請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69164完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 呂良正 | |
| dc.contributor.author | Yi Lu | en |
| dc.contributor.author | 盧易 | zh_TW |
| dc.date.accessioned | 2021-06-17T03:09:56Z | - |
| dc.date.available | 2018-08-01 | |
| dc.date.copyright | 2018-08-01 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-07-19 | |
| dc.identifier.citation | Chopra, A. K. (2011). Dynamics of Structures: Theory and Applications to Earthquake Engineering (4th ed.). Fourth edition, Pearson.
Hahn, G.D. and Sathiavageeswaran, K.R. (1992). Effects of added-damper distribution on the seismic response of buildings. Computers & Structures. 43(5):941-950. Hancock, J., Watson-Lamprey, J., Abrahamson, N.A., Bommer, J.J., Markatis, A., McCoy, E., and Mendis, R. (2006). An improved method of matching response spectra of recorded earthquake ground motion using wavelets, J. Earthquake Eng. 10: 67-89 Hudson, D. E. (1962). Some problems in the application of spectrum techniques to strong-motion earthquake analysis. Bulletin of the Seismological Society of America. 52(2): 417-430. Hwang, J. S., Huang, Y. N., Yi, S. L. and Ho, S.Y. (2008). Design formulations for supplemental viscous dampers to building structures. Journal of Structural Engineering. 134(1): 22-31. Hwang J.S., Lin, W.C. and Wu, N.J. (2013). Comparison of distribution methods for viscous damping coefficients to buildings. Structure and Infrastructure Engineering. 9(1): 28-41. Igusa, T., Der Kiurghian, A. and Sackman, J. L. (1984). Modal decomposition method for stationary response of non-classically damped system. Earthquake Engineering and Structural Dynamics. 12: 121-136 Leu, L. J. and Chang, J. T. (2014). A simple approach for optimal allocation of dampers in nonsymmetrical 3D multi-storey structures. International Journal of Structural Stability and Dynamics. 14(03): 1350074. Levy, R. and Lavan, O. (2006). Fully stressed design of passive controllers in framed structures for seismic loadings. Structural and Multidisciplinary Optimization. 32: 485-498. Levy, R. and Lavan, O. (2009). Quantitative Comparison of Optimization Approaches for the Design of Supplemental Damping in Earthquake Engineering Practice. Journal of Structural Engineering. 135(3): 321-325. Lopez Garcia, D. (2001). A simple method for the design of optimal damper configurations in MDOF structures. Earthquake Spectra. 17(3): 387-398. Lopez Garcia, D. and Soong, T. T. (2002). Efficiency of a simple approach to damper allocation in MDOF structures. Journal of Structural Control. 9(1): 19-30. Pekcan, G., Mander, J. B. and Chen, S. S. (1999). Design and Retrofit Methodology for Building Structures with Supplemental Energy Dissipating Systems. Report NO. MCEER-99-0021. New York: Multidisciplinary Center for Earthquake Engineering Research, State University of New York at Buffalo. Raggett, J. D. (1975). Estimating damping of real structures. Journal of the Structural Division. 101(9): 1823-1835. Song, J., Chu, Y.