Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69180
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳佩燁(Rita Pei-Yeh Chen)
dc.contributor.authorYun-Ting Yuen
dc.contributor.author尤韻婷zh_TW
dc.date.accessioned2021-06-17T03:10:11Z-
dc.date.available2023-07-26
dc.date.copyright2018-07-26
dc.date.issued2018
dc.date.submitted2018-07-19
dc.identifier.citationArbor, S. C., M. LaFontaine and M. Cumbay (2016). 'Amyloid-beta Alzheimer targets — protein processing, lipid rafts, and amyloid-beta pores.' The Yale Journal of Biology and Medicine 89(1): 5-21.
Armstrong, R. A. (2014). 'Factors determining disease duration in Alzheimer's disease: A postmortem study of 103 cases using the Kaplan-Meier estimator and cox regression.' BioMed Research International 2014: 1-7.
Bürck, J., P. Wadhwani, S. Fanghänel and A. S. Ulrich (2016). 'Oriented circular dichroism: A method to characterize membrane-active peptides in oriented lipid bilayers.' Accounts of Chemical Research 49(2): 184-192.
Barage, S. H. and K. D. Sonawane (2015). 'Amyloid cascade hypothesis: Pathogenesis and therapeutic strategies in Alzheimer's disease.' Neuropeptides 52: 1-18.
Barrett, P. J., Y. Song, W. D. Van Horn, E. J. Hustedt, J. M. Schafer, A. Hadziselimovic, A. J. Beel and C. R. Sanders (2012). 'The amyloid precursor protein has a flexible transmembrane domain and binds cholesterol.' Science 336(6085): 1168-1171.
Berchtold, N. C. and C. W. Cotman (1998). 'Evolution in the conceptualization of dementia and Alzheimer's disease: Greco-Roman Period to the 1960s.' Neurobiology of Aging 19(3): 173-189.
Bertram, L. and R. E. Tanzi (2008). 'Thirty years of Alzheimer's disease genetics: The implications of systematic meta-analyses.' Nature Reviews Neuroscience 9: 768–778.
Blennow, K., M. J. de Leon and H. Zetterberg (2006). 'Alzheimer's disease.' Lancet 368(9533): 387-403.
Bloom, G. S. (2014). 'Amyloid-β and tau: The trigger and bullet in Alzheimer disease pathogenesis.' JAMA Neurology 71(4): 505-508.
Bolduc, D. M., D. R. Montagna, Y. Gu, D. J. Selkoe and M. S. Wolfe (2016). 'Nicastrin functions to sterically hinder γ-secretase–substrate interactions driven by substrate transmembrane domain.' Proceedings of the National Academy of Sciences of the United States of America 113(5): E509-E518.
Borbat, P. P. and J. H. Freed (2013). Pulse dipolar electron spin resonance: Distance measurements. Structural information from spin-labels and intrinsic paramagnetic centres in the biosciences. C. R. Timmel and J. R. Harmer. Berlin, Heidelberg, Springer Berlin Heidelberg. 152: 1-82.
Borchelt, D. R., G. Thinakaran, C. B. Eckman, M. K. Lee, F. Davenport, T. Ratovitsky, C.-M. Prada, G. Kim, S. Seekins, D. Yager, H. H. Slunt, R. Wang, M. Seeger, A. I. Levey, S. E. Gandy, N. G. Copeland, N. A. Jenkins, D. L. Price, S. G. Younkin and S. S. Sisodia (1996). 'Familial Alzheimer's disease–linked presenilin 1 variants elevate Aβ1–42/1–40 ratio in vitro and in vivo.' Neuron 17(5): 1005-1013.
Borgegard, T., A. Jureus, F. Olsson, S. Rosqvist, A. Sabirsh, D. Rotticci, K. Paulsen, R. Klintenberg, H. Yan, M. Waldman, K. Stromberg, J. Nord, J. Johansson, A. Regner, S. Parpal, D. Malinowsky, A.-C. Radesater, T. Li, R. Singh, H. Eriksson and J. Lundkvist (2012). 'First and second generation gamma-secretase modulators (GSMs) modulate Abeta production through different mechanisms.' Journal of Biological Chemistry 287(15): 11810–11819.
Cabré, R., A. Naudí, M. Dominguez-Gonzalez, M. Jové, V. Ayala, N. Mota-Martorell, I. Pradas, L. Nogueras, M. Rué, M. Portero-Otín, I. Ferrer and R. Pamplona (2018). 'Lipid profile in human frontal cortex is sustained throughout healthy adult life span to decay at advanced ages.' The Journals of Gerontology: Series A 73(6): 703-710.
Chakrabarti, S., V. K. Khemka, A. Banerjee, G. Chatterjee, A. Ganguly and A. Biswas (2015). 'Metabolic risk factors of sporadic Alzheimer’s disease: Implications in the pathology, pathogenesis and treatment.' Aging and Disease 6(4): 282-299.
Cipriani, G., C. Dolciotti, L. Picchi and U. Bonuccelli (2011). 'Alzheimer and his disease: A brief history.' Neurological Sciences 32(2): 275-279.
De Jonghe, C., C. Esselens, S. Kumar-Singh, K. Craessaerts, S. Serneels, F. Checler, W. Annaert, C. Van Broeckhoven and B. Strooper (2001). 'Pathogenic APP mutations near the gamma-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability.' Human Molecular Genetics 10(16): 1665-1671.
De Strooper, B. and W. Annaert (2000). 'Proteolytic processing and cell biological functions of the amyloid precursor protein.' Journal of Cell Science 113(11): 1857-1870.
Dhanavade, M. J., C. B. Jalkute, S. H. Barage and K. D. Sonawane (2013). 'Homology modeling, molecular docking and MD simulation studies to investigate role of cysteine protease from Xanthomonas campestris in degradation of Aβ peptide.' Computers in Biology and Medicine 43(12): 2063-2070.
Di Scala, C., H. Chahinian, N. Yahi, N. Garmy and J. Fantini (2014). 'Interaction of Alzheimer’s β-amyloid peptides with cholesterol: Mechanistic insights into amyloid pore formation.' Biochemistry 53(28): 4489-4502.
Di Scala, C., N. Yahi, C. Lelièvre, N. Garmy, H. Chahinian and J. Fantini (2013). 'Biochemical identification of a linear cholesterol-binding domain within Alzheimer's β amyloid peptide.' ACS Chemical Neuroscience 4(3): 509-517.
Dominguez, L., S. C. Meredith, J. E. Straub and D. Thirumalai (2014). 'Transmembrane fragment structures of amyloid precursor protein depend on membrane surface curvature.' Journal of the American Chemical Society 136(3): 854-857.
Duara, R., R. F. Lopez-Alberola, W. W. Barker, D. A. Loewenstein, M. Zatinsky, C. E. Eisdorfer and G. B. Weinberg (1993). 'A comparison of familial and sporadic Alzheimer's disease.' Neurology 43(7): 1377-1377.
Eckman, E. A., D. K. Reed and C. B. Eckman (2001). 'Degradation of the Alzheimer's amyloid β peptide by endothelin-converting enzyme.' Journal of Biological Chemistry 276(27): 24540-24548.
Farris, W., S. Mansourian, Y. Chang, L. Lindsley, E. A. Eckman, M. P. Frosch, C. B. Eckman, R. E. Tanzi, D. J. Selkoe and S. Guénette (2003). 'Insulin-degrading enzyme regulates the levels of insulin, amyloid β-protein, and the β-amyloid precursor protein intracellular domain in vivo.' Proceedings of the National Academy of Sciences of the United States of America 100(7): 4162-4167.
Finder, V. H. and R. Glockshuber (2007). 'Amyloid-β aggregation.' Neurodegenerative Diseases 4(1): 13-27.
Grimm, M. O. W., J. Mett, H. S. Grimm and T. Hartmann (2017). 'APP function and lipids: A bidirectional link.' Frontiers in Molecular Neuroscience 10: 1-18.
Gu, L. and Z. Guo (2013). 'Alzheimer's Aβ42 and Aβ40 peptides form interlaced amyloid fibrils.' Journal of Neurochemistry 126(3): 305-311.
Haass, C., M. G. Schlossmacher, A. Y. Hung, C. Vigo-Pelfrey, A. Mellon, B. L. Ostaszewski, I. Lieberburg, E. H. Koo, D. Schenk, D. B. Teplow and D. J. Selkoe (1992). 'Amyloid β-peptide is produced by cultured cells during normal metabolism.' Nature 359: 322–325.
Hardy, J. and D. J. Selkoe (2002). 'The amyloid hypothesis of Alzheimer's disease: Progress and problems on the road to therapeutics.' Science 297(5580): 353-356.
Henriques, A. G., S. I. Vieira, S. Rebelo, S. C. Domingues, E. F. da Cruz e Silva and O. A. da Cruz e Silva (2007). 'Isoform specific amyloid-beta protein precursor metabolism.' Journal of Alzheimer's Disease 11(1): 85-95.
Holtzman, D. M., K. R. Bales, T. Tenkova, A. M. Fagan, M. Parsadanian, L. J. Sartorius, B. Mackey, J. Olney, D. McKeel, D. Wozniak and S. M. Paul (2000). 'Apolipoprotein E isoform-dependent amyloid deposition and neuritic degeneration in a mouse model of Alzheimer's disease.' Proceedings of the National Academy of Sciences of the United States of America 97(6): 2892-2897.
Howell, S., J. Nalbantoglu and P. Crine (1995). 'Neutral endopeptidase can hydrolyze β-amyloid(1–40) but shows no effect on β-amyloid precursor protein metabolism.' Peptides 16(4): 647-652.
Hung, W.-C., M.-T. Lee, F.-Y. Chen and H. W. Huang (2007). 'The condensing effect of cholesterol in lipid bilayers.' Biophysical Journal 92(11): 3960-3967.
Jiang, D., I. Rauda, S. Han, S. Chen and F. Zhou (2012). 'Aggregation pathways of the amyloid β(1–42) peptide depend on its colloidal stability and ordered β-sheet stacking.' Langmuir : the ACS journal of surfaces and colloids 28(35): 12711-12721.
Kanemitsu, H., T. Tomiyama and H. Mori (2003). 'Human neprilysin is capable of degrading amyloid β peptide not only in the monomeric form but also the pathological oligomeric form.' Neuroscience Letters 350(2): 113-116.
Karran, E., M. Mercken and B. D. Strooper (2011). 'The amyloid cascade hypothesis for Alzheimer's disease: An appraisal for the development of therapeutics.' Nature Reviews Drug Discovery 10(9): 698-712.
Kurochkin, I. V. and S. Goto (1994). 'Alzheimer's β-amyloid peptide specifically interacts with and is degraded by insulin degrading enzyme.' Federation of European Biochemical Societies Letters 345(1): 33-37.
Lammich, S., E. Kojro, R. Postina, S. Gilbert, R. Pfeiffer, M. Jasionowski, C. Haass and F. Fahrenholz (1999). 'Constitutive and regulated α-secretase cleavage of Alzheimer’s amyloid precursor protein by a disintegrin metalloprotease.' Proceedings of the National Academy of Sciences of the United States of America 96(7): 3922-3927.
Lazo, N. D. and D. T. Downing (1999). 'A mixture of α-helical and 310-helical conformations for involucrin in the human epidermal corneocyte envelope provides a scaffold for the attachment of both lipids and proteins.' Journal of Biological Chemistry 274(52): 37340-37344.
Lee, M.-T. (2018). 'Biophysical characterization of peptide–membrane interactions.' Advances in Physics: X 3(1): 145-164.
Lemmin, T., M. Dimitrov, P. C. Fraering and M. Dal Peraro (2014). 'Perturbations of the straight transmembrane α-helical structure of the amyloid precursor protein affect its processing by γ-secretase.' The Journal of Biological Chemistry 289(10): 6763-6774.
Levy-Lahad, E., W. Wasco, P. Poorkaj, D. Romano, J. Oshima, W. Pettingell, C. Yu, P. Jondro, S. Schmidt, K. Wang and e. al. (1995). 'Candidate gene for the chromosome 1 familial Alzheimer's disease locus.' Science 269(5226): 973-977.
Lewis, J., D. W. Dickson, W. L. Lin, L. Chisholm, A. Corral, G. Jones, S. H. Yen, N. Sahara, L. Skipper, D. Yager, C. Eckman, J. Hardy, M. Hutton and E. McGowan (2001). 'Enhanced neurofibrillary degeneration in transgenic mice expressing mutant tau and APP.' Science 293(5534): 1487-1491.
Lista, S., S. E. O'Bryant, K. Blennow, B. Dubois, J. Hugon, H. Zetterberg and H. Hampel (2015). 'Biomarkers in sporadic and familial Alzheimer's disease.' Journal of Alzheimer's Disease 47(2): 291-317.
Möller, H.-J. and M. B. Graeber (1998). 'The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections.' European Archives of Psychiatry and Clinical Neuroscience 243(3): 111-222.
MacLeod, R., E.-K. Hillert, R. T. Cameron and G. S. Baillie (2015). 'The role and therapeutic targeting of α-, β- and γ-secretase in Alzheimer's disease.' Future Science Open Access 1(3).
Mandel, R. and G. Holzwarth (1972). 'Circular dichroism of oriented helical polypeptides: The alpha‐helix.' The Journal of Chemical Physics 57(8): 3469-3477.
Martins, I. J., T. Berger, M. J. Sharman, G. Verdile, S. J. Fuller and R. N. Martins (2009). 'Cholesterol metabolism and transport in the pathogenesis of Alzheimer’s disease.' Journal of Neurochemistry 111(6): 1275-1308.
Morgado, I. and M. Garvey (2015). 'Lipids in amyloid-β processing, aggregation, and toxicity.' Lipids in Protein Misfolding: 67-94.
Mroczko, B., Groblewska, Magdalena, Litman-Zawadzka, Ala, Kornhuber, Johannes, Lewczuk, Piotr (2017). 'Amyloid β oligomers (AβOs) in Alzheimer’s disease.' Journal of Neural Transmission 125(2): 177–191.
Mucke, L. (2009). 'Neuroscience: Alzheimer's disease.' Nature 461(7266): 895-897.
Nadezhdin, K. D., O. V. Bocharova, E. V. Bocharov and A. S. Arseniev (2011). 'Structural and dynamic study of the transmembrane domain of the amyloid precursor protein.' Acta Naturae 3(1): 69-76.
Pan, Y. and M. J. Nilges (2014). 'Electron paramagnetic resonance spectroscopy: Basic principles, experimental techniques and applications to earth and planetary sciences.' Reviews in Mineralogy and Geochemistry 78(1): 655-690.
Pester, O., P. J. Barrett, D. Hornburg, P. Hornburg, R. Pröbstle, S. Widmaier, C. Kutzner, M. Dürrbaum, A. Kapurniotu, C. R. Sanders, C. Scharnagl and D. Langosch (2013). 'The backbone dynamics of the amyloid precursor protein transmembrane helix provides a rationale for the sequential cleavage mechanism of γ-secretase.' Journal of the American Chemical Society 135(4): 1317-1329.
Petra Bergström, L. A., Faisal Hayat Nazir, Tugce Munise Satir, Jamie Toombs, Henrietta Wellington, Joakim Strandberg, Thomas Olsson Bontell, Hlin Kvartsberg, Maria Holmström, Cecilia Boreström, Stina Simonsson, Tilo Kunath, Anders Lindahl, Kaj Blennow, Eric Hanse, Erik Portelius, Selina Wray & Henrik Zetterberg (2016). 'Amyloid precursor protein expression and processing are differentially regulated during cortical neuron differentiation.' Scientific Reports 6: 1-14.
Provias, J. and B. Jeynes (2014). 'The role of the blood-brain barrier in the pathogenesis of senile plaques in Alzheimer's disease.' International Journal of Alzheimer's Disease 2014: 1-7.
Raber, J., Y. Huang and J. W. Ashford (2004). 'ApoE genotype accounts for the vast majority of AD risk and AD pathology.' Neurobiology of Aging 25(5): 641-650.
Rapoport, M., H. N. Dawson, L. I. Binder, M. P. Vitek and A. Ferreira (2002). 'Tau is essential to β-amyloid-induced neurotoxicity.' Proceedings of the National Academy of Sciences of the United States of America 99(9): 6364-6369.
Reed, B., S. Villeneuve, W. Mack, C. DeCarli, H. C. Chui and W. Jagust (2014). 'Low HDL and high LDL serum cholesterol are associated with cerebral amyloidosis.' JAMA Neurology 71(2): 195-200.
Refolo, L. M., M. A. Pappolla, B. Malester, J. LaFrancois, T. Bryant-Thomas, R. Wang, G. S. Tint, K. Sambamurti and K. Duff (2000). 'Hypercholesterolemia accelerates the Alzheimer's amyloid pathology in a transgenic mouse model.' Neurobiology of Disease 7(4): 321-331.
Sato, C., Y. Morohashi, T. Tomita and T. Iwatsubo (2006). 'Structure of the catalytic pore of γ-secretase probed by the accessibility of substituted cysteines.' The Journal of Neuroscience 26(46): 12081-12088.
Selkoe, D. J. (2001). 'Alzheimer's disease: Genes, proteins, and therapy.' Physiological Reviews 81(2): 741-766.
Serrano-Pozo, A., M. P. Frosch, E. Masliah and B. T. Hyman (2011). 'Neuropathological alterations in Alzheimer disease.' Cold Spring Harbor Perspectives in Medicine: 1(1): 1-23.
Sevigny, J., P. Chiao, T. Bussière, P. H. Weinreb, L. Williams, M. Maier, R. Dunstan, S. Salloway, T. Chen, Y. Ling, J. O’Gorman, F. Qian, M. Arastu, M. Li, S. Chollate, M. S. Brennan, O. Quintero-Monzon, R. H. Scannevin, H. M. Arnold, T. Engber, K. Rhodes, J. Ferrero, Y. Hang, A. Mikulskis, J. Grimm, C. Hock, R. M. Nitsch and A. Sandrock (2016). 'The antibody aducanumab reduces Aβ plaques in Alzheimer’s disease.' Nature 537: 50-56.
Sherman, M. Y. and A. L. Goldberg (2001). 'Cellular defenses against unfolded proteins: A cell biologist thinks about neurodegenerative diseases.' Neuron 29(1): 15-32.
Sherrington, R., E. I. Rogaev, Y. Liang, E. A. Rogaeva, G. Levesque, M. Ikeda, H. Chi and C. e. a. Lin (1995). 'Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease.' Nature 375(6534): 754-760.
Siegel, G., H. Gerber, P. Koch, O. Bruestle, P. C. Fraering and L. Rajendran (2017). 'The Alzheimer's disease γ-secretase generates higher 42:40 ratios for β-amyloid than for p3 peptides.' Cell Reports 19(10): 1967-1976.
Soto, C. (2003). 'Unfolding the role of protein misfolding in neurodegenerative diseases.' Nature Reviews Neuroscience 4: 49-60.
Soto, C., M. C. Brañes, J. Alvarez and N. C. Inestrosa (1994). 'Structural determinants of the Alzheimer's amyloid β-peptide.' Journal of Neurochemistry 63(4): 1191-1198.
Sun, F., L. Chen, P. Wei, M. Chai, X. Ding, L. Xu and S.-Z. Luo (2017). 'Dimerization and structural stability of amyloid precursor proteins affected by the membrane microenvironments.' Journal of Chemical Information and Modeling 57(6): 1375-1387.
TA Bayer, R. C., CL Masters, K Beyreuther and G Multhaup (1999). 'It all sticks together—the APP-related family of proteinsand Alzheimer’s disease.' Molecular Psychiatry 4(6): 524-528.
Tanzi, R. E. and L. Bertram (2005). 'Twenty years of the Alzheimer’s disease amyloid hypothesis: A genetic perspective.' Cell 120(4): 545-555.
Thomas D Bird, M. (2012). 'Early-onset familial Alzheimer disease.' GeneReviews: 1-17.
Vassar, R., B. D. Bennett, S. Babu-Khan, S. Kahn, E. A. Mendiaz, P. Denis, D. B. Teplow, S. Ross, P. Amarante, R. Loeloff, Y. Luo, S. Fisher, J. Fuller, S. Edenson, J. Lile, M. A. Jarosinski, A. L. Biere, E. Curran, T. Burgess, J. C. Louis, F. Collins, J. Treanor, G. Rogers and M. Citron (1999). 'Beta-secretase cleavage of Alzheimer's amyloid precursor protein by the transmembrane aspartic protease BACE.' Science 286(5440): 735-741.
Vekrellis, K., Z. Ye, W. Q. Qiu, D. Walsh, D. Hartley, V. Chesneau, M. R. Rosner and D. J. Selkoe (2000). 'Neurons regulate extracellular levels of amyloid β-protein via proteolysis by insulin-degrading enzyme.' The Journal of Neuroscience 20(5): 1657-1665.
Verdile, G., S. Fuller, C. S. Atwood, S. M. Laws, S. E. Gandy and R. N. Martins (2004). 'The role of beta amyloid in Alzheimer’s disease: Still a cause of everything or the only one who got caught?' Pharmacological Research 50(4): 397-409.
Vestergaard, M., T. Hamada, M. Morita and M. Takagi (2010). 'Cholesterol, lipids, amyloid beta, and Alzheimers.' Current Alzheimer Research 7(3): 262-270.
Walsh, D. M. and D. J. Selkoe (2007). 'Aβ oligomers – a decade of discovery.' Journal of Neurochemistry 101(5): 1172-1184.
Wang, D.-S., D. W. Dickson and J. S. Malter (2008). 'Tissue transglutaminase, protein cross-linking and Alzheimer's disease: Review and views.' International Journal of Clinical and Experimental Pathology 1(1): 5-18.
Wilkins, H. M. and R. H. Swerdlow (2017). 'Amyloid precursor protein processing and bioenergetics.' Brain Research Bulletin 133: 71-79.
Winkler, E., F. Kamp, J. Scheuring, A. Ebke, A. Fukumori and H. Steiner (2012). 'Generation of Alzheimer disease-associated amyloid β42/43 peptide by γ-secretase can be inhibited directly by modulation of membrane thickness.' Journal of Biological Chemistry 287(25): 21326-21334.
Wolfe, M. S. (2012). 'γ-Secretase inhibitors and modulators for Alzheimer's disease.' Journal of Neurochemistry 120: 89-98.
Wolfe, M. S., W. Xia, B. L. Ostaszewski, T. S. Diehl, W. T. Kimberly and D. J. Selkoe (1999). 'Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and γ-secretase activity.' Nature 398: 513-517.
Wu, Y., H. W. Huang and G. A. Olah (1990). 'Method of oriented circular dichroism.' Biophysical Journal 57(4): 797-806.
Xu, T.-H., Y. Yan, Y. Kang, Y. Jiang, K. Melcher and H. E. Xu (2016). 'Alzheimer’s disease-associated mutations increase amyloid precursor protein resistance to γ-secretase cleavage and the Aβ42/Aβ40 ratio.' Cell Discovery 2: 1-14.
Zhang, X., Y. Li, H. Xu and Y.-w. Zhang (2014). 'The γ-secretase complex: From structure to function.' Frontiers in Cellular Neuroscience 8: 1-10.
Zinser, E. G., T. Hartmann and M. O. W. Grimm (2007). 'Amyloid beta-protein and lipid metabolism.' Biochimica et Biophysica Acta (BBA) - Biomembranes 1768(8): 1991-2001.
Zis, P. and A. Strydom (2018). 'Clinical aspects and biomarkers of Alzheimer's disease in Down syndrome.' Free Radical Biology and Medicine 114: 3-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69180-
dc.description.abstract目前已知導致阿茲海默症的其中一個因素是類澱粉前驅蛋白,此蛋白跨膜區域會被 γ-分泌酶切割而形成不同比例的 Aβ42 及 Aβ40,但目前 γ-分泌酶決定切位的機制仍未被充分了解。而在類澱粉前驅蛋白的跨膜區序列中,含有四個容易破壞二級結構的甘胺酸,其中兩個相鄰的甘胺酸會形成 GG-kink,並根據 Nadezhdin 與 Barrett 等人研究發現,不同的脂質組成對於 GG-kink 彎曲的角度有明顯的變化,故我們認為此段跨膜區域結構具有彈性並且能隨著外在環境變化而影響蛋白構型。在另一方面,有研究進一步指出膽固醇含量與病患腦中的類澱粉蛋白堆積程度呈現正相關,因此我們推測膽固醇可能是決定 γ-分泌酶切位的重要關鍵之一。
在本研究我們合成類澱粉前驅蛋白跨膜區序列 (28-53),而為了提高溶解度以及方便純化,我們額外延長序列 (22-55) 並在 N 端加上 KKWK,另外再挑選位於跨膜區的位點 (G29、V40、I47、V50),將其突變成半胱胺酸以利於自旋標記物之標定,最後將標定之胜肽與 DOPC 混和形成脂質體,以定向圓二色光譜儀、多片層 X 光繞射技術、以及電子自旋共振進行量測,觀察在有無膽固醇狀態之下,類澱粉前驅蛋白跨膜區在膜中的結構和方向性所產生的變化。從實驗結果中我們發現以多片層 X 光繞射技術量測的膜厚度資訊,確實在膽固醇存在時明顯增加,而使用定向圓二色光譜儀偵測胜肽在膜中的方向性,則可得到胜肽垂直插入於膜中的比例相對降低,以此結果表示膽固醇可能會改變胜肽在膜中的位置狀態。再透過電子自旋共振測量胜肽跨膜區 C 端上兩個位點 (V40–I47) 的自旋交互作用影響,由距離模擬結果可觀察到膽固醇對於此區段的影響並不大,其距離數值在有無膽固醇存在時皆為相似,並且明顯超過典型 α-螺旋之長度。根據這些資訊我們以結構模擬圖形推測,在胜肽跨膜區 C 端的 3 至 5 個胺基酸在 DOPC 脂質體中可能會被拉長成 310-螺旋結構,而膽固醇的影響位置或許是位在胜肽的 N 端區域,因此導致其 GG-kink 形成不同角度之彎折,或者是胜肽於膜內的整體位置產生改變,因而影響 γ-分泌酶的決定切位。
zh_TW
dc.description.provenanceMade available in DSpace on 2021-06-17T03:10:11Z (GMT). No. of bitstreams: 1
ntu-107-R05b46008-1.pdf: 13959990 bytes, checksum: 2233eb5fa922965767a29d58b3ecedfe (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents中文摘要 i
Abstract iii
縮寫表 Abbreviations v
第一章 緒論 1
1.1 阿茲海默症 (Alzheimer's Disease, AD) 1
1.1.1 疾病研究史 1
1.1.2 致病成因 2
1.1.3 疾病種類 4
1.3 形成與清除 Aβ 過程 8
1.4 類澱粉纖維蛋白生成機制 (Fibrillization) 10
1.5 γ-分泌酶 12
1.5.1 γ-分泌酶的組成 12
1.5.2 影響 γ-分泌酶切點位置的因素 13
1.6 脂質成分對於阿茲海默症之關聯性 15
1.7 實驗研究目的與實驗設計 17
第二章 材料與方法 26
2.1 材料 26
2.1.1 化學藥品 26
2.1.2 脂質試劑 28
2.1.3 透析膜與過濾管柱 29
2.1.4 脂質體製備材料 29
2.1.5 儀器 30
2.2 方法 32
2.2.1 KKWK-Aβ(22-55) 胜肽合成 32
2.2.1.1 溶劑配製 32
2.2.1.2 合成儀程序設定 32
2.2.1.3 清洗樹脂及切除反應 (Cleavage reaction) 33
2.2.2 KKWK-Aβ(22-55) 胜肽純化及鑑定 34
2.2.2.1 分子篩層析 (Size exclusion chromatography) 34
2.2.2.2 以透析膜及濃縮離心管方式過濾小分子 34
2.2.2.3 鑑定純化後的胜肽 34
2.2.3 胜肽進行定位自旋標記法及純化與鑑定 35
2.2.3.1 定位自旋標記法 35
2.2.3.2 以 ACN 為溶劑使用逆向-高效液相層析儀進行純化 35
2.2.3.3 以 TFE 為溶劑使用逆向-高效液相層析儀進行純化 35
2.2.3.4 使用 PD-10 及濃縮過濾離心管進行過濾 36
2.2.4 脂質薄膜及脂質體製備 36
2.2.4.1 脂質薄膜製作 36
2.2.4.2 脂質體形成 37
2.2.5 以動態光散射測量脂質體粒徑大小 37
2.2.6 以 (定向) 圓二色光譜儀量測胜肽之二級結構以及其方向性 37
2.2.7 利用多片層 X 光繞射測量膜厚度 38
2.2.8 用電子自旋共振量測胜肽上的自旋標記物 38
第三章 結果 39
3.1 KKWK-Aβ(22-55) 胜肽樣品製備 39
3.1.1 KKWK-Aβ(22-55) 胜肽合成及質譜鑑定分析 39
3.1.2 KKWK-Aβ(22-55) 胜肽由分子篩層析管柱純化及質譜鑑定分析 41
3.1.3 KKWK-Aβ(22-55) 胜肽經由透析膜及濃縮離心管純化並以質譜鑑定分析 44
3.2 胜肽進行定位自旋標記法及純化與質譜鑑定 45
3.2.1 使用 C18 管柱純化與質譜鑑定經定位自旋標記法之胜肽 45
3.2.2 以 PD-10 管柱及濃縮離心管過濾與質譜鑑定經定位自旋標記法之胜肽 48
3.3 透過圓二色光譜儀觀察不同類型之脂質對胜肽二級結構的影響 52
3.4 使用動態光散射量測脂質體大小與樣品均質度 56
3.5 以定向圓二色光譜儀探討膜組成變化對於胜肽在膜中位置之影響 59
3.6 以多片層 X 光繞射量測脂質膜厚度 60
3.7 用電子自旋共振量測在脂質體中胜肽的自旋標記物之距離 61
3.8 以結構模擬軟體進行 APP 跨膜區結構之預測 72
第四章 討論 74
第五章 未來展望 79
參考文獻 80
附錄 90
dc.language.isozh-TW
dc.subject膽固醇zh_TW
dc.subject阿茲海默症zh_TW
dc.subjectGG-kinkzh_TW
dc.subjectγ-分泌?zh_TW
dc.subject類澱粉前驅蛋白跨膜區zh_TW
dc.subjectAPP transmembrane regionen
dc.subjectγ-secretaseen
dc.subjectcholesterolen
dc.subjectGG-kinken
dc.title研究脂質成分對類澱粉前驅蛋白跨膜區結構的影響zh_TW
dc.titleStudying the Effect of Lipid Composition on the Membrane Spanning Region of Amyloid Precursor Proteinen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee廖永豐(Yung-Feng Liao),江昀緯(Yun-Wei Chiang),李明道(Ming-Tao Lee)
dc.subject.keyword阿茲海默症,類澱粉前驅蛋白跨膜區,γ-分泌?,GG-kink,膽固醇,zh_TW
dc.subject.keywordAPP transmembrane region,γ-secretase,GG-kink,cholesterol,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201801681
dc.rights.note有償授權
dc.date.accepted2018-07-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
13.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved