Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6910
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪挺軒(Ting-Hsuan Hung)
dc.contributor.authorHsien-Kuang Chiuen
dc.contributor.author邱獻廣zh_TW
dc.date.accessioned2021-05-17T09:20:58Z-
dc.date.available2014-03-19
dc.date.available2021-05-17T09:20:58Z-
dc.date.copyright2012-03-19
dc.date.issued2012
dc.date.submitted2012-02-14
dc.identifier.citation1. 王惠亮、王金池、邱人璋、孫明賢。1978。台灣番木瓜輪點病研究初報。植保會刊 20: 133- 140.
2. 王德男。1991。台灣木瓜栽培之回顧與展望。杜金池,程永雄,顏昌瑞主編。 台灣果樹之生產及研究發展研討會專刊 357-371。台灣省農業試驗所試驗特刊第35號。
3. 王震宇。1988。木瓜輪點病毒系統之細胞病理學研究。國立台灣大學植物病蟲害學研究所碩士論文。pp.50。
4. 王啟正。1997。番木瓜抗木瓜輪點病毒遺傳差異性之研究。國立台灣大學園藝學研究所碩士論文。pp. 107。
5. 王仁晃。2001。木瓜輪點病毒對番木瓜抗感病品種(系) 光合成的影響。國立臺灣大學園藝學研究所碩士論文。pp. 86。
6. 包慧俊。2000。木瓜輪點病毒鞘蛋白轉基因木瓜抗病性狀之研究。博士論文。中興大學。135頁。
7. 包慧俊、龔怡蓉、鄭櫻慧、葉錫東。2006抗輪點病毒與畸葉嵌紋病毒基因轉殖木瓜之育成。木瓜產業研討會專刊。王德男、李文立編。行政院農業委員會農業試驗所。台中縣。134頁。
8. 吉井三惠子。1986。影響木瓜輪點病毒病徵表現與變異之因素。台灣大學植物病蟲害研究所碩士論文。pp.128。
9. 林正忠。1980。木瓜輪點毒素病之系統及交叉保護。國立臺灣大學植物病蟲害學研究所博士論文。pp.115。
10. 徐悅淳。2001。重要potyvirus快速鑑定系統之建立。台灣大學植物病理學研究所碩士論文。pp.33。
11. 徐秀鳳。1989。欲防毒素病最有效的木瓜網室栽培興農雜誌。242:14-22.
12. 郭耀庭。2001。親子回歸法估算番木瓜抗木瓜輪點病毒病之遺傳力。碩士論文。台灣大學。60頁。
13. 陳光慧。1986。對木瓜輪點病病毒之單源抗體試製與其對病毒系統之血清學反應。台灣大學植物病蟲害研究所碩士論文。pp.129.
14. 陳脈紀、劉顯達、王惠亮、位國慶、邱人璋。1976。木瓜輪點病之電子顯微鏡觀察。植物保護學會會刊論文摘要18:399.
15. 陳脈紀。1984。木瓜輪點病毒之電子顯微鏡觀察。植物保護學會會刊26: 23-31翁芬華。1981。木瓜輪點病毒之變異性。台灣大學植物病蟲害研究所碩士論文。pp.73
16. 吳建銘。2007。木瓜輪點病毒(SMN、DF系統)與木瓜畸葉嵌紋病毒不同番木瓜品系上的交互作用。碩士論文。台灣大學。140頁
17. 李宜霞。2006。木瓜輪點病毒之Real-Time RT-PCR定量偵測技術之研發與應用。碩士論文。台灣大學。110頁
18. 楊小瑩。2008。木瓜畸葉嵌紋病毒的基因體分析及其與木瓜輪點病毒在木瓜上的交戶作用關係之研究。碩士論文。台灣大學。79頁
19. 葉慈容。2004。利用逆墨點雜合法鑑定九種馬鈴薯Y屬病毒。國立台灣大學植物病理與微生物學研究所碩士論文。pp.55.
20. 廖奕晴。2004。台灣木瓜輪點病毒系統之變異與鑑別及快速檢測。國立台灣大學植物病理與微生物學研究所碩士論文。pp.107.
21. 梁心玥。2009。應用Real-Time RT-PCR技術研究木瓜輪點病毒在木瓜 寄主體內的分佈、移動以及增殖動態。國立台灣大學植物病理與微生物學研究所碩士論文。69頁
22. 蔡文惠。1995。木瓜接種不同輪點病毒系統後的反應。國立台灣大學園藝所碩士論文。pp. 66.
23. 關政平。1990。木瓜輪點病毒之單元抗體的特異性。台灣大學植物病蟲害研究所碩士論文。pp.127。
24. 龔怡蓉。2004。木瓜輪點病毒及木瓜畸葉嵌紋病毒雙重抗性轉基因木瓜之育成及木瓜畸葉嵌紋病毒單株抗體之製備。國立中興大學植物病理學研究所碩士論文。pp. 16-34
25. Adsuar, J. 1946. Studied on virus disease of papaya (Carica papaya) in PuertoRico III-Property studies of papaya mosaic virus. Univ. Puerto Rico Agr. Expt. Sta. Tech. 4: 7-11.
26. Adsuar, J. 1972. A new virus disease of papaya(Carica papaya) in Puerto Rico. J. Agric. Univ. P. R. 56: 397-402
27. Agindotan, B. O., Shiel, P. J., and Berger, P.H. 2007. Simultaneous detection of potato viruses, PLRV, PVA, PVX and PVY from dormant potato tubers by TaqManR real-time RT-PCR. J. Virol. Methods 142 (1-2): 1-9
28. Brunt, A., Crabtree, K., and Gibbs, A. 1990. Virus of tropical plants: papaya ringspot potyvirus. CABI Wallingford U. K. 374-377.
29. Capoor, S.P. and Varma, P.M. 1948. A mosaic disease of Carica papaya L. in the Bombay Province. Curr. Sci. 17: 265-266.
30. Capoor, S.P. and Varma, P.M. 1958. A mosaic disease of papaya in Bombay. Indian J. Agr. Sci. 28: 225-233.
31. Capote, N., Gorris, M. T., Martinez, M. C., Asensio, M., Olmos, A., and Cambra, M. 2006. Interference between D and M types of Plum pox virus in Japanese plum assessed by specific monoclonal antibodies and quantitative real-time reverse transcription-polymerase chain reaction. Phytopathology 96:320-325.
32. Chen, P., Buss, G.R., and Tolin, S.A. 2004. Reaction of soybean to single and double inoculation with different soybean mosaic virus strains. Crop Prot. 23: 965–971.
33. Conover, R.A. 1962. Virus disease of the papaya in Florida. Phytopathology 52: 6.
34. Conover, R. A.1964. Distortion ringspot, a severe virus disease of papaya in Florida. Fla. State Hort. Soc. 77:440-444
35. Conover, R. A. 1976. A program for development of papaya tolerant to the distortion ringspot virus. Proc. Fla. State Horitic. Soc. 89:229-231.
36. Conover, R. A. and Litz, R. E. 1983. Breeding for resistance to papaya ringspot virus. Phytopathology 73:121.
37. Cook, A. A. and Zettler, F. W. 1970. Susceptibility of papaya cultivars to papaya ringspot and papaya mosaic virus. Plant Dis. Rept. 54: 893-895.
38. Cook, A.A. and Milbrath, G. 1971. Virus disease of papaya on Oahu (Hawaii) and identification of additional diagnostic host plants. Plant Dis. Rep. 55: 785-787.
39. Cook, A.A. 1972. Virus disease of papaya. Fla. Agr. Expt. State Inst. Food and Agr. Sci. 1-9.
40. Davis, R.I., Mu, L., Maireroa, N., Wigmore, W.J., Grisoni, M., Bateson, M.F., and Thomas, J.E. 2005. First records of the papaya strain of Papaya ringspot virus (PRSV-P) in French Polynesia and the Cook Islands. Aust. Plant Pathol. 34: 125-126.
41. De la Rosa, M. and Lastra, R. 1983. Purification and partial characterization of papaya ringspot virus. Phytopathology 106: 329-336.
42. Desbiez C., Joannon B., Wipf-Scheibel C., Chandeysson C., Lecoq H. 2009. Emergence of new strains of Watermelon mosaic virus in South-eastern France: evidence for limited spread but rapid local population shift. Virus Res 141, 201–208.
43. Edwardson, J.R. 1974. Some properties of the potato virus Y group. Fla. Agric. Exp. Stn. Monogr. 4. 398.
44. Edwardson, J.R., Christie, R.G., and Ko, N.J. 1984. Potyvirus cylindrical inclusion-Subdivision-IV. Phytopathology 74: 1111-1114.
45. Fuchs, M., and Gonsalves, D. 2007. Safety of virus-resistant transgenic plants two decades after their introduction: lessons from realistic field risk assessment studies. Annu. Rev. Phytopathol. 45 : 173-202
46. Gibbs, A. and Mackenzie, A. 1997. A primer pair for amplifying part of the genome of all potyvirids by RT-PCR. J. Virol. Meth. 63: 9-16.
47. Gibson, U.E.M., Heid, C.A., and Williams, P.M. 1996. A novel method for real time quantitative RT-PCR. Genome Res 6:995–1001.
48. Gomez P, Sempere RN, Elena SF, Aranda MA. Mixed infections of Pepino mosaic virus strains modulate the evolutionary dynamics of this emergent virus. J Virol. 2009;83:12378–12387.
49. Gonsalves, D. and Ishii, M. 1980. Purification and serology of papaya ringspot virus. Phytopathology 70: 1028–1032.
50. Heid, C.A., Stevens, J., Livak, K.J., and Williams, P.M. 1996. Real time quantitative PCR. Genome Res. 6: 986-994.
51. Higuchi, R., Dollinger, G., Walsh, P.S., and Griffith, R. 1992. Simultaneous amplification and detection of specific DNA sequences. Biotechnology 10: 413-417.
52. Higuchi, R., Fockler, C., Dollinger, G., and Watson, R. 1993. Kinetic PCR analysis: real-time monitoring of DNA amplification reactions. Biotechnology 11: 1026-1030.
53. Holland, P.M., Adbramson R.D., Watson, R., and Gelfand, D.H. 1991. Detection of specific polymerase chain reaction product by utilizing the 5’-3’ exonuclease activity of Thermus aquaticus DNA polymerase. Pro. Natl. Acad. Sci. U.S.A. 88: 7276-7280.
54. Holmes, F. O. 1965. Genetics of pathogenicity in virus and resistance in host plants. Adv. virus res. 11:139-161.
55. Hung, T.H., Wu, M.L., and Su, H.J. 1999. Development of a rapid method for the diagnosis of citrus greening disease using the polymerase chain reaction. J. Phytopathol. 147: 599-604.
56. Ishii, M. and Holtzamann, O.V. 1963. Papaya mosaic disease in Hawaii. Plant Dis. Rep. 47: 947-951.
57. Ishii, M. 1972. Observations on the spread of papaya ringspot virus in Hawaii. Plant Dis. Rep. 56: 331-333.
58. Jensen, D.D. 1949a. Papaya virus diseases with special reference to papaya ringspot. Phytopathology 39:191-211.
59. Jensen, D.D. 1949b. Papaya ringspot virus and its insect vector relationships. Phytopathology 39: 212-220.
60. Khurana, S.M. and Bhargava, K.S. 1970. Induce apocarpy and “double papaya” fruit formation in papaya with distortion ringspot virus infection. Plant Dis. Rep. 54:181-183.
61. Lakowicz, JR. 2006. Principles of Fluorescence Spectroscopy. NY, USA: Plenum;
62. Lin, C.C., Su, H.J., and Wang, D.N. 1989. The control of papaya ringspot virus in Taiwan R.O.C. ASPAC Food and Fertilizer Tech. 114: 1-13.
63. Lindner, R.C., Jensen, D.D. and Ikeda, W. 1945. Ringspot: new papaya plunderer. Hawaii Farm and Home 8: 10-14.
64. Livak K.J., Flood, S.P.A., Marmejo J., Giusti W. and Deetz K., 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR products and nucleic acid hybridization, PCR Methods Appl. 4: 357–362.
65. Mason, G., Caciagli, P., Accotto, G. P., and Noris, E. 2008. Real-Time PCR for the quantitation of Tomato yellow leaf curl Sardinia virus in tomato plants and in Bemisia tabaci. J. Virol. Methods 147(2) :282-289.
66. Mumford, R. A., Walsh, K., Barker, I., and Boonham, N. 2000. Detection of potato mop top virus and Tobacco rattle virus using a multiplex real-time fluorescent reverse-transcription polymerase chain reaction assay. Phytopathology 90(5): 448-453
67. Namba, R. and Higa, S.Y. 1977. Retention of the inoculativity of the papaya mosaic virus by the green peach aphid. Proc. Haw. Ent. Soc. 22: 491-494.
68. Provvidenti, R., and Gonsalves. D. 1982. Resistance to papaya ringspot virus in Cucumis metuliferus and its relationship to resistance to watermelon mosaic virus 1. J. Hered. 73:239-240.
69. Overbergh, L., Giulietti, A., Valckx, D., Decallonne, B., Bouillon, R., and Mathieu, C. 2003. The use of real-time reverse transcriptase PCR for the quantification of cytokine gene expression. J. Biomol. Tech. 14: 33-43.
70. Pourrahim, R., Farzadfar, Sh., Golnaraghi, A.R., and Shahraeen, N. 2003. First report of papaya ringspot virus on papaya in Iran. Plant Dis. 87: 1148.
71. Purcifull, D.E., Edwardson, J., and Gonsalves, D. 1984. Papaya ringspot virus. CMI/AAB Descriptions of Plant Viruses, No. 292 (No. 84 revised).
72. Quiot-Douine, L., Purcifull, D.E., Hiebert, E., and de Mejia, M.V.G. 1986. Serological relationships and in vitro translation of an antigenically distinct strain of papaya ringspot virus. Phytopathology 76: 346-351.
73. Ridings, W.H., Zettler, F.W., and Conover, R.A. 1978. Distortion ringspot of papaya. Plant Path. Cir. No. 184. Fla. Dept. Agr. and Consume Serv. Div. of Plant Industry.
74. Sanchez, C. and Salazar, C. de L. R. 1975. Identification of possible sources of resistance to papaya ringspot virus in Carica papaya L. Proc. Amer. Phytopath. Soc. 2: 79
75. Schaad, N.W. and Frederick, R.D. 2002. Real-time PCR and its application for rapid plant disease diagnostics. Can. J. Plant Pathol. 24: 250-258
76. Schneider, W.L., Sherman, D.J., Stone, A.L., Damsteegt, V.D., and Frederick, R.D. 2004. Specific detection and quantification of Plum pox virus by real-time fluorescent reverse transcription-PCR. J. Virol. Meth. 120: 97-105.
77. Schaefers, G.A. 1969. Aphid vectors of the papaya mosaic virus in Puerto Rico. J. Agr. Univ. Pur Puerto Rico. 53:1-13.
78. Schaefers, G.A. 1969. Aphid vectors of the papaya mosaic virus in Puerto Rico. J. Agr. Univ. Pur Puerto Rico. 53:1-13.
79. Singh, A.B. 1969. A new virus disease of Carica papaya in India. Plant Dis. Rep. 53: 267-269.
80. Singh, A.B. 1971. Transmission of papaya leaf reduction virus by Myzus persicae. Plant Dis. Rep. 55: 526-529.
81. Shi, A. Chen, P. Gergerich, R. Hou, A. Zhang, B. 2008. Interaction between two strains of Soybean mosaic virus in soybean. Can. J. Plant Pathol 30:486-491
82. Story, G.E. and Haliiwell, R.S. 1969. Identitification of distortion ringspot virus disease of papaya in the Domincan Republic. Plant Dis. Rep. 53: 757-760.
83. Smith, F.E.V. 1928. Plant disease in Jamaica in 1928. Ann. Rep. Agr. Jamaica for the year ended 31st Dec. p. 1-20.
84. Tennant, P. F., Gonsalves, C., Ling, K. S.,. Fitch, M., Manshardt, R., Slightom, J. L., and Gonsalves. D. 1994. Differential protection against papaya ringspot virus isolates in coat protein gene transgenic papaya and classically cross-protected papaya. Phytopathology 81:1359-1366
85. Thomas, J.E. and Dodman, R.L. 1993. The first record of papaya ringspot virus-type P in Australia. Aust. Plant Pathol. 22: 2-7.
86. Valasek, M.A. and Joyce, J.R. 2005. The power of real-time PCR. Adv. Physiol. Educ. 29: 151-159.
87. Vingano, F., and Stevens, M. 2007. Development of a multiplex immunocapture-RT-PCR for simultaneous detection of BMYV and BChV in plants and single aphids. J. Virol. Methods 146(1-2) :196-201
88. Walker, N.J. 2002. A technique whose time has come. Science 296: 557-558.
89. Wang, H.L., Yen, S.D., Chiu, R.J., and Gonsalves, D. 1987. Effectiveness of cross-protection by mild mutants of papaya ringspot virus for control of ringspot disease of papaya in Taiwan. Plant dis. 71: 491-497.
90. Wang Y, Gaba V, Yang J, Palukaitis P, Gal-On A. Characterizations of 
synergy between cucumber mosaic virus and potyviruses in cucurbit hosts. 
Phytopathology 2002, 147: 2301−2312
91. Wang Y, Lee KC, Gaba V, Wong SM, Palukaitis P, Gal-On A. Breakage of 
resistance to cucumber mosaic virus by co-infection with zucchini yellow mosaic virus: Enhancement of CMV accumulation independent of symptom expression. Arch Virol 2004, 149: 379−396
92. Wittwer, C.T., Herrmann, M.G., Moss, A.A. and Rasmussen, R.P. 1997. Continuous fluorescence monitoring of rapid cycle DNA amplification. Biotechniques.22, 130-131, 134-138.
93. Wolfenbarger, D. O. 1966. Incidence-distance and incidence-time relationships of papaya virus infections. Plant Disease Reptr. 50(12): 908-909.
94. Yeh, S.D. and Gonsalves, D. 1984a. Evaluation of induced mutants of papaya ringspot virus for control by cross protection. Phytopathology 74: 1086-1091.
95. Yeh, S.D., Gonsalves, D., and Provvidenti, R. 1984b. Comparative studies on host range and serology of papaya ringspot virus and watermelon mosaic virus 1. Phytopathology 74: 1081-1085.
96. Yeh, S.D. and Gonsalves, D. 1985. Translation of PRSV RNA in vitro: detection of a possible polyprotein that is processed for capsid protein, cylindrical-inclusion protein, and amorphous-inclusion protein. Virol. 143: 260-271.
97. Yeh, S.D., Gonsallves, D., Wang, H.L., Namba, R., and Chiu, R.J. 1988. Control of papaya ringspot virus by cross protection. Plant Dis. 72: 375-380.
98. Yeh, S.D., Jan, F.J., Chiang, C.H., Doong, T.J., Chen, M.C., Chung, P.H., and Bau, H.J. 1992. Complete nucleotide sequence and genetic organization of papaya ringspot virus RNA. J. Gen. Virol. 73, 2531-2541.
99. Yeh S.D., Gonsalves D., 1994. Practice and perspectives of control of Papaya ringspot virus by cross protection. Adv. dis. Vector Res. 10:237-257
100. Yeh, S.D. 1994. Comparison of the genetic organization of papaya ringspot virus with other potyvirus. Plant Pathol. 3: 54-64.
101. Zettler, F.W., Edwardson, J.R., and Purcifull, D.E. 1968. Ultramicropic differences in inclusions of papaya mosaic virus and papaya ringspot virus correlated with differential aphid transmission. Phytopathology 58: 332-335.
102. Zeng, R., Liao, Q. S., Feng, J. L., Li, D.J., and Chen, J. H., 2007. Synergy between Cucumber Mosaic Virus and Zucchini Yellow Mosaic Virus on Cucurbitaceae Hosts Tested by Real-time Reverse Transcription-Polymerase Chain Reaction. Acta Biochim Biophys Sin. 39(6): 431–437
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6910-
dc.description.abstract木瓜輪點病毒(Papaya ringspot virus = PRSV)是木瓜栽培中主要的限制因子,番木瓜罹病植株的葉片會產生嵌紋、黃化等病徵,果實出現輪點病斑,影響果實外觀、產量與品質。依據葉片上所引起病徵做區分,PRSV可分為畸形系統(deformation , DF strain)、嚴重嵌紋壞疽系統(severe mottling with necrosis, SMN strain)與嚴重嵌紋系統(severe mottling, SM strain)。畸形系統為目前田間最常見的系統,但嚴重嵌紋壞疽系統則最具摧毀性。本實驗擬透過病徵表現與植株內病毒增殖情形作為依據,綜合病理性與分子性的試驗證據,建立一套完整的木瓜寄主對PRSV抗(耐)感病性的評估方法,實驗過程之中配合應用即時定量反轉錄聚合酶連鎖反應(real-time RT-PCR)的追蹤,比較受試品系與對照的常用品系(如台農一號、台農二號、紅妃等)之間病毒增殖動態之差異,以協助新育成木瓜品系之篩選。此外,以同時接種 DF與SMN系統的病毒感染方式、或兩者一前一後的感染方式進行試驗,藉由具有系統特異性的real-time RT-PCR定量偵測法來追蹤不同病毒系統的增殖狀態,探討兩系統在木瓜寄主中的交互作用,裨益瞭解受試品系對兩個病毒系統複合感染的抗(耐)病性。由本論文的挑戰接種試驗結果得知受試之三新品系(10A、10B與10F)皆對DF系統有耐病性,但只有10A品系對SMN系統有耐病性,另兩品系對SMN則較感病。RT-PCR均偵測到受試木瓜三品系均可被PRSV感染,而real-time RT-PCR偵測結果更發現新品系木瓜體內病毒量高於一般常見的木瓜品種約10倍以上,顯示病毒在新品系中增殖狀況更佳,但是外表病徵輕微而病徵指數低,表示其耐病性相當良好,PRSV的大量複製並未導致嚴重的病徵產生。另一方面,試驗發現SMN系統對商業品種台農二號與紅妃適應力好,體內病毒量高,田間栽培二品種有利於SMN系統生存。病毒系統之交互作用的試驗部份,同步與非同步接種兩系統病毒後,發現先接種的病毒主導病徵發展,以台大八號(NTU 8)進行先接種DF、後接種SMN感染試驗中,先接種SMN系統會被DF系統追上或拉近差距;反之,先接種DF、後接種SMN時,後接種的SMN系統無法追上原先DF系統病毒量;同步接種二病毒系統時寄主體內兩病毒系統互相競爭,後期DF系統取得優勢。由此看出DF系統在田間似乎仍較SMN系統優勢,但仍需注意未來PRSV系統之間的演化發展。本研究應用real-time RT-PCR進行PRSV的定量偵測,綜合病毒增殖與病徵發展的兩項資訊,可提供評估新品系木瓜抗(耐)病性時之重要參考資訊;複合感染試驗的結果也顯示,台灣木瓜新品種台大八號目前耐病性仍很穩定,唯因應PRSV系統的長期演化,長期的耐抗病育種工作仍應持續。zh_TW
dc.description.abstractPapaya ringspot virus (PRSV) is one of the limiting factors in the papaya industry. The infected papayas produce several symptom such as mosaic, yellowing, ringspot in fruit, which causes tremendous economic losses and poor quality of fruits. According to the symptoms developed on leaves, PRSV was categorized into three strains: SM(severe mottling), DF(deformation),and SMN(severe mottling with necrosis)strains. The DF strain is predominated in the field at present time, and the SMN strain induce most destructive symptom in papayas. This study we dedicated to investigate the correlation between the severity of symptom and replication of virus, and develop a evaluation method to evaluate the resistance or tolerance of new papaya cultivars. The RT-PCR and real-time RT-PCR assays were used in this study to monitor the fluctuation dynamic of virus replication for comparative study of tolerance between new developed papaya lines and commercial cultivars. In addition, the simultaneously or asynchronously inoculation experiment test with the DF and SMN strains to were also conducted to investigate the interaction between these 2 strains in either new line or commercial cultivars of papaya based on the real-time RT-PCR assays with train-specific primers. The result might be able to know the co-infection effect of the DF and SMN strains in various papaya cultivars(lines). The inoculation tests showed that all of 3 newly bred papaya lines(10A, 10B, and 10F) were tolerant to the DF strain without appearing apparent symptoms. However, only the 10A line is tolerant to the SMN strain. The real-time RT-PCR assays demonstrated the amounts of replicated virus in newly bred lines was 10 times higher than those in commercial cultivars. It means revealed that these newly bred papaya lines are actually better host for PRSV-replication though they do not produce symptoms showing their tolerance. The data also indicated that the SMN strain replicated very well in either Tainung 2 (TN 2) and Red-Lady (RL) cultivars, which means TN 2 and RL probably provide better conditions for survival of PRSV-SMN. In the asynchronously inoculation tests with both DF and SMN strains, all of infected papayas by PRSV-DF before PRSV-SMN (2-week interval) developed the symptoms similar to those induced by PRSV-DF whereas all of infected papayas by PRSV-SMN before PRSV-DF developed the symptoms similar to those induced by PRSV-SMN. It presented that the earlier invading virus strain determines the symptom-type. The DF-induced symptoms could be visualized when the papaya hosts were co-infected by the DF and SMN simultaneously. In the inoculation tests of the NTU8 papaya, the real-time RT-PCR assays demonstrated that the later invading PRSV-DF could replicate well and reach or exceed the amount of earlier infecting PRSV-SMN whereas the later invading PRSV-SMN could not reach the amount of earlier infecting PRSV-DF. These two strains competed each other when they simultaneously co-infected a papaya host, and the DF strain gradually became prevailing. This study reveals that the DF trains seemed to be more predominant than the SMN strain in the field, and we should pay more attention to the evolution of various PRSV strains. The investigation of symptomatology and quantitative detections of PRSV based on real-time RT-PCR assays provided important data to evaluate the resistance or tolerance against PRSV for newly bred papaya lines. The newly developed papaya cultivar tolerant to PRSV, NTU 8, showed its stable tolerance in the co-infection trials with both DF and SMN strains. However, the continuous breeding of papaya should be conducted to cope with the evolution of various strains of PRSV.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:20:58Z (GMT). No. of bitstreams: 1
ntu-101-R98633008-1.pdf: 2204846 bytes, checksum: 950bd85b0d3c127d933c62c9f32545a7 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
表目錄 ix
圖目錄 x
壹、前言 1
貳、前人研究 3
一、 木瓜輪點病毒之發現 3
二、 木瓜輪點病毒之分類與型態 3
三、 木瓜輪點病毒之寄主範圍與病徵 4
四、 木瓜輪點病毒之傳播方式 4
五、 木瓜輪點病毒之防治方法 5
六、 台灣木瓜輪點病毒之偵測方法 6
七、 台灣木瓜輪點病毒之系統 6
八、 即時定量聚合酶連鎖反應(Real-Time PCR) 8
九、 不同植物病毒系統之交互作用 9
參、材料與方法 10
一、 試驗植物之準備 10
二、 木瓜輪點病毒(PRSV)之來源與接種 10
三、 PRSV核酸抽取 10
四、 PRSV接種試驗 11
(1) 單獨接種PRSV 11
(2) 同步與非同步接種PRSV 11
(3) 病徵分級 12
五、 PRSV之偵測 12
六、 即時定量聚合酶連鎖反應 13
(1) RNA反轉錄 13
(2) 標準品與標準曲線之建立 13
(3) Taqman Primer / Probe 之設計 14
(4) Real-time RT-PCR反應 14
肆、結果 15
一、 不同木瓜輪點病毒系統在不同木瓜品種上病徵表現 15
二、 不同木瓜輪點病毒系統在不同木瓜品種上病毒增殖情形 16
三、 非同步接種不同木瓜輪點病毒系在不同木瓜品種上病徵表現 16
四、 同步接種不同木瓜輪點病毒系在不同木瓜品種上病徵表現 18
五、 非同步接種不同木瓜輪點病毒系在不同木瓜品種上病毒增殖動態 18
六、 同步接種不同木瓜輪點病毒系在不同木瓜品種上病毒增殖動態 20
伍、討論 21
陸、參考資料 25
柒、圖與表 33
dc.language.isozh-TW
dc.title木瓜輪點病毒兩系統在不同木瓜品種中之病理性差異與交互作用zh_TW
dc.titlePathological variation and interaction between two Papaya ringspot virus (PRSV) strains in different papaya cultivarsen
dc.typeThesis
dc.date.schoolyear100-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張龍生(Loong-Sheng Chang),葉信宏(Hsin-Hung Yeh)
dc.subject.keyword木瓜輪點病毒;即時定量反轉錄聚合&#37238,連鎖反應;病毒系統;耐病性,zh_TW
dc.subject.keywordPapaya ringspot virus,real-time RT-PCR,virus strain,tolerance,en
dc.relation.page48
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-02-14
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf2.15 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved