Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 材料科學與工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69115
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭錦龍(Chin-Lung Kuo)
dc.contributor.authorLi-Yang Suen
dc.contributor.author蘇立揚zh_TW
dc.date.accessioned2021-06-17T03:09:20Z-
dc.date.available2023-07-26
dc.date.copyright2018-07-26
dc.date.issued2018
dc.date.submitted2018-07-23
dc.identifier.citation1. Demus, D., et al., Handbook of Liquid Crystals, Volume 2A: Low Molecular Weight Liquid Crystals I: Calamitic Liquid Crystals. 2011: John Wiley & Sons.
2. Bremer, M., et al., The TV in Your Pocket: Development of Liquid‐Crystal Materials for the New Millennium. Angewandte Chemie International Edition, 2013. 52(34): p. 8880-8896.
3. Pauluth, D. and K. Tarumi, Advanced liquid crystals for television. Journal of Materials Chemistry, 2004. 14(8): p. 1219-1227.
4. Kirsch, P., et al., Super‐Fluorinated Liquid Crystals: Towards the Limits of Polarity. European Journal of Organic Chemistry, 2008. 2008(20): p. 3479-3487.
5. Kirsch, P., et al., Liquid-crystalline compounds. 2007, Google Patents.
6. Gay, J. and B. Berne, Modification of the overlap potential to mimic a linear site–site potential. The Journal of Chemical Physics, 1981. 74(6): p. 3316-3319.
7. Smondyrev, A., G.B. Loriot, and R.A. Pelcovits, Viscosities of the Gay-Berne nematic liquid crystal. Physical review letters, 1995. 75(12): p. 2340.
8. Cozzini, S., et al., Intrinsic frame transport for a model of nematic liquid crystal. Physica A: Statistical Mechanics and its Applications, 1997. 240(1-2): p. 173-187.
9. Sarman, S., Flow properties of liquid crystal phases of the Gay–Berne fluid. The Journal of chemical physics, 1998. 108(18): p. 7909-7916.
10. Crane, A.J., et al., Molecular dynamics simulation of the mesophase behaviour of a model bolaamphiphilic liquid crystal with a lateral flexible chain. Soft Matter, 2008. 4(9): p. 1820-1829.
11. Zakharov, A. and s. Maliniak, Structure and elastic properties of a nematic liquid crystal: A theoretical treatment and molecular dynamics simulation. The European Physical Journal E, 2001. 4(1): p. 85-91.
12. The United-Atom Force Fields Model. Available from: http://mw.concord.org/modeler1.3/mirror/documentation/UAFF.html.
13. Heller, H., M. Schaefer, and K. Schulten, Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase. The Journal of Physical Chemistry, 1993. 97(31): p. 8343-8360.
14. Tu, K., D.J. Tobias, and M.L. Klein, Constant pressure and temperature molecular dynamics simulation of a fully hydrated liquid crystal phase dipalmitoylphosphatidylcholine bilayer. Biophysical journal, 1995. 69(6): p. 2558-2562.
15. Pelaez, J. and M. Wilson, Molecular orientational and dipolar correlation in the liquid crystal mixture E7: a molecular dynamics simulation study at a fully atomistic level. Physical Chemistry Chemical Physics, 2007. 9(23): p. 2968-2975.
16. Rabinovich, A., et al., Molecular dynamics simulations of hydrated unsaturated lipid bilayers in the liquid-crystal phase and comparison to self-consistent field modeling. Physical Review E, 2003. 67(1): p. 011909.
17. Tiberio, G., et al., Towards in Silico Liquid Crystals. Realistic Transition Temperatures and Physical Properties for n‐Cyanobiphenyls via Molecular Dynamics Simulations. ChemPhysChem, 2009. 10(1): p. 125-136.
18. Wilson, M.R., Molecular simulation of liquid crystals: progress towards a better understanding of bulk structure and the prediction of material properties. Chemical Society Reviews, 2007. 36(12): p. 1881-1888.
19. Paul, W. and G.D. Smith, Structure and dynamics of amorphous polymers: computer simulations compared to experiment and theory. Reports on Progress in Physics, 2004. 67(7): p. 1117.
20. Capar, M.I. and E. Cebe, Rotational viscosity in liquid crystals: A molecular dynamics study. Chemical physics letters, 2005. 407(4-6): p. 454-459.
21. Capar, M.I., E. Cebe, and A. Zakharov, Dynamic phenomena and viscous properties in a liquid crystal: A theoretical treatment and molecular dynamic simulations. Chemical Physics Letters, 2011. 514(1-3): p. 124-127.
22. Cheung, D., S. Clark, and M.R. Wilson, Calculation of the rotational viscosity of a nematic liquid crystal. Chemical physics letters, 2002. 356(1-2): p. 140-146.
23. Kuwajima, S. and A. Manabe, Computing the rotational viscosity of nematic liquid crystals by an atomistic molecular dynamics simulation. Chemical Physics Letters, 2000. 332(1-2): p. 105-109.
24. Moore, R., J. Hansen, and B. Todd, Rotational viscosity of fluids composed of linear molecules: An equilibrium molecular dynamics study. The Journal of chemical physics, 2008. 128(22): p. 224507.
25. Zakharov, A., A. Komolkin, and A. Maliniak, Rotational viscosity in a nematic liquid crystal: A theoretical treatment and molecular dynamics simulation. Physical Review E, 1999. 59(6): p. 6802.
26. Green, M.S., Markoff random processes and the statistical mechanics of time‐dependent phenomena. II. Irreversible processes in fluids. The Journal of Chemical Physics, 1954. 22(3): p. 398-413.
27. Kubo, R., Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. Journal of the Physical Society of Japan, 1957. 12(6): p. 570-586.
28. Ran, Z., et al., Rotational viscosity of a liquid crystal mixture: a fully atomistic molecular dynamics study. Chinese Physics B, 2009. 18(10): p. 4380.
29. Kim, J., et al., Investigating the calculation of rotational viscosity of the mixture comprising different kinds of liquid crystals: molecular dynamics computer simulation approach. Chinese Journal of Chemistry, 2011. 29(1): p. 48-52.
30. Capar, M.I. and E. Cebe, Molecular dynamic study of the odd-even effect in some 4-n-alkyl-4′-cyanobiphenyls. Physical Review E, 2006. 73(6): p. 061711.
31. Finkenzeller, U., et al., Liquid-crystalline reference compounds. Liquid crystals, 1989. 5(1): p. 313-321.
32. Turchinovich, D., et al. THz time-domain spectroscopy on 4-(trans-4'-pentylcyclohexyl)-benzonitril. in Liquid Crystals V. 2001. International Society for Optics and Photonics.
33. Amber force field parameters. Available from: http://glycam.org/docs/forcefield/.
34. Cornell, W.D., et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules. Journal of the American Chemical Society, 1995. 117(19): p. 5179-5197.
35. Gough, C.A., S.E. Debolt, and P.A. Kollman, Derivation of fluorine and hydrogen atom parameters using liquid simulations. Journal of computational chemistry, 1992. 13(8): p. 963-970.
36. Sun, H., et al., An ab initio CFF93 all-atom force field for polycarbonates. Journal of the American Chemical Society, 1994. 116(7): p. 2978-2987.
37. Jorgensen, W.L. and T.B. Nguyen, Monte Carlo simulations of the hydration of substituted benzenes with OPLS potential functions. Journal of computational chemistry, 1993. 14(2): p. 195-205.
38. Jorgensen, W.L., D.S. Maxwell, and J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. Journal of the American Chemical Society, 1996. 118(45): p. 11225-11236.
39. Sun, H., Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters. Journal of Computational Chemistry, 1994. 15(7): p. 752-768.
40. Sun, H., Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules, 1995. 28(3): p. 701-712.
41. Chang, C.-e.A., et al., Investigation of Structural Dynamics of Enzymes and Protonation States of Substrates Using Computational Tools. Catalysts, 2016. 6(6): p. 82.
42. Alder, B. and T. Wainwright, Phase transition for a hard sphere system. The Journal of chemical physics, 1957. 27(5): p. 1208-1209.
43. Verlet, L., Computer' experiments' on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Physical review, 1967. 159(1): p. 98.
44. Nosé, S., A unified formulation of the constant temperature molecular dynamics methods. The Journal of chemical physics, 1984. 81(1): p. 511-519.
45. Hoover, W.G., Canonical dynamics: equilibrium phase-space distributions. Physical review A, 1985. 31(3): p. 1695.
46. Sarman, S., Molecular dynamics of liquid crystals. Physica A: Statistical Mechanics and its Applications, 1997. 240(1-2): p. 160-172.
47. Sarman, S. and D.J. Evans, Statistical mechanics of viscous flow in nematic fluids. The Journal of chemical physics, 1993. 99(11): p. 9021-9036.
48. Nemtsov, V., Statistical theory of hydrodynamic and kinetic processes in liquid crystals. Theoretical and Mathematical Physics, 1975. 25(1): p. 1019-1028.
49. Zakharov, A., Rotational viscosity of nematic liquid crystals near an interacting wall. Physics Letters A, 1994. 193(5-6): p. 471-479.
50. Fiałkowski, M., Viscous properties of nematic liquid crystals composed of biaxial molecules. Physical Review E, 1998. 58(2): p. 1955.
51. Born, M., Born, M., and R. Oppenheimer, 1927, Ann. Phys.(Leipzig) 84, 457. Ann. Phys.(Leipzig), 1927. 84: p. 457.
52. Hohenberg, P. and W. Kohn, Inhomogeneous electron gas. Physical review, 1964. 136(3B): p. B864.
53. Kohn, W. and L.J. Sham, Self-consistent equations including exchange and correlation effects. Physical review, 1965. 140(4A): p. A1133.
54. Roothaan, C.C.J., New developments in molecular orbital theory. Reviews of modern physics, 1951. 23(2): p. 69.
55. Berthier, G., EXTENSION DE LA METHODE DU CHAMP MOLECULAIRE SELF-CONSISTENT A LETUDE DES ETATS A COUCHES INCOMPLETES. COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES, 1954. 238(1): p. 91-93.
56. Pople, J. and R.K. Nesbet, Self‐consistent orbitals for radicals. The Journal of Chemical Physics, 1954. 22(3): p. 571-572.
57. Fermi, E., Statistical method to determine some properties of atoms. Rend. Accad. Naz. Lincei, 1927. 6(602-607): p. 5.
58. Thomas, L.H. The calculation of atomic fields. in Mathematical Proceedings of the Cambridge Philosophical Society. 1927. Cambridge University Press.
59. Vosko, S.H., L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Canadian Journal of physics, 1980. 58(8): p. 1200-1211.
60. Perdew, J.P., et al., Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Physical Review B, 1992. 46(11): p. 6671.
61. Becke, A.D., A new mixing of Hartree–Fock and local density‐functional theories. The Journal of chemical physics, 1993. 98(2): p. 1372-1377.
62. Kim, K. and K. Jordan, Comparison of density functional and MP2 calculations on the water monomer and dimer. The Journal of Physical Chemistry, 1994. 98(40): p. 10089-10094.
63. Stephens, P., et al., Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 1994. 98(45): p. 11623-11627.
64. Becke, A.D., Density-functional exchange-energy approximation with correct asymptotic behavior. Physical review A, 1988. 38(6): p. 3098.
65. Lee, C., W. Yang, and R.G. Parr, Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical review B, 1988. 37(2): p. 785.
66. Vuks, M., Determination of the optical anisotropy of aromatic molecules from the double refraction of crystals. Optics and Spectroscopy, 1966. 20: p. 361.
67. Maier, W. and G. Meier, A simple theory of the dielectric are some homogeneous criteria oriented liquid crystal phases of nematic type. Z Naturforsch. A, 1961. 16: p. 262-267.
68. Onsager, L., The effects of shape on the interaction of colloidal particles. Annals of the New York Academy of Sciences, 1949. 51(1): p. 627-659.
69. Demus, D. and T. Inukai, Calculation of molecular, dielectric and optical properties of 4'-n-pentyl-4-cyano-biphenyl (5CB). Liquid crystals, 1999. 26(9): p. 1257-1266.
70. Luo, Y., H. Ågren, and K.V. Mikkelsen, Unique determination of the cavity radius in Onsager reaction field theory. Chemical physics letters, 1997. 275(3-4): p. 145-150.
71. Smith, W. and T. Forester, DL_POLY_2. 0: A general-purpose parallel molecular dynamics simulation package. Journal of molecular graphics, 1996. 14(3): p. 136-141.
72. Frisch, M., et al., Gaussian 09, revision a. 02, gaussian. Inc., Wallingford, CT, 2009. 200.
73. Ju, S.-P., et al., Prediction of Optical and Dielectric Properties of 4-Cyano-4-pentylbiphenyl Liquid Crystals by Molecular Dynamics Simulation, Coarse-Grained Dynamics Simulation, and Density Functional Theory Calculation. The Journal of Physical Chemistry C, 2016. 120(26): p. 14277-14288.
74. Dunmur, D. and P. Palffy-Muhoray, A mean field theory of dipole-dipole correlation in nematic liquid crystals. Molecular Physics, 1992. 76(4): p. 1015-1023.
75. Demus, D. and T. Inukai, Quantum chemical calculations in industrial liquid crystal research. Mol. Cryst. Liq. Cryst., 2003. 400(1): p. 39-58.
76. Zhang, L. and M.L. Greenfield, Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation. The Journal of chemical physics, 2007. 127(19): p. 194502.
77. Bock, F.-J., H. Kneppe, and F. Schneider, Rotational viscosity of nematic liquid crystals and their shear viscosity under flow alignment. Liquid Crystals, 1986. 1(3): p. 239-251.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69115-
dc.description.abstract液晶分子是目前最廣泛應用的顯示器材料,旋轉黏度是該材料重要的物理特性之一,如果能夠有效降低其旋轉黏度,則可以減少面板的反應時間而直接提升產品所能呈現出之效能。
在本研究中,我們使用分子動態模擬搭配AMBER全原子力場模型,並透過Sarman、Nemtsov-Zakharov以及Fialkowski三種統計力學模型分析預測液晶分子之旋轉黏度係數。我們選擇了三種目前廣泛應用於市面上的液晶分子作為研究的主要目標。這三種液晶分子的化學結構相近,但是旋轉黏度卻有很大的差異,而本計劃即藉由分子模擬來探討影響其物性變化的關鍵機制。我們研究的結果顯示利用我們所建立的分子動態模擬程序能夠準確地預測三種液晶分子的相轉變溫度、光電性質與旋轉黏度係數。我們的結果也顯示旋轉黏度係數及相轉變溫度都與液晶分子間的作用力呈現正相關的趨勢,但是卻與過往文獻認為是主因的結構因子沒有明顯直接的關聯。此外,我們也分析液晶分子各區段結構的旋轉黏度、液晶分子的堆疊方式以及偶極矩分布,我們發現替換官能基會改變旋轉黏度係數的主要原因是官能基會透過偶極-偶極交互作用使得液晶分子形成特定的堆疊方式,影響分子中苯環的旋轉能力,因此改變了液晶分子的旋轉黏度係數。
除了純分子系統,我們也分析了包含兩種不同結構液晶分子的混合分子系統之旋轉黏度係數。我們的結果顯示這三種液晶分子的旋轉黏度係數確實會受到鄰近相異結構的影響。我們分析混合分子系統的堆疊方式,並發現這是由於官能基透過偶極-偶極交互作用,使得混合分子系統中的液晶分子表現出與純分子系統不同的堆疊方式所致。
zh_TW
dc.description.abstractLiquid crystal displays (LCD) are the most common flat panel displays. The switching time of an LCD is proportional to the rotational viscosity of the liquid crystal. Low rotational viscosity is an absolute prerequisite for the TV application.
Based on the atomistic AMBER force-field potential model, we have applied molecular dynamic (MD) simulations to investigate the structural, dynamic, and transport properties of three typical liquid-crystal material systems as well as their important correlations in-between. We can obtain the rotational viscosity of LC molecules via the calculations of their order parameters and the time correlation functions of the LC directors using our in-house Fortran code. Our results first showed that the phase transition temperatures, the optical and dielectric properties and the rotational viscosities of these three LC molecules can be accurately predicted using MD simulations in conjunction with the AMBER force field model. Our results further revealed a new idea that the interactions between LC molecules can be more critical in determining the rotational viscosity than their structure order parameter as suggested in the early literature. We also analyzed the rotational viscosity coefficient the aromatic rings and alkyl chain segments, the stacking configurations, and the dipole moment distribution for each LC molecules. We found that the rotational viscosity of LC molecules can be effectively reduced is mainly attributed to the fact that the rotational motions of the aromatic rings can be largely enhanced by the particular stacking configurations, which were due to the dipole-dipole interaction of the functional groups.
Besides the pure molecular systems, we also calculated the rotational viscosity coefficients of the liquid crystal mixtures, which were formed with two kinds of liquid crystals. Our results showed that the rotational viscosity coefficients of these liquid crystals were affected by the liquid crystals nearby with the different molecular structures. We also analyzed the stacking configurations of the liquid crystal mixtures. We found that the difference between the rotational viscosity coefficients of the pure molecular systems and the ones of the liquid crystal mixtures results from the preferred stacking configurations, which were due to the dipole-dipole interaction of the functional groups of the two different liquid crystals.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T03:09:20Z (GMT). No. of bitstreams: 1
ntu-107-R05527015-1.pdf: 4014430 bytes, checksum: 886741a2fdebfc51e1751d2fde9ab3ed (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents摘要 II
Abstract III
目錄 V
圖目錄 VIII
表目錄 XI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 2
1.3 液晶分子命名介紹 5
第二章 文獻回顧 8
2.1 粗粒度模型 (Coarsed-grained Model) 8
2.2 全原子力場模型(Atomistic Force Fields) 9
2.3 旋轉黏度係數計算 10
第三章 理論基礎 11
3.1 古典力場 (Classical Force Field) 11
3.2 分子動力學模擬(Molecular Dynamic Simulations) 13
3.2.1 Verlet演算法(Verlet algorithm) 14
3.2.2 Nosé–Hoover thermostat 14
3.3 統計力學模型 (Statistical Mechanics Model) 15
3.4 第一原理計算(First principles calculation) 21
3.4.1 波恩-歐本海默近似法(Born-Oppenheimer approximation) 21
3.4.2 哈特里-福克近似法(Hartree-Fock Approximation, HF) 23
3.4.3 密度泛函理論 (Density Functional Theory, DFT) 25
3.4.4 混合密度泛函 (hybrid density functional) 27
3.5 雙折射率(Birefringence, ∆n) 29
3.6 介電各向異性(Dielectric Anisotropy, ∆ε) 30
第四章 研究方法 31
4.1 結構建立方法 31
4.2 分子動力學模擬流程 34
4.3 第一原理計算條件 34
第五章 液晶分子的熱力學性質與旋轉黏度係數 35
5.1 簡介 35
5.2液晶分子的相轉變溫度: 35
5.3 液晶分子的光電性質 39
5.4 液晶分子的旋轉黏度係數 43
5.5 液晶分子的內聚能 47
5.5 小結 48
第六章 液晶分子的官能基對旋轉黏度係數的影響 49
6.1 簡介 49
6.2 液晶分子各區段的旋轉黏度係數 49
6.3 方向性相關函數與偶極性相關函數 53
6.4 液晶分子的堆疊情形分析 58
6.5 液晶分子的偶極矩分析 70
6.6 液晶分子的偶極-偶極交互作用對堆疊方式的影響 75
6.7 小結 81
第七章 多種液晶分子混合系統 82
7.1 簡介 82
7.2混合分子系統之整體旋轉黏度係數 83
7.3混合分子系統之區段旋轉黏度係數 85
7.4 混合系統偶極性相關函數 87
7.5 混合分子系統之堆疊情形分析 89
7.6 混合系統偶極-偶極交互作用對堆疊方式的影響 97
7.7 小結 100
第八章 結論 101
參考文獻 104
附錄 110
dc.language.isozh-TW
dc.title以原子層級理論計算探討向列式液晶分子的官能基對旋轉黏度係數的影響zh_TW
dc.titleAtomistic Modeling and Simulations of the Effect of Functional Groups on the Rotational Viscosity of Nematic Liquid Crystalsen
dc.typeThesis
dc.date.schoolyear106-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林祥泰(Shiang-Tai Lin),包淳偉(Chun-Wei Pao),許文東(Wen-Dung Hsu)
dc.subject.keyword分子動力學,古典力場模型,液晶分子,旋轉黏度係數,相轉變溫度,zh_TW
dc.subject.keywordmolecular dynamics,classical force field,liquid crystal,rotational viscosity coefficient,phase transition temperature,en
dc.relation.page114
dc.identifier.doi10.6342/NTU201801750
dc.rights.note有償授權
dc.date.accepted2018-07-23
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept材料科學與工程學研究所zh_TW
顯示於系所單位:材料科學與工程學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
3.92 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved