請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69179完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡定平(Din Ping Tsai) | |
| dc.contributor.author | Yu-Han Chen | en |
| dc.contributor.author | 陳郁涵 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:10:10Z | - |
| dc.date.available | 2028-07-18 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-19 | |
| dc.identifier.citation | 1. R. W. Wood, 'XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
2. U. Fano, 'The theory of anomalous diffraction gratings and of quasi-stationary waves on metallic surfaces (Sommerfeld's waves),' JOSA 31, 213-222 (1941). 3. A. Hessel and A. Oliner, 'A new theory of Wood's anomalies on optical gratings,' Applied optics 4, 1275-1297 (1965). 4. A. B. D. Aleksandar D. Rakić, Jovan M. Elazar, and Marian L. Majewski, 'Optical properties of metallic films for vertical-cavity optoelectronic devices,' Applied optics 37, 5271-5283 (1998). 5. M. Faraday, 'X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light,' Philosophical Transactions of the Royal Society of London 147, 145-181 (1857). 6. B. E. Sernelius, Surface modes in physics (John Wiley & Sons, 2011). 7. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, 'The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,' (ACS Publications, 2003). 8. O. J. F. M. Jörg P. Kottmann, David R. Smith, and Sheldon Schultz, 'Plasmon resonances of silver nanowires with a nonregular cross section,' Physical Review B 64, 235402 (2001). 9. V. G. Veselago, 'The electrodynamics of substances with simultaneously negative values of ε and μ,' Soviet physics uspekhi 10, 509 (1968). 10. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. Stewart, 'Magnetism from conductors and enhanced nonlinear phenomena,' IEEE transactions on microwave theory and techniques 47, 2075-2084 (1999). 11. J. B. Pendry, 'Negative refraction makes a perfect lens,' Physical review letters 85, 3966 (2000). 12. X. P. Wang, L. L. Wan, T. N. Chen, A. L. Song, and X. W. Du, 'Broadband reflected wavefronts manipulation using structured phase gradient metasurfaces,' Aip Advances 6(2016). 13. L. B. Yan, W. M. Zhu, P. C. Wu, H. Cai, D. Gu, L. K. Chin, Z. X. Shen, P. H. J. Chong, Z. C. Yang, W. Ser, D. P. Tsai, and A. Q. Liu, 'Adaptable metasurface for dynamic anomalous reflection,' Appl. Phys. Lett. 110(2017). 14. J. Babocky, A. Krizova, L. Strbkova, L. Kejik, F. Ligmajer, M. Hrton, P. Dvorak, M. Tyc, J. Collakova, V. Krapek, R. Kalousek, R. Chmelik, and T. Sikola, 'Quantitative 3D Phase Imaging of Plasmonic Metasurfaces,' Acs Photonics 4, 1389-1397 (2017). 15. K. E. Chong, L. Wang, I. Staude, A. R. James, J. Dominguez, S. Liu, G. S. Subramania, M. Decker, D. N. Neshev, I. Brener, and Y. S. Kivshar, 'Efficient Polarization-Insensitive Complex Wavefront Control Using Huygens’ Metasurfaces Based on Dielectric Resonant Meta-atoms,' ACS Photonics 3, 514-519 (2016). 16. Z. W. Xie, T. Lei, G. Y. Si, X. Y. Wang, J. Lin, C. J. Min, and X. C. Yuan, 'Meta-Holograms with Full Parameter Control of Wavefront over a 1000 nm Bandwidth,' Acs Photonics 4, 2158-2164 (2017). 17. J. P. Xia, H. X. Sun, Q. Cheng, Z. Xu, H. Chen, S. Q. Yuan, S. Y. Zhang, Y. Ge, and Y. J. Guan, 'Theoretical and experimental verification of acoustic focusing in metal cylinder structure,' Applied Physics Express 9(2016). 18. A. K. Azad, A. V. Efimov, S. Ghosh, J. Singleton, A. J. Taylor, and H. T. Chen, 'Ultra-thin metasurface microwave flat lens for broadband applications,' Appl. Phys. Lett. 110(2017). 19. X. X. Wu, X. X. Xia, J. X. Tian, Z. Y. Liu, and W. J. Wen, 'Broadband reflective metasurface for focusing underwater ultrasonic waves with linearly tunable focal length,' Appl. Phys. Lett. 108(2016). 20. W. Y. Zhao, H. Jiang, B. Y. Liu, J. Song, and Y. Y. Jiang, 'High-efficiency beam manipulation combining geometric phase with anisotropic Huygens surface,' Appl. Phys. Lett. 108(2016). 21. S. Zheng, C. Li, S. C. Li, X. J. Zhang, and G. Y. Fang, 'A metasurface-based prism analogue for terahertz rainbow spectrum manipulation,' Appl. Phys. Lett. 110(2017). 22. M. Khorasaninejad, W. T. Chen, A. Y. Zhu, J. Oh, R. C. Devlin, C. Roques-Carmes, I. Mishra, and F. Capasso, 'Visible Wavelength Planar Metalenses Based on Titanium Dioxide,' IEEE J. Sel. Top. Quantum Electron. 23(2017). 23. F. Y. Yue, D. D. Wen, J. T. Xin, B. D. Gerardot, J. S. Li, and X. Z. Chen, 'Vector Vortex Beam Generation with a Single Plasmonic Metasurface,' Acs Photonics 3, 1558-1563 (2016). 24. M. Q. Mehmood, S. T. Mei, S. Hussain, K. Huang, S. Y. Siew, L. Zhang, T. H. Zhang, X. H. Ling, H. Liu, J. H. Teng, A. Danner, S. Zhang, and C. W. Qiu, 'Visible-Frequency Metasurface for Structuring and Spatially Multiplexing Optical Vortices,' Adv. Mater. 28, 2533-+ (2016). 25. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, 'Light propagation with phase discontinuities: generalized laws of reflection and refraction,' science 334, 333-337 (2011). 26. S. Sun, K.-Y. Yang, C.-M. Wang, T.-K. Juan, W. T. Chen, C. Y. Liao, Q. He, S. Xiao, W.-T. Kung, and G.-Y. Guo, 'High-efficiency broadband anomalous reflection by gradient meta-surfaces,' Nano letters 12, 6223-6229 (2012). 27. S. Pancharatnam, 'Generalized theory of interference and its applications,' in Proceedings of the Indian Academy of Sciences-Section A, (Springer, 1956), 398-417. 28. P. C. Wu, W.-Y. Tsai, W. T. Chen, Y.-W. Huang, T.-Y. Chen, J.-W. Chen, C. Y. Liao, C. H. Chu, G. Sun, and D. P. Tsai, 'Versatile polarization generation with an aluminum plasmonic metasurface,' Nano letters 17, 445-452 (2016). 29. Y. Liu, Y. Ke, J. Zhou, Y. Liu, H. Luo, S. Wen, and D. Fan, 'Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,' Scientific Reports 7, 44096 (2017). 30. N. Yu, F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, 'A broadband, background-free quarter-wave plate based on plasmonic metasurfaces,' Nano letters 12, 6328-6333 (2012). 31. M. Khorasaninejad, W. T. Chen, R. C. Devlin, J. Oh, A. Y. Zhu, and F. Capasso, 'Metalenses at visible wavelengths: Diffraction-limited focusing and subwavelength resolution imaging,' Science 352, 1190-1194 (2016). 32. B. H. Chen, P. C. Wu, V.-C. Su, Y.-C. Lai, C. H. Chu, I. C. Lee, J.-W. Chen, Y. H. Chen, Y.-C. Lan, and C.-H. Kuan, 'GaN metalens for pixel-level full-color routing at visible light,' Nano letters 17, 6345-6352 (2017). 33. M. Khorasaninejad, W.-T. Chen, A. Y. Zhu, J. Oh, R. Devlin, D. Rousso, and F. Capasso, 'Multispectral chiral imaging with a metalens,' Nano letters 16, 4595-4600 (2016). 34. W. T. Chen, A. Y. Zhu, M. Khorasaninejad, Z. Shi, V. Sanjeev, and F. Capasso, 'Immersion meta-lenses at visible wavelengths for nanoscale imaging,' Nano letters 17, 3188-3194 (2017). 35. H. H. Hsiao, Y. H. Chen, R. J. Lin, P. C. Wu, S. Wang, B. H. Chen, and D. P. Tsai, 'Integrated Resonant Unit of Metasurfaces for Broadband Efficiency and Phase Manipulation,' Advanced Optical Materials, 1800031 (2018). 36. M. Khorasaninejad, W. T. Chen, J. Oh, and F. Capasso, 'Super-dispersive off-axis meta-lenses for compact high resolution spectroscopy,' Nano letters 16, 3732-3737 (2016). 37. M. Khorasaninejad, F. Aieta, P. Kanhaiya, M. A. Kats, P. Genevet, D. Rousso, and F. Capasso, 'Achromatic metasurface lens at telecommunication wavelengths,' Nano letters 15, 5358-5362 (2015). 38. E. Arbabi, A. Arbabi, S. M. Kamali, Y. Horie, and A. Faraon, 'Multiwavelength polarization-insensitive lenses based on dielectric metasurfaces with meta-molecules,' Optica 3, 628-633 (2016). 39. O. Avayu, E. Almeida, Y. Prior, and T. Ellenbogen, 'Composite functional metasurfaces for multispectral achromatic optics,' Nature communications 8, 14992 (2017). 40. M. Khorasaninejad, Z. Shi, A. Y. Zhu, W.-T. Chen, V. Sanjeev, A. Zaidi, and F. Capasso, 'Achromatic metalens over 60 nm bandwidth in the visible and metalens with reverse chromatic dispersion,' Nano letters 17, 1819-1824 (2017). 41. S. Wang, P. C. Wu, V.-C. Su, Y.-C. Lai, M.-K. Chen, H. Y. Kuo, B. H. Chen, Y. H. Chen, T.-T. Huang, and J.-H. Wang, 'A broadband achromatic metalens in the visible,' Nature nanotechnology 13, 227 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69179 | - |
| dc.description.abstract | 由多個共振器或一個具有多個共振模態的共振器組成的單位構建模塊,我們稱之為集成共振單位元(簡稱IRU),其顯示具有實現平滑和線性相位色散關係的能力,以及在連續性和極寬頻得頻譜上具有調變高振幅的能力。利用集成共振單位元的特性,我們展示了三種消色差超穎梯度板,光束偏折的反射角為9.5˚,19˚和28˚分別對應三種元件,即當入射波長從400到667 nm(約中心波長50%的寬度),波長偏折角度皆不變。此外,實驗上我們也展示了三種具有不同數值孔徑(Numerical aperture, NA)值和直徑的可見光消色差聚焦超穎元件,在幾乎整個可見光波段內具有不變的焦距。在直徑為41.86微米的消色差超穎透鏡其在實驗上420 nm,550 nm和650 nm波長入射下,聚焦偏振轉換後的效率分別達到26.31%,19.71%和20.37%。此外,多根奈米棒集成共振單位元的設計經過數值優化,可實現從可見光到近紅外(400 nm到1400 nm)的50%以上的偏振轉換效率。因此,我們採用此多根奈米棒IRU構建多功能偏振轉產生器,在一束線性偏振光照明時,會同時產生六種常見的偏振態。轉向圓偏振和線偏振輸出光束的最大轉換效率分別達到80%和40%。我們利用集成共振單位元在連續寬頻寬上有效控制振幅和相位響應的方法為實現多功能全彩色元器件提供了前所未有的平台。 | zh_TW |
| dc.description.abstract | With the incorporation of multiple elements or multiple resonances of nano-resonators into artifical plasmonic structures for optical components, these integrated-resonant units (IRUs), show a great ability for achieving controllable smooth and linear phase dispersion as well as amplitude manipulation over a continuous and broad bandwidth. Utilizing the property of IRUs design, we realize three achromatic deflectors showing constant steering angles of 9.5˚, 19˚, and 28˚ as the incident wavelength is varied from 400 to 667 nm (~50% bandwidth to the central wavelength). In, addition, three visible achromatic metalenses with various numerical aperture (NA) values and diameters are also experimentally demonstrated, displaying an unchanged focal length throughout almost the entire visible light wavelength range. The experimentally focusing efficiency of the achromatic metalens with diameter of 41.86μm achieves 26.31%, 19.71%, and 20.37%, respectively, at wavelengths of 420 nm, 550 nm, and 650 nm. Besides, a broadband versatile polarization generator is composed of multi-nanorod IRU design as building blocks numerically optimized to achieve above 50% conversion efficiency from visible to near-infrared (400 nm to 1400 nm). The versatile polarization convertor with high efficiency generates six common polarization states simultaneously upon one linear-polarized illumination. The maximal conversion efficiency for steered circular-polarized and linear-polarized output light beams reaches 80% and 40%, respectively. Our method with complete control of amplitude and phase response over continuously broad bandwidth provides an unprecedented platform in realizing multifunctional full-color meta-devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:10:10Z (GMT). No. of bitstreams: 1 ntu-107-R05222028-1.pdf: 4185654 bytes, checksum: 3b8b5a83a74d46b06cec366fd7d7d93f (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 口試委員會審定書
謝辭 中文摘要 英文摘要(Abstract) 圖目錄 1 表目錄 4 第一章 緒論 5 1-1前言 5 1-2表面電漿子 6 1-2-1 表面電漿子起源 6 1-2-2 金屬等效介電常數 7 1-2-3 介電質和金屬介面的表面電漿共振模態 10 1-2-4 侷域性表面電漿共振(LSPR) 14 1-3超穎材料與介面(metamaterial、metasurface) 16 1-3-1 超穎材料 16 1-3-2 超穎界面與廣義司涅爾定律 17 第二章 超穎介面之應用 21 2-1侷域相位調整機制 21 2-1-1 耦合式天線共振模態 21 2-1-2 結構多重共振模態 22 2-1-3 幾何相位法 23 2-2超穎梯度板 25 2-2-1超穎梯度板之簡介 25 2-3偏振調製器 27 2-3-1瓊斯計算 27 2-3-2史托拉克向量 28 2-3-3偏振轉換器 30 2-3-4偏振產生器 32 2-4超穎透鏡 33 2-4-1超穎透鏡之簡介 33 2-4-2超穎透鏡之設計 35 第三章 集成共振單位元組成超穎介面元件 37 3-1集成共振單位元 37 3-1-1模擬計算集成共振單位元 37 3-2寬頻高效率超穎偏振產生器 43 3-2-1超穎偏振產生器設計 43 3-2-2寬頻高效率超穎偏振產生器 45 3-3寬頻消色差超穎梯度板 48 3-3-1 寬頻消色差超穎梯度板之設計 49 3-3-3 寬頻消色差超穎梯度板之模擬 50 3-4寬頻消色差超穎透鏡 52 3-4-1 寬頻消色差透鏡設計方法 53 3-4-2 製程方法與結果 54 3-4-3 模擬與實驗量測結果 57 第四章 結論與未來展望 61 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光束偏折器 | zh_TW |
| dc.subject | 超穎介面 | zh_TW |
| dc.subject | 超穎透鏡 | zh_TW |
| dc.subject | 偏振產生器 | zh_TW |
| dc.subject | achromatic metalens | en |
| dc.subject | metasurface | en |
| dc.subject | polarization generator | en |
| dc.subject | beam deflector | en |
| dc.title | 集成共振單位元件組成之寬頻刻作超穎表面 | zh_TW |
| dc.title | Broadband metasurface with integrated resonant units | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 廖駿偉(Jiunn-Woei Liaw),藍永強(Yung-Chiang Lan) | |
| dc.subject.keyword | 超穎介面,超穎透鏡,偏振產生器,光束偏折器, | zh_TW |
| dc.subject.keyword | metasurface,achromatic metalens,polarization generator,beam deflector, | en |
| dc.relation.page | 66 | |
| dc.identifier.doi | 10.6342/NTU201801686 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-19 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 物理學研究所 | zh_TW |
| 顯示於系所單位: | 物理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 4.09 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
