請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69091
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃義侑 | |
dc.contributor.author | Dai-Chi Lin | en |
dc.contributor.author | 林岱琪 | zh_TW |
dc.date.accessioned | 2021-06-17T02:51:27Z | - |
dc.date.available | 2019-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-15 | |
dc.identifier.citation | 1.Driskell, R.R., et al., Hair follicle dermal papilla cells at a glance. Journal of Cell Science, 2011. 124(8): p. 1179-1182.
2.Limat, A., et al., Soluble factors from human hair papilla cells and dermal fibroblasts dramatically increase the clonal growth of outer root sheath cells. Archives of Dermatological Research, 1993. 285(4): p. 205-210. 3.Qiao, J., et al., Hair follicle neogenesis induced by cultured human scalp dermal papilla cells. Regenerative Medicine, 2009. 4(5): p. 667-676. 4.Casale, C., et al., Endogenous human skin equivalent promotes in vitro morphogenesis of follicle-like structures. Biomaterials, 2016. 101: p. 86-95. 5.Havlickova, B., et al., Towards optimization of an organotypic assay system that imitates human hair follicle-like epithelial-mesenchymal interactions. British Journal of Dermatology, 2004. 151(4): p. 753-765. 6.Osada, A., et al., Long-term culture of mouse vibrissal dermal papilla cells and De Novo hair follicle induction. Tissue Engineering, 2007. 13(5): p. 975-982. 7.Miao, Y., et al., Controllable production of transplantable adult human high-passage dermal papilla spheroids using 3D matrigel culture. Tissue Engineering - Part A, 2014. 20(17-18): p. 2329-2338. 8.Kang, B.M., et al., Sphere formation increases the ability of cultured human dermal papilla cells to induce hair follicles from mouse epidermal cells in a reconstitution assay. Journal of Investigative Dermatology, 2012. 132(1): p. 237-239. 9.Lin, B., et al., Surface Tension Guided Hanging-Drop: Producing Controllable 3D Spheroid of High-Passaged Human Dermal Papilla Cells and Forming Inductive Microtissues for Hair-Follicle Regeneration. ACS Applied Materials and Interfaces, 2016. 8(9): p. 5906-5916. 10.Higgins, C.A., et al., Multifaceted role of hair follicle dermal cells in bioengineered skins. British Journal of Dermatology, 2017. 176(5): p. 1259-1269. 11.Salerno, S., et al., Dermal-epidermal membrane systems by using human keratinocytes and mesenchymal stem cells isolated from dermis. Materials Science and Engineering C, 2017. 71: p. 943-953. 12.Leirós, G.J., et al., Dermal papilla cells improve the wound healing process and generate hair bud-like structures in grafted skin substitutes using hair follicle stem cells. Stem Cells Translational Medicine, 2014. 3(10): p. 1209-1219. 13.Higgins, C.A., et al., Microenvironmental reprogramming by threedimensional culture enables dermal papi¬¬lla cells to induce de novo human hair-follicle growth. Proceedings of the National Academy of Sciences of the United States of America, 2013. 110(49): p. 19679-19688. 14.Wang, L., et al., Chemical and physical modifications to poly (dimethylsiloxane) surfaces affect adhesion of Caco‐2 cells. Journal of biomedical materials research Part A, 2010. 93(4): p. 1260-1271. 15.Huang, C.F., et al., Assembling Composite Dermal Papilla Spheres with Adipose-derived Stem Cells to Enhance Hair Follicle Induction. Scientific Reports, 2016. 6. 16.Smith Ii, C.M., et al., Pluronic F-68 reduces the endothelial adherence and improves the rheology of liganded sickle erythrocytes. Blood, 1987. 69(6): p. 1631-1636. 17.Tharmalingam, T., et al., Pluronic enhances the robustness and reduces the cell attachment of mammalian cells. Molecular Biotechnology, 2008. 39(2): p. 167-177. 18.Chen, R.N., et al., Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials, 2004. 25(13): p. 2679-2686. 19.Kaplan, E.D. and K.A. Holbrook, Dynamic expression patterns of tenascin, proteoglycans, and cell adhesion molecules during human hair follicle morphogenesis. Developmental Dynamics, 1994. 199(2): p. 141-155. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69091 | - |
dc.description.abstract | 禿髮,對現代人而言是令人困擾的症狀,不管男性或女性都飽受所苦。然而在現今各式各樣的治療方法裡,例如光治療、藥物治療或植髮等,卻有治療效果不穩定以及影響健康的疑慮。因此,隨著組織工程的發展及近年來於毛囊再生的研究,對未來禿髮的改善提供了可行的方法。毛髮自然的發育過程是透過表皮與間葉細胞一系列的交互作用產生。而位於毛髮底部的真皮乳頭細胞便是一種特化的間葉細胞,當毛囊細胞聚集形成立體球狀的構造時,配合與表皮細胞共培養能促使表皮與毛囊細胞的交互作用,即便毛囊細胞經過多代培養之後,仍能使其保有誘導毛髮新生的能力。
因此,本研究的目的在於透過培養真皮乳頭細胞以及表皮細胞形成立體微組織球態,觀察其是否能在非生物體內環境下促使毛髮新生。我們選用聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)作為材料,由於其本身的材料特性,包含具備良好的生物相容性,以及不利於細胞貼附的性質,將真皮乳頭細胞培養於此材料表面便能形成微球組織。加上表皮細胞於毛囊微組織外層包覆形成'core-shell'的形態,並透過免疫螢光染色進行真皮乳頭活性分析(α-SMA、NCAM),確保其仍保有促毛囊新生的能力。另外,為了提供微球組織適當的生長環境,我們把經由凍融、酵素及界面活性劑等去細胞方式處理的豬皮,經過冷凍乾燥後使用雷射雕刻機於其上產生陣列孔洞,並將core-shell形態的表皮-毛囊細胞微球組織植入此去細胞豬皮中,植入固定時間後透過切片及染色觀察微球組織於其上之發育形態,以證明3D培養的真皮乳頭和表皮細胞配合適當的支架能模擬生物體內毛囊的生長環境,並具有潛力應用於未來的毛髮重建工程上。 | zh_TW |
dc.description.abstract | Alopecia is a disturbing syndrome for modern people, it means that many men and women have suffered from it. . Although there are different methods such as phototherapy , drug treatments, and hair follicles implantations et al to solve the hair loss problem, none of them have stable and effective treatment results. Also, they may have some side effects which could affect patient's health. Due to the development of tissue engineering and study on hair regeneration over the few decades, the researchers open a new door to improve the unmet needs for hair loss. The natural hair developing process depends on a series of interactions between epidermal cells and the dermal papilla (DP)cell, located in the bottom of hair bulb, which is a specialized mesenchymal stem cell. When those DP cells are cultured in three-dimentional spheroid structure , followed by adding epidermal cells , the epidermal cells will cover the DP spheroid, forming core-shell micro-tissue. The ability to induce hair regeneration could be retained in vitro even the cells are cultured after a few passages.
As a result, the aim of this study is to develop a method to form DP-epidermal microtissue easily, and to investigate whether these microtissues could induce hair regeneration in vitro. Polydimethylsiloxane (PDMS), used in this study, is a suitable material for culturing DP spheroids, because it is characterized by excellent biocompatibility, and low attachment for cell culture. After the epidermal cells are co-cultured with DP to form 'core-shell' structure, their hair inductive activity is confirmed by immunochemistry staining , such as α-SMA and NCAM. In addition, to provide the DP-epidermal microtissue with an appropriate developing environment, the porcine skin treated by a series of decellularization process was fabricated by laser engraving to produce microwell arrays on the surface. Then, the DP-epidermal microtissues are implanted into the acellular skin microwell arrays for pre-determined intervals ,and the cells morphology on the skin scaffold during cultivation was observed and validated by histological analysis to prove that 3D cells culture and a suitable growing environment could mimic the natural developing process in vivo and have potential for hair regeneration. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:51:27Z (GMT). No. of bitstreams: 1 ntu-106-R04548012-1.pdf: 5917388 bytes, checksum: a37c86ffa1670bb31e59b3366ac8e9ca (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書………………………………………i
誌謝……………………………………………………………………ii 中文摘要…………………………………………………………iii 英文摘要…………………………………………………………iv 第一章 序論1 1.1毛髮與毛囊2 1.2毛囊生長週期3 1.3禿髮3 1.4非疤痕性禿髮之治療對策3 1.4.1 光治療法 1.4.2 藥物治療 1.5疤痕性禿髮之治療對策4 1.5.1 植髮 第二章 研究概述5 2.1研究背景5 2.2研究動機與目的5 2.3方法概述6 2.4實驗流程圖8 第三章 實驗材料與方法 3.1 實驗藥品9 3.2 實驗儀器11 3.3分離大鼠毛囊與真皮乳頭細胞之培養12 3.4 PDMS薄膜製備以及細胞培養12 3.5 低貼附性96-well之製備以及core-shell細胞培養13 3.6 PKH26 細胞紅螢光染色15 3.7 PKH67 細胞紅螢光染色15 3.8 免疫細胞化學(Immunocytochemistry,ICC)與鹼性磷酸酶 染色15 3.9 豬皮之去細胞步驟16 3.10 去細胞豬皮上微陣列凹洞之製備17 3.11 去細胞scaffold之架設17 3.12 掃描式電子顯微鏡(SEM)18 3.13 組織切片前處理18 第四章 結果與討論 4.1 初代DP細胞培養與免疫螢光染色19 4.2 PDMS微陣列之製備21 4.3 PDMS微陣列中之DP細胞培養結果22 4.4 Chitosan coating及細胞培養結果25 4.5 PDMS coating及細胞培養結果29 4.6 豬皮的去細胞處理36 4.7 不同的雷射參數應用於去細胞支架37 4.8 共培養微組織植入去細胞支架之切片觀察41 4.9 實驗結果統整43 第五章 結論44 第六章 參考文獻45 圖目錄 圖1-1 毛髮解剖構造1 圖1-2 毛囊的週期變化2 圖2-1 實驗概念圖7 圖2-2 實驗架構圖8 圖3-1 PDMS薄膜製備示意圖13 圖3-2 Chitosan coating製備及細胞培養示意圖14 圖3-3 去細胞豬皮架設示意圖17 圖4-1 初代培養的真皮乳頭細胞19 圖4-2初代細胞的NCAM、σ-SMA螢光染色結果20 圖4-3 PDMS微陣列薄膜21 ●PDMS 雷射雕刻薄膜實驗組 圖4-4 PDMS微陣列薄膜培養DP細胞24 ●低貼附姓Chitosan coating組 圖4-5 DP(P3)細胞搖晃培養2小時25 圖4-6 DP(P3)細胞培養第二天及第三天26 圖4-7不同螢光標記的keratinocytes與DP細胞對照27 圖4-8 DP(P3)細胞與keratinocytes共培養第二天及第三天28 ●低貼附姓PDMS coating組 圖4-9 DP(P3)細胞搖晃培養2小時29 圖4-10 DP(P3)細胞培養第二天以及第三天30 圖4.11 不同螢光標記的keratinocytes與DP細胞對照31 圖4-12 DP(P3)細胞與keratinocytes共培養第二天及第三天32 圖4-13 DP(P3)與keratinocytes共培養第五天33 圖4-14 取出共培養細胞團並於培養皿培養第二天34 圖4-15 DP-keratinocytes共培養微組織之α-SMA , NCAM染色35 圖4-16 未經處理的豬皮與去細胞處理後的外觀比較及H&E切片觀察36 圖4-17 不同功率雷射、不同重複次數雕刻之去細胞豬皮外觀37 圖4-18 不同雷射功率、不同重複次數雕刻之孔洞大小37 圖4-19解剖顯微鏡下的經雷射雕刻之去細胞豬皮38 圖4-20電子顯微鏡下的經雷射雕刻之去細胞豬皮39 圖4-21去細胞豬皮H&E染色及顯微鏡下之局部圖40 圖4-22 DP-keratinocytes植入去細胞豬皮12天之切片觀察42 | |
dc.language.iso | zh-TW | |
dc.title | 利用疏水性PDMS形成具3D結構的真皮乳頭微組織並結合去細胞之豬皮進行體外培養應用於毛囊重建之研究 | zh_TW |
dc.title | Using Hydrophobic PDMS to form three-dimensional dermal papilla microtissue on decellularized porcine skin in vitro for application of hair follicle reconstruction study | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 黃意真,許馨云 | |
dc.subject.keyword | 真皮乳頭細胞,去細胞支架,聚二甲基矽氧烷,體外毛囊重建工程, | zh_TW |
dc.subject.keyword | Dermal papilla cell,Decellularized scaffold,Polydimethylsiloxane,Hair follicle regeneration in vitro, | en |
dc.relation.page | 46 | |
dc.identifier.doi | 10.6342/NTU201703372 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-15 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
顯示於系所單位: | 醫學工程學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.78 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。