-L., Liang, Z. and Lee, G. C. (2008). Modal analysis of generally damped linear structures subjected to seismic excitations. Technical Report MCEER-08-0005. SUNY Buffalo, Buffalo, NY. Takewaki, I. (1997). Optimal damper placement for minimum transfer functions. Earthquake Engineering and Structural Dynamics. 26(11): 1113-1124. Takewaki, I. (2000). Optimal damper placement for planar building frames using transfer functions. Structural and Multidisciplinary Optimization. 20: 280-287. Tisseur, F. and Meerbergen, K. (2001). The quadratic eigenvalue problem. SIAM Review. 43(2): 235-286 Whittle, J.K., Williams, M.S., Karavasilis, T. L. and Blakeborough A. (2012). A Comparison of Viscous Damper Placement Methods for Improving Seismic Building Design. Journal of Earthquake Engineering. 16(4): 540-560. Yu, R. F. and Zhou, X. Y. 2006. Complex mode superposition method for non-classically damped linear system with over-critical damping peculiarity. Journal of Building Structures. 27(1): 50-59. Zhou, X. Y., Yu, R. F. and Dong, D. 2004. Complex mode superposition algorithm for seismic responses of nonclassically damped linear MDOF systems. Journal of Earthquake Engineering. 8(4): 597-641. Zhou, X. Y., Yu, R. F. and Dong, L. 2004. The complex-complete-quadratic- combination (CCQC) method for seismic responses of non-classically damped linear MDOF system. Proceedings of the 13th World Conference on Earthquake Engineering. Vancouver, Canada. 黃震興、黃尹男 (2001),使用線性黏性阻尼器建築結構之耐震試驗與分析,國家地震工程研究中心報告 NCREE-01-022。 呂良正、張仁德、張慈昕 (2010),平面剪力屋架中黏性阻尼器的簡易最佳配置法,結構工程,第二十五卷,第四期,27-40。 呂良正、張仁德 (2011),簡易法應用於三維不對稱多層房屋結構的阻尼最佳化配置,結構工程,第二十六卷,第四期,17-43。 建築物耐震設計規範及解說,內政部營建署,民國100年1月15號。 黃婉婷 (2012),應用反應譜分析法之阻尼器最佳化配置,國立臺灣大學土木工程研究所碩士論文。 張耿毓 (2013),應用模態疊加法之阻尼器最佳化配置,國立臺灣大學土木工程研究所碩士論文。 廖春滿 (2014),非古典阻尼系統之阻尼器最佳化配置,國立臺灣大學土木工程研究所碩士論文。 鄭至伸 (2015),黏性阻尼器應用於建築結構之最佳化設計,國立臺灣大學土木工程研究所碩士論文。 詹鵬台 (2016),黏性阻尼器應用於二維與三維建築結構之最佳化設計,國立臺灣大學土木工程研究所碩士論文。 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69164 | - |
| dc.description.abstract | 黏性阻尼器(Viscous Damper)經常作為被動消能元件被應用於建築結構,但於目前的規範中,對於黏性阻尼器之配置方法較無具體的規定與建議。此研究之目的為尋找黏性阻尼器應用於結構物中之最佳化分配,期望使阻尼器能最有效的發揮其效能,降低結構物於地震下之反應。
本研究將現有之阻尼器分配法分為直接分配法及動力分析分配法。設計過程中直接藉由結構物本身特性進行分配,不須經過動力分析之分配法為直接分配法;而設計過程須經過動力分析之分配法為動力分析分配法。本研究利用層間位移頻率轉換函數及隨機振動之概念,修改並延伸了現有的幾種阻尼器分配法。 本文也利用了廣義阻尼系統模態之模態疊加法及有效模態質量之概念,提出了新的分配法-模態質量分配法。而經由廣義阻尼系統模態之模態疊加法推導出的廣義阻尼系統之反應譜法,也被本文使用作為最佳化結構物反應之方法,利用反應譜法可以相對於直接積分法減少許多最佳化的時間,並於之後探討反應譜法如何應用於此最佳化題目及其成效。 將各分配法應用於四種剪力構架,並以兩種案例分別以多筆真實地震及人工地震進行檢核,期望藉由兩種案例來比較分配法於單一地震事件與多事件下的差異,而性能指標則表示為與均勻配置反應之折減指標,期望最佳化分配法能比實務上最常見之均勻配置法有更良好之效益。 經由兩種案例之比較與討論,本文建議30層樓以下之建築物可以使用MMD或H-Lavan,而30至40層樓左右之建築建議使用MH、EDVD或E-EDVD。由於建築物或當地設計反應譜的不同可能導致最佳之分配法有所差異,因此仍建議使用多種建議的分配法分別來分配阻尼器並通過數值模型來檢核並選出較適合該建築物之分配法。 | zh_TW |
| dc.description.abstract | Viscous dampers are frequently used in buildings as passive energy dissipation devices. However, the issue of the efficient placement of viscous dampers has received less attention in existing codes. The purpose of this research is to find the optimal allocation of viscous dampers in the structure. We hope the viscous dampers work more efficiently with optimal allocation under seismic actions.
In this study, all existing distribution methods are divided into two groups, “Direct Distribution Methods” and “Dynamic Analysis Distribution Methods”. The methods that allocate viscous dampers based on structure properties without dynamic analysis are called “Direct Distribution Methods”. The methods with dynamic analysis are called “Dynamic Analysis Distribution Methods”. The inter-story drift transfer function and the theory of random vibration are used in this research to modify and extend the existing distribution methods. A new distribution method called “Modal Mass Distribution” is proposed, which is based on non-classically damped system mode superposition methods and corresponding concept of effective modal mass. The response spectrum methods can be developed by corresponding mode superposition methods and is used in this study as the method to optimize the reaction of the structures. The response spectrum methods are more time efficient than the direct integration method with little error. The effectiveness and how the response spectrum methods applied to optimal problem will be discussed. Different kinds of distribution methods are applied to four shear type buildings. The examination has two cases and each case is divided into two parts, real ground motion records examination and spectrum-compatible time histories examination, to compare the difference of distribution methods between single event and multiple events of earthquakes. The reduction of seismic response from uniform distribution is chosen as the performance index. The performance index is chosen to demonstrate that the optimal distribution has better performance than the most common distribution, uniform distribution. After the comparison of two cases, we suggest to use MMD and H-Lavan for the building under 30 floors and to use MH, EDVD or E-EDVD for the building within 30 to 40 floors. Because the difference of the structure and the design response spectrum, the best distribution method might be different. It is recommended to use multiple suggested distribution methods and run the analysis with numerical model to choose the best method for the structure. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T03:09:56Z (GMT). No. of bitstreams: 1 ntu-107-R05521225-1.pdf: 14625063 bytes, checksum: da871ff00f5f3268153cdd751a602a19 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i
摘要 iii Abstract v 目 錄 vii 表目錄 xi 圖目錄 xiii 第一章 緒論 1 1.1 研究動機 1 1.2 文獻回顧 1 1.3 研究內容 3 第二章 阻尼器最佳化分配法 4 2.1 前言 4 2.2 分配法比較標準 4 2.2.1 單自由度結構系統黏性阻尼器提供之阻尼比 4 2.2.2 含黏性阻尼器系統之有效阻尼比 5 2.2.3 總阻尼係數 7 2.2.4 剪力構架 8 2.2.5 人工合成設計地震歷時 10 2.2.6 性能指標 12 2.3 直接分配法 14 2.3.1 按樓層彈性應變能分配法(SSSE) 14 2.3.2 按黏性阻尼器之消散能量分配法(EDVD) 15 2.3.3 竹脇法(Takewaki Method) 16 2.4 動力分析分配法 18 2.4.1 元素交換法(EEM) 18 2.4.2 拉文法 (Lavan A/R Method) 20 2.5 阻尼器阻尼係數配置結果 21 2.5.1 均勻分配法(UD) 22 2.5.2 按樓層彈性應變能分配法(SSSE) 23 2.5.3 按黏性阻尼器之消散能量分配法(EDVD) 24 2.5.4 竹脇法(Takewaki Method) 25 2.5.5 元素交換法(EEM) 26 2.5.6 拉文法(Lavan A/R Method) 27 2.6 小結 28 第三章 阻尼器最佳化方配法延伸 29 3.1 前言 29 3.2 直接分配法之延伸 29 3.2.1 H與E分配法之分配概念 29 3.2.2 H與E分配法之分配過程 31 3.2.3 竹脇法之延伸 31 3.3 動力分析分配法之延伸 33 3.3.1 拉文法之延伸 33 3.3.2 元素交換法之延伸 34 3.4 阻尼器阻尼係數配置結果 34 3.4.1 H-SSSE 35 3.4.2 H-EDVD 36 3.4.3 E-SSSE 37 3.4.4 E-EDVD 38 3.4.5 MH (minimize H) 39 3.4.6 ME (minimize E) 40 3.4.7 H-Lavan 41 3.4.8 H-EEM 42 3.4.9 E-Lavan 43 3.4.10 E-EEM 44 3.5 小結 45 第四章 廣義阻尼系統之模態疊加法 46 4.1 前言 46 4.2 廣義特徵值問題與特性 46 4.2.1 廣義特徵值問題(GEP) 46 4.3 廣義阻尼系統之模態疊加法 48 4.3.1 廣義阻尼系統之模態疊加法1 (MSM-1) 48 4.3.2 廣義阻尼系統之模態疊加法2 (MSM-2) 54 4.4 有效模態質量 57 4.4.1 廣義阻尼系統之有效模態質量 57 4.5 模態質量分配法(MMD) 59 4.6 阻尼器阻尼係數配置結果 60 4.6.1 模態質量分配法(MMD) 61 4.7 小結 62 第五章 反應譜法應用於最佳化分配 63 5.1 前言 63 5.2 CCQC 63 5.3 GCQC 67 5.4 過阻尼模態反應譜 70 5.4.1 CCQC過阻尼反應譜 71 5.4.2 GCQC過阻尼反應譜 71 5.5 反應譜法於最佳化之應用 73 5.5.1 反應譜法應用於多筆地震 74 5.5.2 OGCQC法之概念與流程 75 5.6 阻尼器阻尼係數配置結果 78 5.6.1 OGCQC 79 5.7 小結 80 第六章 分配法檢核與討論 81 6.1 前言 81 6.2 直接分配法之討論 81 6.2.1 H、E與原直接分配法之比較 81 6.2.2 直接分配法檢核與比較結果 90 6.3 動力分析分配法之討論 100 6.3.1 動力分析分配法檢核與比較結果 100 6.4 最佳之分配法討論 109 6.4.1 最佳之分配法檢核與比較結果 109 6.4.2 最佳之分配法與空構架之比較 115 6.5 小結 122 第七章 總結及未來展望 124 7.1 總結 124 7.2 未來展望 125 附錄一 案例一設計地震歷時資料 126 附錄二 案例二設計地震歷時資料 127 附錄三 案例一檢核地震歷時資料 128 附錄四 案例二檢核地震歷時資料 129 附錄五 阻尼係數配置結果 130 參考文獻 147 簡歷 151 | |
| dc.language.iso | zh-TW | |
| dc.subject | 模態疊加法 | zh_TW |
| dc.subject | 反應譜分析法 | zh_TW |
| dc.subject | 非古典阻尼系統 | zh_TW |
| dc.subject | 黏性阻尼器 | zh_TW |
| dc.subject | 剪力構架 | zh_TW |
| dc.subject | 阻尼最佳化配置 | zh_TW |
| dc.subject | viscous damper | en |
| dc.subject | shear type buildings | en |
| dc.subject | mode superposition method | en |
| dc.subject | response spectrum analysis | en |
| dc.subject | non-classically damped system | en |
| dc.subject | optimal placement of dampers | en |
| dc.title | 考慮多模態之黏性阻尼器最佳化分配及其於建築結構之應用 | zh_TW |
| dc.title | Optimal Allocation of Viscous Dampers Considering Multiple Modes and Application to Building Structures | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 宋裕祺,郭世榮,黃仲偉 | |
| dc.subject.keyword | 黏性阻尼器,阻尼最佳化配置,剪力構架,非古典阻尼系統,模態疊加法,反應譜分析法, | zh_TW |
| dc.subject.keyword | viscous damper,optimal placement of dampers,shear type buildings,non-classically damped system,mode superposition method,response spectrum analysis, | en |
| dc.relation.page | 151 | |
| dc.identifier.doi | 10.6342/NTU201801691 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-07-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 14.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
