro, M.; Takimiya, K.; Adachi, C., Droplet Manipulation by an External Electric Field for Crystalline Film Growth. Langmuir 2013, 29 (30), 9592-9597.
100. Keh, H.; Anderson, J., Boundary effects on electrophoretic motion of colloidal spheres. Journal of Fluid Mechanics 1985, 153, 417-39.
101. Morrison Jr, F.; Stukel, J., Electrophoresis of an insulating sphere normal to a conducting plane. Journal of Colloid and Interface Science 1970, 33 (1), 88-93.
102. Smoluchowski, M. v., Experiments on a mathematical theory of kinetic coagulation of coloid solutions. Z. phys. Chem 1917, 92 (129-168), 9.
103. Keh, H. J. L., L. C., Electrophoresis of a dielectric sphere normal to a large conducting plane. Journal of the Chinese Institute of Chemical Engineers 1989, 20 (5), 283-290.
104. Feng, J.-J.; Wu, W., Electrophoretic motion of an arbitrary prolate body of revolution toward an infinite conducting wall. Journal of Fluid Mechanics 1994, 264, 41-58.
105. Sellier, A., Electrophoresis of an insulating particle near a plane boundary. Powder Technology 2002, 125 (2-3), 187-191.
106. Ennis, J.; Anderson, J., Boundary effects on electrophoretic motion of spherical particles for thick double layers and low zeta potential. Journal of colloid and interface science 1997, 185 (2), 497-514.
107. Shugai, A. A.; Carnie, S. L., Electrophoretic motion of a spherical particle with a thick double layer in bounded flows. Journal of colloid and interface science 1999, 213 (2), 298-315.
108. Hsu, J.-P.; Ku, M.-H.; Kuo, C.-C., Electrophoresis of a charge-regulated sphere normal to a large disk. Langmuir 2005, 21 (16), 7588-7597.
109. Tang, Y.-P.; Chih, M.-H.; Lee, E.; Hsu, J.-P., Electrophoretic motion of a charge-regulated sphere normal to a plane. Journal of colloid and interface science 2001, 242 (1), 121-126.
110. O'Brien, R. W.; White, L. R., Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1607-1626.
111. Chih, M.-H.; Lee, E.; Hsu, J.-P., Electrophoresis of a sphere normal to a plane at arbitrary electrical potential and double layer thickness. Journal of colloid and interface science 2002, 248 (2), 383-388.
112. Lee, E.; Chen, C.-T.; Hsu, J.-P., Electrophoresis of a rigid sphere in a Carreau fluid normal to a planar surface. Journal of colloid and interface science 2005, 285 (2), 857-864.
113. Tsai, P.; Huang, C.-H.; Lee, E., Electrophoresis of a Charged Colloidal Particle in Porous Media: Boundary Effect of a Solid Plane. Langmuir 2011, 27 (22), 13481-13488.
114. Abhyankar, V. V.; Lokuta, M. A.; Huttenlocher, A.; Beebe, D. J., Characterization of a membrane-based gradient generator for use in cell-signaling studies. Lab on a Chip 2006, 6 (3), 389-393.
115. Diao, J.; Young, L.; Kim, S.; Fogarty, E. A.; Heilman, S. M.; Zhou, P.; Shuler, M. L.; Wu, M.; DeLisa, M. P., A three-channel microfluidic device for generating static linear gradients and its application to the quantitative analysis of bacterial chemotaxis. Lab on a Chip 2006, 6 (3), 381-388.
116. Smith, R. L.; Demers, C. J.; Collins, S. D., Microfluidic device for the combinatorial application and maintenance of dynamically imposed diffusional gradients. Microfluid. Nanofluid. 2010, 9 (4-5), 613-622.
117. Canuto, C.; Hussaini, M. Y.; Zang, T. A., Spectral Methods in Fluid Dynamics. Springer: New York, 1986.
118. Hussaini, M.; Zang, T., Spectral methods in fluid dynamics. Annual Review of Fluid Mechanics 1987, 19 (1), 339-367.
119. Fang, W.; Lee, E., Diffusiophoretic motion of an isolated charged porous sphere. J. Colloid Interface Sci. 2015, 459, 273-283.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69182-
dc.description.abstract本研究對於可電荷調節的多孔粒子垂直於平板邊界的擴散泳動行為進行數值方法的模擬。為同時描述多孔粒子與平板邊界,本研究使用雙球座標系統進行電動力學方程組的多區聯解,並用牛頓-拉福生迭代法求系統穩態解。本研究針對電解質離子濃度(κac)、解離常數(B)、溶液pH值、穿透度(λa)與粒子到平板距離(h*)的變化討論對於擴散泳動行為的影響,研究結果發現電解質離子濃度較小時,粒子帶電量均會較高,同時擴散電場效應也會較明顯,因此粒子傾向負方向的運動,且泳動度普遍較大;另一方面,當電解質離子濃度較大時,反離子凝聚效果顯著,粒子電量較低,且電雙層極化效應主導泳動,因此泳動度有較低的趨勢。而在粒子接近平板時,與一般硬球電泳的情況相差甚遠,除了粒子電量會因為電雙層遭平板擠壓重新分布而增加外,泳動度也會產生往高濃度或低濃度方向加速的效果,這也是因為粒子周圍離子濃度重新分布造成的效果。另外,在不同pH值環境時,由於不同效應主導泳動導致粒子泳動方向不同,因此接近平板時會導致加速或減速甚至反轉的效果。zh_TW
dc.description.abstractDiffusiophoresis of a charge-regulating porous particle normal to a conducting plane is investigated theoretically in this study. Due to the configuration envolving spherical particle and planar boundary, the system characterized by bipolar coordinates. The coupled electrokinetic equations are solved linearly with a pseudo-spectral method based on Chebyshev polynomials. Also, Newton-Ralphson iteration scheme are adopted here for solution. Electrolyte concentration, dissociation constant, pH, particle transmittance and the distance between particle and plane are discussed as variables in the study.
We find that the charge density of the porous particle will increase as the electrolyte concentration and counterion condensation increases. However, while the electrolyte concentration is low, effect of the diffusion potential dominants which leads particle to negative direction. Otherwise, the polarization effect will take place and goes to positive direction. We also find that the presence of solid plane will increase the particle charge density as well as particle mobility. The plane will deform the electric double layer and redistribute the electrolye ions, which builds an induced electric field toward positive or negative direction, depends on the electrolyte concentration and pH.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:10:13Z (GMT). No. of bitstreams: 1
ntu-107-R05524082-1.pdf: 2648724 bytes, checksum: 52c5ff2697fa89b7af471d3e67a31d72 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要....I
Abstract...II
目錄.......III
圖表目錄....VI
第1章 緒論 1
1.1 膠體懸浮液 1
1.2 擴散泳 9
1.2.1 擴散泳理論 9
1.2.2 膠體粒子擴散泳現象的相關應用 11
1.2.3 硬粒子擴散泳文獻回顧 14
1.3 聚電解質及多孔粒子模型 16
1.4 電荷調節現象 20
1.5 平面邊界 26
第2章 理論分析 29
2.1 系統描述 29
2.2 電動力學方程組 31
2.2.1 電位方程式 31
2.2.2 離子守恆式 34
2.2.3 流場方程式 36
2.3 平衡態與擾動態 38
2.3.1 平衡態 40
2.3.2 擾動態 41
2.4 邊界條件 43
2.4.1 對稱軸 (ξ = 0, π) 43
2.4.2 平板 (η = 0) 43
2.4.3 多孔粒子表面 (η = η0) 45
2.4.4 無窮遠處(ξ = 0, η = 0) 46
2.5 數值畸點處理 46
2.6 系統變數之無因次化 48
2.7 泳動度之計算 53
第3章 數值方法 56
3.1 正交配位法 57
3.2 雙球座標空間映射 61
3.3 多區聯解問題 62
3.4 牛頓-拉福森 (Newton-Raphson) 疊代法 64
3.5 數值積分 67
3.6 雙球座標球體積分 69
第4章 結果與討論 71
4.1 系統性質設定與程式驗證 71
4.2 解離常數與電解質離子強度對粒子電量的影響 73
4.3 解離常數與電解質離子強度對泳動度的影響 79
4.4 不同pH值下解離常數(B)與電解質離子強度(κac)變化對泳動度之影響 85
4.5 粒子與平板距離(h*)對泳動度之影響 90
4.6 不同pH值對泳動度之影響 98
4.7 多孔粒子穿透度(λa)對泳動度之影響 102
4.8 結論 106
References 108
附錄A 座標系統簡介 117
附錄B 擴散泳平板邊界條件推導 121
附錄C 擴散泳氣液交界面邊界條件推導 123
附錄D 力積分推導 125
dc.language.isozh-TW
dc.subject擴散泳zh_TW
dc.subject電雙層zh_TW
dc.subject平板zh_TW
dc.subject反離子凝聚zh_TW
dc.subject多孔粒子zh_TW
dc.subject電荷調節zh_TW
dc.subjectdiffusiophoresisen
dc.subjectcharge-regulationen
dc.subjectporous particleen
dc.subjectelectric double layeren
dc.subjectplaneen
dc.subjectcounterion condensationen
dc.title具電荷調節多孔球粒子對平板之擴散泳行為zh_TW
dc.titleDiffusiophoretic Phenomenon of a Charge-Regulating Porous Particle Normal to a Solid Planeen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙玲(Ling Chao),游佳欣(Jia Shing Yu)
dc.subject.keyword擴散泳,電荷調節,多孔粒子,電雙層,平板,反離子凝聚,zh_TW
dc.subject.keyworddiffusiophoresis,charge-regulation,porous particle,electric double layer,plane,counterion condensation,en
dc.relation.page128
dc.identifier.doi10.6342/NTU201801662
dc.rights.note有償授權
dc.date.accepted2018-07-19
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
2.59 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved