Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 基因體暨蛋白體醫學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69139
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張以承(Yi-Cheng Chang)
dc.contributor.authorZhi-Zhong DINGen
dc.contributor.author丁致中zh_TW
dc.date.accessioned2021-06-17T03:09:36Z-
dc.date.available2020-08-26
dc.date.copyright2020-08-26
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. Sinharoy P, McAllister SL, Vasu M, Gross ER. Environmental Aldehyde Sources and the Health Implications of Exposure. Adv Exp Med Biol. 2019;1193:35-52.
2. O'Brien PJ, Siraki AG, Shangari N. Aldehyde sources, metabolism, molecular toxicity mechanisms, and possible effects on human health. Crit Rev Toxicol. 2005;35(7):609-662.
3. Ayala A, Muñoz MF, Argüelles S. Lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014.
4. Pillon, N.J. and C.O. Soulage, Lipid peroxidation by-products and the metabolic syndrome, in Lipid Peroxidation. 2012, IntechOpen.
5. Uchida, K., et al., Activation of stress signaling pathways by the end product of lipid peroxidation. 4-hydroxy-2-nonenal is a potential inducer of intracellular peroxide production. J Biol Chem, 1999. 274(4): p. 2234-42.
6. Zheng R, Dragomir AC, Mishin V, et al. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats. Toxicol Appl Pharmacol. 2014;279(1):43-52.
7. Edenberg, H.J., The genetics of alcohol metabolism: role of alcohol dehydrogenase and aldehyde dehydrogenase variants. Alcohol Res Health, 2007. 30(1): p. 5-13.
8. Yin, S.J., Alcohol dehydrogenase: enzymology and metabolism. Alcohol Alcohol Suppl, 1994. 2: p. 113-9.
9. Larson, H.N., H. Weiner, and T.D. Hurley, Disruption of the coenzyme binding site and dimer interface revealed in the crystal structure of mitochondrial aldehyde dehydrogenase 'Asian' variant. The Journal of biological chemistry, 2005. 280(34): p. 30550-30556.
10. Schauenstein, E., Autoxidation of polyunsaturated esters in water: chemical structure and biological activity of the products. J Lipid Res, 1967. 8(5): p. 417-28.
11. Eriksson, C.J., M. Marselos, and T. Koivula, Role of cytosolic rat liver aldehyde dehydrogenase in the oxidation of acetaldehyde during ethanol metabolism in vivo. Biochem J, 1975. 152(3): p. 709-12
12. Guo JM, Liu AJ, Zang P, et al. ALDH2 protects against stroke by clearing 4-HNE. Cell Res. 2013;23(7):915-930.
13. Enomoto, N., et al., Acetaldehyde metabolism in different aldehyde dehydrogenase-2 genotypes. Alcohol Clin Exp Res, 1991. 15(1): p. 141-4.
14. Li, H., et al., Refined geographic distribution of the oriental ALDH2*504Lys (nee 487Lys) variant. Ann Hum Genet, 2009. 73(Pt 3): p. 335-45.
15. Okada Y, Sim X, Go MJ, et al. Meta-analysis identifies multiple loci associated with kidney function-related traits in east Asian populations. Nat Genet. 2012;44(8):904-909.
16. Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO Clinical Practice Guideline for Acute Kidney Injury. Kidney inter., Suppl. 2012; 2: 1–138.
17. Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK. Failed Tubule Recovery, AKI-CKD Transition, and Kidney Disease Progression. J Am Soc Nephrol. 2015;26(8):1765-1776.
18. Sharfuddin AA, Molitoris BA. Pathophysiology of ischemic acute kidney injury. Nat Rev Nephrol. 2011;7(4):189-200.
19. Xu T, Liu S, Ma T, Jia Z, Zhang Z, Wang A. Aldehyde dehydrogenase 2 protects against oxidative stress associated with pulmonary arterial hypertension. Redox Biol. 2017;11:286-296.
20. Kim J, Chen CH, Yang J, Mochly-Rosen D. Aldehyde dehydrogenase 2*2 knock-in mice show increased reactive oxygen species production in response to cisplatin treatment. J Biomed Sci. 2017;24(1):33.
21. Yang H, Song Z, Yang GP, et al. The ALDH2 rs671 polymorphism affects post-stroke epilepsy susceptibility and plasma 4-HNE levels. PLoS One. 2014;9(10):e109634.
22. Pallavi Bhargava and Rick G. Schnellmann, Mitochondrial energetics in the kidney. Nature reviews 2017.107.
23. Sancho-Martínez SM, Blanco-Gozalo V, Quiros Y, et al. Impaired Tubular Reabsorption Is the Main Mechanism Explaining Increases in Urinary NGAL Excretion Following Acute Kidney Injury in Rats. Toxicol Sci. 2020;175(1):75-86.
24. Negishi K, Noiri E, Maeda R, Portilla D, Sugaya T, Fujita T. Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int. 2008;73(12):1374-1384.
25. Bhargava P, Schnellmann RG. Mitochondrial energetics in the kidney. Nat Rev Nephrol. 2017;13(10):629-646.
26. Schrier RW, Arnold PE, Gordon JA, Burke TJ. Protection of mitochondrial function by mannitol in ischemic acute renal failure. Am J Physiol. 1984;247(2 Pt 2):F365-F369.
27. Ma S, Cao F. Targeting ALDH2 in Atherosclerosis: Molecular Mechanisms and Therapeutic Opportunities. Adv Exp Med Biol. 2019;1193:211-220.
28. Chen, C.H., et al., Targeting aldehyde dehydrogenase 2: new therapeutic opportunities. Physiol Rev, 2014. 94(1): p. 1-34.
29. Panisello-Roselló A, Lopez A, Folch-Puy E, et al. Role of aldehyde dehydrogenase 2 in ischemia reperfusion injury: An update. World J Gastroenterol. 2018;24(27):2984-2994.
30. Wajda J, Dumnicka P, Kolber W, et al. The Marker of Tubular Injury, Kidney Injury Molecule-1 (KIM-1), in Acute Kidney Injury Complicating Acute Pancreatitis: A Preliminary Study. J Clin Med. 2020;9(5):1463.kidney injury.
31. Dickerson VM, Rissi DR, Brown CA, Brown SA, Schmiedt CW. Assessment of Acute Kidney Injury and Renal Fibrosis after Renal Ischemia Protocols in Cats. Comp Med. 2017;67(1):56-66.
32. Shinde AV, Humeres C, Frangogiannis NG. The role of α-smooth muscle actin in fibroblast-mediated matrix contraction and remodeling. Biochim Biophys Acta Mol Basis Dis. 2017;1863(1):298-309.
33. Tampe B, Steinle U, Tampe D, et al. Low-dose hydralazine prevents fibrosis in a murine model of acute kidney injury-to-chronic kidney disease progression. Kidney Int. 2017;91(1):157-176.
34 Danobeitia JS, Ziemelis M, Ma X, et al. Complement inhibition attenuates acute kidney injury after ischemia-reperfusion and limits progression to renal fibrosis in mice. PLoS One. 2017;12(8):e0183701.
35. Chen CH, Cruz LA, Mochly-Rosen D. Pharmacological recruitment of aldehyde dehydrogenase 3A1 (ALDH3A1) to assist ALDH2 in acetaldehyde and ethanol metabolism in vivo. Proc Natl Acad Sci U S A. 2015;112(10):3074-3079.
36. Sabbisetti VS, Waikar SS, Antoine DJ, et al. Blood kidney injury molecule-1 is a biomarker of acute and chronic kidney injury and predicts progression to ESRD in type I diabetes. J Am Soc Nephrol. 2014;25(10):2177-2186.
37. Klahr S, Morrissey J. Obstructive nephropathy and renal fibrosis. Am J Physiol Renal Physiol. 2002;283(5): F861-F875.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69139-
dc.description.abstract日常生活中常存在有醛類的危害,這些有害醛類可能來自於酒精、二手菸、工業廢氣、食物腐壞等外在因子或者是經由體內代謝反應所產生。具高反應活性的醛類如4-hydroxynonenal(4-HNE)會與蛋白質產生共價鍵交互結合,進而影響正常蛋白質的構型並損害其功能。
在人體中,位於細胞粒線體內的乙醛脫氫酶(acetaldehyde dehydrogenase 2, ALDH2)主要負責將酒精的下游產物乙醛代謝為乙酸。除此之外,ALDH2同時也負責代謝其他有害的醛類如4-HNE。然而,在東亞地區有超過40%的人群帶有ALDH2基因的錯義性點突變(missense mutation, Glu487Lys),使得這個酵素在異合子結構時活性失去60-80%,同合子結構時活性失去約90%,在後續的全基因組相關研究中也發現這個東亞人特有的點突變與腎功能有所關聯。
在我們的研究中,我們建立了缺血-再灌流的急性腎損傷小鼠模型,試圖用以探討ALDH2活化劑AD9308是否能應用於治療急性腎損傷。結果顯示,在小鼠體內產生急性腎損傷的前後施以ALDH2活化劑AD9308治療,可以有效改善腎功能並延長小鼠存活率,組織學檢查發現AD9308可以減少小鼠的腎小管損傷以及與4-HNE結合之蛋白堆積並避免腎組織的纖維化病變。
當前急性腎損傷的治療在臨床上以支持性治療為主,本研究開啟了藉由活化ALDH2以治療急性腎損傷的契機。
zh_TW
dc.description.abstractIn daily life, we are exposed to hazardous aldehydes. These harmful aldehydes may produce from exogenous factors such as alcohol beverage, cigarette smoking, factory exhaust, spoiled fruits or from endogenous intermediate metabolism. The highly active aldehydes such as 4-hydroxynonenal (4-HNE) form covalent binding with proteins, which change their structure resulting in protein dysfunction.
In human, acetaldehyde dehydrogenase 2 (ALDH2) enzymes that locate in cell mitochondria mainly metabolize acetaldehydes into acetic acid in alcohol metabolism pathway. Besides, ALDH2 also metabolizes a variety of toxic aldehydes including 4-HNE. However, approximate 40% of the East Asian population carry a single nucleotide polymorphism (SNP) of ALDH2 (rs671). The inactivating missense mutation is characteristic of the substitution of lysine for glutamate at position 487 (Glu487Lys) within the catalytic site of ALDH2. The ALDH2 enzymatic activity decreases by 60 to 80 % in heterozygotes (ALDH2*1) and 90 % in homozygotes (ALDH2*2). A large-scale meta-analysis of genome-wide association studies has reported that this polymorphism is significantly associated with renal function.
In this study, we established the mice acute kidney injury (AKI) model induces by ischemia-reperfusion-injury (IRI). ALDH2 activator AD9308 improved renal function and prolonged survival in AKI mice. Histological examination also showed that AD9308 reduced renal tubular damage, accumulation of 4-HNE-adducted proteins, and renal tissue fibrosis.
Present clinical treatments for AKI adopt supportive therapies. Our findings herald a new approach for treating AKI by activating ALDH2.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:09:36Z (GMT). No. of bitstreams: 1
U0001-1808202018124300.pdf: 3839025 bytes, checksum: 4cced9ae78d7a0621cd253f5c7154e45 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontentsCONTENTS
口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
ABBREVIATION LIST v
CONTENTS vii
ChapterI Introduction 1
1.The pathological effects of aldehydes in vivo 1
2.ALDH2 serves as a crucial enzyme that catalyzes aldehydes metabolism 2
3.Meta-analysis identifies East-Asian-specific ALDH2 variant is associated with renal function 3
4.Pathophysiology of acute kidney injuries (AKI) and chronic kidney diseases (CKD) 5
5.Role of ALDH2 and 4-HNE in IRI renal dysfunction 8
6.Rationale of this study 9
ChapterII Materials and Methods 10
1.Animal model 10
2.Establishment of mice AKI model 10
3.Hematoxylin-eosin (H E) staining 11
4.Immunohistochemistry (IHC) staining 12
5. Western blot analysis 12
6. Serum 4-HNE measurement 13
Chapter III Results 14
1. Pre-treatment and post-treatment of ALDH2 activator AD9308 provides therapeutic effects in ischemic AKI model 14
2. The preventive effects of AD9308 pre-treatment in ischemic AKI model 15
3. Pre-treatment of AD9308 declines the renal tubular damages in ischemic AKI model. 16
4. Pre-treatment of AD9308 reduces 4-HNE accumulation in ischemic AKI model 17
5. Pre-treatment of AD9308 inhibits renal fibrosis in ischemic AKI model 17
6. The therapeutic effects of AD9308 post-treatment in ischemic AKI model 18
Chapter IV Discussion 20
FIGURES 22
REFERENCES 31
dc.language.isozh-TW
dc.title降低有毒醛類以達到治療小鼠急性腎損傷的效果
zh_TW
dc.titleReducing toxic aldehydes for treating acute kidney injury in mice
en
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊立民(Lee-Ming Chuang),潘思樺(SZU-HUA PAN)
dc.subject.keyword乙醛脫氫酶,醛類,急性腎損傷,乙醛脫氫酶活化劑,zh_TW
dc.subject.keywordALDH2,aldehydes,4-hydroxynonenal,acute kidney injury,ALDH2 activator,en
dc.relation.page34
dc.identifier.doi10.6342/NTU202004018
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept基因體暨蛋白體醫學研究所zh_TW
顯示於系所單位:基因體暨蛋白體醫學研究所

文件中的檔案:
檔案 大小格式 
U0001-1808202018124300.pdf
  目前未授權公開取用
3.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved