Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69126
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢義隆
dc.contributor.authorMeng-Kai Chenen
dc.contributor.author陳孟凱zh_TW
dc.date.accessioned2021-06-17T03:09:27Z-
dc.date.available2021-08-01
dc.date.copyright2018-08-01
dc.date.issued2018
dc.date.submitted2018-07-20
dc.identifier.citation[1] Boden, T. A., Marland, G., & Andres., R. J. (2017). Global, Regional, and National Fossil-Fuel CO2 Emissions.
[2] Keeling, C. D., Piper, S. C., Bacastow, R. B., Wahlen, M., Whorf, T. P., Heimann, M., & Meijer, H. A. (2001). Exchanges of atmospheric CO2 and 13CO2 with the terrestrial biosphere and oceans from 1978 to 2000. I. Global aspects.
[3] Bruckner, T., Fulton, L., Hertwich, E., McKinnon, A., Perczyk, D., Roy, J., Schaeffer, R., Schlömer, S., Sims, R., Smith, P., & Wiser, R. (2014). Annex III: Technology-specific cost and performance parameters. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
[4] Martens, J. A., Bogaerts, A., De Kimpe, N., Jacobs, P. A., Marin, G. B., Rabaey, K., Saeys, M., & Verhelst, S. (2017). The Chemical Route to a Carbon Dioxide Neutral World. Chemsuschem, 10(6), 1039-1055. doi: 10.1002/cssc.201601051
[5] Huang, C. H., & Tan, C. S. (2014). A Review: CO2 Utilization. Aerosol and Air Quality Research, 14(2), 480-499. doi: 10.4209/aaqr.2013.10.0326
[6] Cheah, W. Y., Show, P. L., Chang, J. S., Ling, T. C., & Juan, J. C. (2015). Biosequestration of atmospheric CO2 and flue gas-containing CO2 by microalgae. Bioresource Technology, 184, 190-201. doi: 10.1016/j.biortech.2014.11.026
[7] Moreira, D., & Pires, J. C. M. (2016). Atmospheric CO2 capture by algae: Negative carbon dioxide emission path. Bioresource Technology, 215, 371-379. doi: 10.1016/j.biortech.2016.03.060
[8] Tamboli, A. H., Chaugule, A. A., & Kim, H. (2017). Catalytic developments in the direct dimethyl carbonate synthesis from carbon dioxide and methanol. Chemical Engineering Journal, 323, 530-544. doi: 10.1016/j.cej.2017.04.112
[9] Yuan, Z. H., Eden, M. R., & Gani, R. (2016). Toward the Development and Deployment of Large-Scale Carbon Dioxide Capture and Conversion Processes. Industrial & Engineering Chemistry Research, 55(12), 3383-3419. doi: 10.1021/acs.iecr.5b03277
[10] Aresta, M., Dibenedetto, A., & Angelini, A. (2014). Catalysis for the Valorization of Exhaust Carbon: from CO2 to Chemicals, Materials, and Fuels. Technological Use of CO2. Chemical Reviews, 114(3), 1709-1742. doi: 10.1021/cr4002758
[11] Peral, E., & Martin, M. (2015). Optimal Production of Dimethyl Ether from Switchgrass-Based Syngas via Direct Synthesis. Industrial & Engineering Chemistry Research, 54(30), 7465-7475. doi: 10.1021/acs.iecr.5b00823
[12] Phillips, S. D. (2007). Technoeconomic analysis of a lignocellulosic biomass indirect gasification process to make ethanol via mixed alcohols synthesis. Industrial & Engineering Chemistry Research, 46(26), 8887-8897. doi: 10.1021/ie071224u
[13] Wenzel, M., Rihko-Struckmann, L., & Sundmacher, K. (2017). Thermodynamic analysis and optimization of RWGS processes for solar syngas production from CO2. Aiche Journal, 63(1), 15-22. doi: 10.1002/aic.15445
[14] Ehlinger, V. M., Gabriel, K. J., Noureldin, M. M. B., & El-Hawagi, M. M. (2014). Process Design and Integration of Shale Gas to Methanol. Acs Sustainable Chemistry & Engineering, 2(1), 30-37. doi: 10.1021/sc400185b
[15] Rafiee, A., Panahi, M., & Khalilpour, K. R. (2017). CO2 utilization through integration of post-combustion carbon capture process with Fischer-Tropsch gas-to-liquid (GTL) processes. Journal of Co2 Utilization, 18, 98-106. doi: 10.1016/j.jcou.2017.01.016
[16] Pérez-Fortes., M., & Bojarski., A. D. (2011). Modelling Syngas Generation. In L. Puigjaner (Ed.), Syngas from Waste. London: Springer-Verlag
[17] Balasubramanian, P., Bajaj, I., & Hasan, M. M. F. (2018). Simulation and optimization of reforming reactors for carbon dioxide utilization using both rigorous and reduced models. Journal of Co2 Utilization, 23, 80-104. doi: 10.1016/j.jcou.2017.10.014
[18] Mohamed Safdar Allie Baksh, & Ackley, M. W. (1999). US6340382B1.
[19] Baltrusaitis, J., & Luyben, W. L. (2015). Methane Conversion to Syngas for Gas-to-Liquids (GTL): Is Sustainable CO2 Reuse via Dry Methane Reforming (DMR) Cost Competitive with SMR and AIR Processes? Acs Sustainable Chemistry & Engineering, 3(9), 2100-2111. doi: 10.1021/acssuschemeng.5b00368
[20] Luu, M. T., Milani, D., Bahadori, A., & Abbas, A. (2015). A comparative study of CO2 utilization in methanol synthesis with various syngas production technologies. Journal of Co2 Utilization, 12, 62-76. doi: 10.1016/j.jcou.2015.07.001
[21] Lim, Y., Lee, C. J., Jeong, Y. S., Song, I. H., Lee, C. J., & Han, C. (2012). Optimal Design and Decision for Combined Steam Reforming Process with Dry Methane Reforming to Reuse CO2 as a Raw Material. Industrial & Engineering Chemistry Research, 51(13), 4982-4989. doi: 10.1021/ie200870m
[22] Luyben, W. L. (2016). Control of parallel dry methane and steam methane reforming processes for Fischer-Tropsch syngas. Journal of Process Control, 39, 77-87. doi: 10.1016/j.jprocont.2015.11.007
[23] Zhang, Y. S., Zhang, S. J., Lou, H. H., Gossage, J. L., & Benson, T. J. (2014). Steam and Dry Reforming Processes Coupled with Partial Oxidation of Methane for CO2 Emission Reduction. Chemical Engineering & Technology, 37(9), 1493-1499. doi: 10.1002/ceat.201400132
[24] Noureldin, M. M. B., Elbashir, N. O., Gabriel, K. J., & El-Halwagi, M. M. (2015). A Process Integration Approach to the Assessment of CO2 Fixation through Dry Reforming. Acs Sustainable Chemistry & Engineering, 3(4), 625-636. doi: 10.1021/sc5007736
[25] Song, C. S., & Wei, P. (2004). Tri-reforming of methane: a novel concept for catalytic production of industrially useful synthesis gas with desired H-2/CO ratios. Catalysis Today, 98(4), 463-484. doi: 10.1016/j.cattod.2004.09.054
[26] Cho, W. J., Song, T. Y., Mitsos, A., McKinnon, J. T., Ko, G. H., Tolsma, J. E., Denholm, D., & Park, T. (2009). Optimal design and operation of a natural gas tri-reforming reactor for DME synthesis. Catalysis Today, 139(4), 261-267. doi: 10.1016/j.cattod.2008.04.051
[27] Aboosadi, Z. A., Jahanmiri, A. H., & Rahimpour, M. R. (2011). Optimization of tri-reformer reactor to produce synthesis gas for methanol production using differential evolution (DE) method. Applied Energy, 88(8), 2691-2701. doi: 10.1016/j.apenergy.2011.02.017
[28] Benguerba, Y., Dehimi, L., Virginie, M., Dumas, C., & Ernst, B. (2015). Modelling of methane dry reforming over Ni/Al2O3 catalyst in a fixed-bed catalytic reactor. Reaction Kinetics Mechanisms and Catalysis, 114(1), 109-119. doi: 10.1007/s11144-014-0772-5
[29] Richardson, J. T., & Paripatyadar, S. A. (1990). Carbon-Dioxide Reforming of Methane with Supported Rhodium. Applied Catalysis, 61(2), 293-309. doi: Doi 10.1016/S0166-9834(00)82152-1
[30] Snoeck, J. W., Froment, G. F., & Fowles, M. (1997). Kinetic study of the carbon filament formation by methane cracking on a nickel catalyst. Journal of Catalysis, 169(1), 250-262. doi: DOI 10.1006/jcat.1997.1635
[31] Xu, J. G., & Froment, G. F. (1989). Methane Steam Reforming, Methanation and Water-Gas Shift .1. Intrinsic Kinetics. Aiche Journal, 35(1), 88-96. doi: DOI 10.1002/aic.690350109
[32] Trimm, D. L., & Lam, C. W. (1980). The Combustion of Methane on Platinum-Alumina Fiber Catalysts .1. Kinetics and Mechanism. Chemical Engineering Science, 35(6), 1405-1413. doi: Doi 10.1016/0009-2509(80)85134-7
[33] de Smet, C. R. H., de Croon, M. H. J. M., Berger, R. J., Marin, G. B., & Schouten, J. C. (2001). Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells. Chemical Engineering Science, 56(16), 4849-4861. doi: Doi 10.1016/S0009-2509(01)00130-0
[34] James, B., Colella, W., Moton, J., Saur, G., & Ramsden, T. (2013). PEM Electrolysis H2A Production Case Study Documentation
[35] Vazquez, F. V., Pfeifer, P., Lehtonen, J., Piermartini, P., Simell, P., & Alopaeus, V. (2017). Catalyst Screening and Kinetic Modeling for CO Production by High Pressure and Temperature Reverse Water Gas Shift for Fischer-Tropsch Applications. Industrial & Engineering Chemistry Research, 56(45), 13263-13273. doi: 10.1021/acs.iecr.7b01606
[36] Trimm, D. L., & Lam, C. W. (1980). The Combustion of Methane on Platinum-Alumina Fiber Catalysts .2. Design and Testing of a Convective-Diffusive Type Catalytic Combustor. Chemical Engineering Science, 35(8), 1731-1739. doi: Doi 10.1016/0009-2509(80)85008-1
[37] Cost and Performance Baseline for Fossil Energy Plants. Volume 1: Bituminous Coal and Natural Gas to Electricity (Revision 2a). (2013). National Energy Technology Laboratory (NETL).
[38] Components of Natural Gas. Jan. 2018, Available from:
https://www.enbridgegas.com/gas-safety/about-natural-gas/components-natural-gas.aspx
[39] Grag, D., Nataraj, S., Armor, J. N., & Repasky, J. M. (2008). US 7,427,388 B2.
[40] Available from European Commission European reference Life Cycle Database (ELCD) http://eplca.jrc.ec.europa.eu/ELCD3/
[41] AkzoNobel. Available from: https://www.akzonobel.com/
[42] Gadalla, M. A., Olujic, Z., Jansens, P. J., Jobson, M., & Smith, R. (2005). Reducing CO2 emissions and energy consumption of heat-integrated distillation systems. Environmental Science & Technology, 39(17), 6860-6870. doi: 10.1021/es049795q
[43] Corana, A., Marchesi, M., Martini, C., & Ridella, S. (1987). Minimizing Multimodal Functions of Continuous-Variables with the Simulated Annealing Algorithm. Acm Transactions on Mathematical Software, 13(3), 262-280. doi: Doi 10.1145/29380.29864
[44] Wang, Y., Bu, G., Wang, Y., Zhao, T., Zhang, Z., & Zhu, Z. (2016). Application of a simulated annealing algorithm to design and optimize a pressure-swing distillation process. Computers & Chemical Engineering, 95, 97-107. doi:
https://doi.org/10.1016/j.compchemeng.2016.09.014
[45] Wang, L., Pu, Z., & Wen, S. (2012, 6-8 July 2012). Optimal operation strategies for batch distillation by using a fast adaptive simulated annealing algorithm. Paper presented at the Proceedings of the 10th World Congress on Intelligent Control and Automation.
[46] Wei-zhong, A., & Xi-Gang, Y. (2009). A simulated annealing-based approach to the optimal synthesis of heat-integrated distillation sequences. Computers & Chemical Engineering, 33(1), 199-212. doi: https://doi.org/10.1016/j.compchemeng.2008.08.001
[47] Szu, H., & Hartley, R. (1987). Fast simulated annealing. Physics Letters A, 122(3), 157-162. doi: https://doi.org/10.1016/0375-9601(87)90796-1
[48] Ingber, L. (1989). Very fast simulated re-annealing. Mathematical and Computer Modelling, 12(8), 967-973. doi: https://doi.org/10.1016/0895-7177(89)90202-1
[49] Vakil-Baghmisheh, M. T., & Navarbaf, A. (2008, 27-28 Aug. 2008). A modified very fast Simulated Annealing algorithm. Paper presented at the 2008 International Symposium on Telecommunications.
[50] Turton, R., Bailie, R. C., & Whiting, W. B. (2012). Analysis, Synthesis, and Design of Chemical Processes: Prentice Hall.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69126-
dc.description.abstract由於溫室氣體的議題受到重視,近年來發展了許多技術以求降低大氣中的二氧化碳含量,將捕獲的二氧化碳轉化為有價值的化學品例如合成氣便為其中一種可能的手段。合成氣為多用途的中間產物,依據其組成中氫氣與一氧化碳的比例可以繼續轉化為多種不同的化學品,而二氧化碳可以藉由與甲烷進行乾式重組反應或是與氫氣進行逆向水氣轉化反應轉化成合成氣。然而透過乾式重組反應僅能將二氧化碳轉化為氫碳比為1的合成氣,而且將面臨在高溫下甲烷分解產生大量焦炭的問題,將乾式重組反應與蒸氣重組反應或部分氧化反應整合在同一反應器中或許可解決上述問題。本研究利用文獻中的動力學資料描述反應器的表現以設計製程,並搭配熱整合的方式以回收高溫產物的能量,另為了考慮將二氧化碳轉化時需要額外投入原料與提供能量,本研究利用生命週期評估的資料計算出原料製備階段伴隨的二氧化碳間接排放與估計提供能量時額外排放的二氧化碳,試圖找出在哪些目標氫碳比下合成氣製備製程確實能有減碳的能力,並找出表現最好的聯合反應器。而利用高分子電解質膜電解水或利用蒸氣重組反應器製備氫氣以作為轉化二氧化碳的原料的製程也將在文章中討論。
研究結果顯示三元重組反應器在目標氫碳比小於1.5時能有效將二氧化碳減量,透過反應器的燃燒反應迅速釋放能量可以使反應器內維持高溫以利二氧化碳轉化,而加速甲烷轉化反應的同時能確實減少焦炭生成量。使用氫氣轉化二氧化碳的製程雖然有良好的減碳能力,但由於利用電解水製造乾淨的氫氣成本昂貴,使製程成本遠高於使用天然氣為原料的聯合反應器製程而較不具競爭力,從敏感度分析的結果可以知道若是乾淨的氫氣成本能夠低於每公斤3美元時才能與其他製程有相近的年度總成本。
zh_TW
dc.description.abstractIn recent years, technologies for reducing carbon dioxide in atmosphere have received much attention. Converting captured CO2 into valuable chemicals such as syngas is one possible solution. Syngas is a universal intermediate and could be further converted into various valuable products depending on the H2/CO ratio in syngas. The conversion of CO2 into syngas could be realized by consuming methane (dry reforming) or hydrogen (reverse water gas shift). However, the H2/CO ratio in produced syngas from direct conversion of CO2 with methane is limited to around 1. The concept of combined reforming is to utilize the advantage of steam reforming and partial oxidation simultaneously, which could raise H2/CO ratio and mitigate coke formation on catalyst. This work attempts to use rigorous kinetic model to determine at which H2/CO ratio the process would convert more CO2 than produced, and to select the best combined reforming reactor. All production processes considered in this work are heat-integrated to recover energy from product. The CO2 emission of raw material production evaluated with Life Cycle Assessment data is also considered. Process for conversion of CO2 with hydrogen from polymer electrolyte membrane or from upstream steam reforming reactor is also discussed.
The result suggests that process with tri-reforming reactor when target H2/CO ratio lower than 1.5 would have ability to reduce CO2. CO2 conversion could be improved with addition of oxygen because combustion reaction could maintain high temperature in reactor. The sensitivity test for hydrogen cost on total annual cost of process shows that if cleaner hydrogen cost becomes lower than 3 USD/kg, conversion of CO2 with hydrogen is cost competitive with combined reactor process and performs even better in terms of CO2 reduction.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:09:27Z (GMT). No. of bitstreams: 1
ntu-107-R05524017-1.pdf: 3666965 bytes, checksum: c11637b46acb4138aba51960604d11e7 (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents口試委員審議書 i
摘要 ii
Abstract iii
目錄 iv
圖目錄 vi
表目錄 viii
第一章 緒論 1
1-1 前言 1
1-2 文獻回顧 5
1-2.1 平行反應器製程相關研究 5
1-2.2 聯合反應器製程相關研究 10
1-3 組織架構 12
第二章 製程背景資訊 13
2-1 反應動力式 13
2-1.1 乾式重組反應 13
2-1.2 蒸氣重組反應 14
2-1.3 部分氧化重組反應 15
2-1.4 逆向水氣轉化反應 15
2-1.5 動力式列表 16
2-2 原料說明 21
2-3 製程說明 22
第三章 程序最適化 26
3-1 目標函數 26
3-2 變數與限制條件 29
3-3 最適化演算法 30
第四章 聯合反應器製程分析 35
4-1 製程二氧化碳排放 35
4-2 製程成本估計 46
4-3 與串聯反應器製程比較 54
第五章 結論 60
符號與縮寫 61
參考文獻 63
附錄A、 利用Matlab連接Aspen Plus之流程 68
dc.language.isozh-TW
dc.subject程序最適化zh_TW
dc.subject聯合反應器製程zh_TW
dc.subject二氧化碳減量zh_TW
dc.subject合成氣製備zh_TW
dc.subject二氧化碳再利用zh_TW
dc.subjectSyngas Generationen
dc.subjectOptimizationen
dc.subjectCombined Reformingen
dc.subjectCO2 Utilizationen
dc.subjectCO2 Reductionen
dc.title以合成氣製備製程減量二氧化碳之可行性研究zh_TW
dc.titleFeasibility of CO2 Reduction through Syngas Production in Combined Reforming Reactoren
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳誠亮,鄭西顯,汪上曉
dc.subject.keyword二氧化碳減量,二氧化碳再利用,合成氣製備,聯合反應器製程,程序最適化,zh_TW
dc.subject.keywordCO2 Reduction,CO2 Utilization,Syngas Generation,Combined Reforming,Optimization,en
dc.relation.page74
dc.identifier.doi10.6342/NTU201801771
dc.rights.note有償授權
dc.date.accepted2018-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  未授權公開取用
3.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved