Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69073
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張雅君(Ya-Chun Chang)
dc.contributor.authorChing-Yi Huangen
dc.contributor.author黃靖益zh_TW
dc.date.accessioned2021-06-17T02:50:27Z-
dc.date.available2018-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-15
dc.identifier.citation彭可均,2013。探討SlRLK1在番茄基礎防禦反應的角色。國立臺灣大學植物病理與微生物學研究所碩士論文。
毛青樺,2008。蟹爪蘭X病毒與紅龍果X病毒之分子特性與偵測。國立臺灣大學植物病理與微生物學研究所碩士論文。
倪蕙芳、楊宏仁、黃巧雯、林靜宜、林筑蘋、安寶貞、蔡志濃,2015。紅龍果莖潰瘍病病原特性及防治研究。台灣紅龍果生產技術改進研討會專刊 81-91。
李勇賜,2010。紅龍果X病毒之特性分析、感染性選殖株構築與抗血清製備。國立臺灣大學植物病理與微生物學研究所碩士論文。
劉碧鵑、留欽培,2015。台灣紅龍果品種選育現況與未來展望。台灣紅龍果生產技術改進研討會專刊 29-43。
劉命如、洪建龍、劉瑞芬,2004。引起紅龍果斑駁病徵之Cactus virus X的鑑定與免疫檢測。植病會刊 13,27-34。
呂有其,2007。仙人掌病毒X新分離株之特性分析與感染性選殖株之構築。國立臺灣大學植物病理與微生物學研究所碩士論文。
郭尚明,2017。於圓葉菸草探討蕙蘭嵌紋病毒與齒舌蘭輪斑病毒之交互作用。國立臺灣大學植物病理與微生物學研究所碩士論文。
何艾翎,2012。紅龍果X病毒鞘蛋白次基因體啟動子之分析及應用。國立臺灣大學植物病理與微生物學研究所碩士論文。
黃裕雯,2014。齒舌蘭輪班病毒及蕙蘭嵌紋病毒協力作用之分子機制。國立臺灣大學植物病理與微生物學研究所碩士論文。
張佑瑋,2017。兩種仙人掌X病毒感染性選殖株之研究與紅龍果原生質體系統之建立。國立臺灣大學植物病理與微生物學研究所碩士論文。
Amelunxen, F. 1958. Die virus-Eiweibspindeln der Kakteen. Darstellung, elektronenmikroskoskopische und biochemische Analyse des Virus. Protoplasma 49:140.
Atabekov, J. G., Rodionova, N. P., Karpova, O. V., Kozlovsky, S. V., and Poljakov, V. Y. 2000. The movement protein-triggered in situ conversion of Potato virus X virion RNA from a nontranslatable into a translatable form. Virology 271:259-263.
Attahom, S., Weathers, L. G., Gumpf, D. J. 1978. Identification and characterization of a potexvirus from california barrel cactus. Phytopathology 68:1401-1406
Batten, J. S., Yoshinari, S., and Hemenway, C. 2003. Potato virus X: a model system for virus replication, movement and gene expression. Molecular Plant Pathology 4:125-131.
Bayne, E. H., Rakitina, D. V., Morozov, S. Y., and Baulcombe, D. C. 2005. Cell-to-cell movement of potato potexvirus X is dependent on suppression of RNA silencing. The Plant journal : for cell and molecular biology 44:471-482.
Bendahmane, A., Kanyuka, K., and Baulcombe, D. C. 1999. The Rx gene from potato controls separate virus resistance and cell death responses. The Plant Cell 11:781-791.
Brandes, J., and Bercks, R. 1962. Untersuchungen zur Identifizierung und Klassifizierung des Kakteen-X-Virus (cactus virus X). Journal of Phytopathology 46:291-300.
Chavez-Calvillo, G., Contreras-Paredes, C. A., Mora-Macias, J., Noa-Carrazana, J. C., Serrano-Rubio, A. A., Dinkova, T. D., Carrillo-Tripp, M., and Silva-Rosales, L. 2016. Antagonism or synergism between papaya ringspot virus and papaya mosaic virus in Carica papaya is determined by their order of infection. Virology 489:179-191.
Chiu, M. H., Chen, I. H., Baulcombe, D. C., and Tsai, C. H. 2010. The silencing suppressor P25 of Potato virus X interacts with Argonaute1 and mediates its degradation through the proteasome pathway. Mol Plant Pathol 11:641-649.
Choi, H., Cho, W. K., and Kim, K. H. 2016. Two homologous host proteins interact with Potato virus X RNAs and CPs and affect viral replication and movement. Scientific reports 6:28743.
Cruz, S. S., Roberts, A. G., Prior, D. A., Chapman, S., and Oparka, K. J. 1998. Cell-to-cell and phloem-mediated transport of Potato virus X. The role of virions. The Plant Cell 10:495-510.
Dietrich, C., and Maiss, E. 2003. Fluorescent labelling reveals spatial separation of potyvirus populations in mixed infected Nicotiana benthamiana plants. The Journal of general virology 84:2871-2876.
Doronin, S. V., and Hemenway, C. 1996. Synthesis of Potato virus X RNAs by membrane-containing extracts. Journal of Virology 70:4795-4799.
Fridborg, I., Grainger, J., Page, A., Coleman, M., Findlay, K., and Angell, S. 2003. TIP, a novel host factor linking callose degradation with the cell-to-cell movement of Potato virus X. Molecular plant-microbe interactions : MPMI 16:132-140.
Garcia-Cano, E., Resende, R. O., Fernandez-Munoz, R., and Moriones, E. 2006. Synergistic interaction between Tomato chlorosis virus and Tomato spotted wilt virus results in breakdown of resistance in tomato. Phytopathology 96:1263-1269.
Gonzalez-Jara, P., Tenllado, F., Martinez-Garcia, B., Atencio, F. A., Barajas, D., Vargas, M., Diaz-Ruiz, J., and Diaz-Ruiz, J. R. 2004. Host-dependent differences during synergistic infection by Potyviruses with Potato virus X. Mol Plant Pathol 5:29-35.
Guilford, P. J., Beck, D. L., and Forster, R. L. 1991. Influence of the poly(A) tail and putative polyadenylation signal on the infectivity of white clover mosaic potexvirus. Virology 182:61-67.
Ho, T. L., Lee, H. C., Chou, Y. L., Tseng, Y. H., Huang, W. C., Wung, C. H., Lin, N. S., Hsu, Y. H., and Chang, B. Y. 2017. The cysteine residues at the C-terminal tail of Bamboo mosaic virus triple gene block protein 2 are critical for efficient plasmodesmata localization of protein 1 in the same block. Virology 501:47-53.
Hu, W. W., Wong, S. M., Goh, C. J., and Loh, C. S. 1998. Synergism in replication of cymbidium mosaic potexvirus (CymMV) and odontoglossum ringspot tobamovirus (ORSV) RNA in orchid protoplasts. Archives of virology 143:1265-1275.
Huang, C. Y., Huang, Y. L., Meng, M., Hsu, Y. H., and Tsai, C. H. 2001. Sequences at the 3' untranslated region of bamboo mosaic potexvirus RNA interact with the viral RNA-dependent RNA polymerase. J Virol 75:2818-2824.
Huang, Y.-P., Chen, I. H., and Tsai, C.-H. 2017. Host factors in the infection cycle of Bamboo mosaic virus. Frontiers in Microbiology 8:437.
Ivanov, K. I., and Mäkinen, K. 2012. Coat proteins, host factors and plant viral replication. Current Opinion in Virology 2:712-718.
Kao, C. C., Ni, P., Hema, M., Huang, X., and Dragnea, B. 2011. The coat protein leads the way: an update on basic and applied studies with the Brome mosaic virus coat protein. Mol Plant Pathol 12:403-412.
Karyeija, R. F., Kreuze, J. F., Gibson, R. W., and Valkonen, J. P. 2000. Synergistic interactions of a potyvirus and a phloem-limited crinivirus in sweet potato plants. Virology 269:26-36.
Koenig, R., Pleij, C. W. A., Loss, S., Burgermeister, W., Aust, H., and Schiemann, J. 2004. Molecular characterisation of potexviruses isolated from three different genera in the family Cactaceae. Archives of virology 149:903-914.
Liou, M. R., Hung, C. L., and Liou, R. F. 2001. First report of Cactus virus X on Hylocereus undatus (Cactaceae) in Taiwan. Plant Disease 85:229-229.
Liu, D., Shi, L., Han, C., Yu, J., Li, D., and Zhang, Y. 2012. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PloS one 7:e46451.
Lough, T. J., Shash, K., Xoconostle-Cázares, B., Hofstra, K. R., Beck, D. L., Balmori, E., Forster, R. L. S., and Lucas, W. J. 1998. Molecular dissection of the mechanism by which potexvirus triple gene block proteins mediate cell-to-cell transport of infectious RNA. Molecular Plant-Microbe Interactions 11:801-814.
McKinney, H. H. 1929. Mosaic diseases in the Canary Islands, West Africa and Gibraltar. Journal of Agricultural Research. 39:577-578.
Mendez-Lozano, J., Torres-Pacheco, I., Fauquet, C. M., and Rivera-Bustamante, R. F. 2003. Interactions Between geminiviruses in a naturally occurring mixture: Pepper huasteco virus and Pepper golden mosaic virus. Phytopathology 93:270-277.
Meng, M., and Lee, C. C. 2017. Function and structural organization of the replication protein of Bamboo mosaic virus. Frontiers in Microbiology 8.
Morozov, S. Y., and Solovyev, A. G. 2003. Triple gene block: modular design of a multifunctional machine for plant virus movement. The Journal of general virology 84:1351-1366.
Murphy, J. F., and Bowen, K. L. 2006. Synergistic disease in pepper caused by the mixed infection of Cucumber mosaic virus and Pepper mottle virus. Phytopathology 96:240-247.
Okano, Y., Senshu, H., Hashimoto, M., Neriya, Y., Netsu, O., Minato, N., Yoshida, T., Maejima, K., Oshima, K., Komatsu, K., Yamaji, Y., and Namba, S. 2014. In planta recognition of a double-stranded RNA synthesis protein complex by a potexviral RNA silencing suppressor. Plant Cell 26:2168-2183.
Park, M. R., Park, S. H., Cho, S. Y., and Kim, K. H. 2009. Nicotiana benthamiana protein, NbPCIP1, interacting with Potato virus X coat protein plays a role as susceptible factor for viral infection. Virology 386:257-269.
Pruss, G., Ge, X., Shi, X. M., Carrington, J. C., and Bowman Vance, V. 1997. Plant viral synergism: the potyviral genome encodes a broad-range pathogenicity enhancer that transactivates replication of heterologous viruses. The Plant Cell 9:859-868.
Renteria-Canett, I., Xoconostle-Cazares, B., Ruiz-Medrano, R., and Rivera-Bustamante, R. F. 2011. Geminivirus mixed infection on pepper plants: synergistic interaction between PHYVV and PepGMV. Virology journal 8:104.
Rochow, W. F., and Ross, A. F. 1955. Virus multiplication in plants doubly infected by potato viruses X and Y. Virology 1:10-27.
Saldaña, J., Elena, S. F., and Solé, R. V. 2003. Coinfection and superinfection in RNA virus populations: a selection–mutation model. Mathematical Biosciences 183:135-160.
Scheets, K. 1998. Maize chlorotic mottle machlomovirus and wheat streak mosaic rymovirus concentrations increase in the synergistic disease corn lethal necrosis. Virology 242:28-38.
Schepetilnikov, M. V., Manske, U., Solovyev, A. G., Zamyatnin, A. A., Jr., Schiemann, J., and Morozov, S. Y. 2005. The hydrophobic segment of Potato virus X TGBp3 is a major determinant of the protein intracellular trafficking. The Journal of general virology 86:2379-2391.
Syller, J. 2012. Facilitative and antagonistic interactions between plant viruses in mixed infections. Mol Plant Pathol 13:204-216.
Taiwo, M. A., Kareem, K. T., Nsa, I. Y., and J, D. A. H. 2007. Cowpea viruses: effect of single and mixed infections on symptomatology and virus concentration. Virology journal 4:95.
Takahashi, T., Sugawara, T., Yamatsuta, T., Isogai, M., Natsuaki, T., and Yoshikawa, N. 2007. Analysis of the spatial distribution of identical and two distinct virus populations differently labeled with cyan and yellow fluorescent proteins in coinfected plants. Phytopathology 97:1200-1206.
Tilsner, J., Linnik, O., Wright, K. M., Bell, K., Roberts, A. G., Lacomme, C., Santa Cruz, S., and Oparka, K. J. 2012. The TGB1 movement protein of Potato virus X reorganizes actin and endomembranes into the X-body, a viral replication factory. Plant physiology 158:1359-1370.
Verchot-Lubicz, J., Ye, C. M., and Bamunusinghe, D. 2007. Molecular biology of potexviruses: recent advances. The Journal of general virology 88:1643-1655.
King A., and ScienceDirect. 2011. Ninth report of the International Committee on Taxonomy of Viruses. I. C. T. V.
Wang, Y., Gaba, V., Yang, J., Palukaitis, P., and Gal-On, A. 2002. Characterization of synergy between Cucumber mosaic virus and potyviruses in cucurbit hosts. Phytopathology 92:51-58.
Wintermantel, W. M., Cortez, A. A., Anchieta, A. G., Gulati-Sakhuja, A., and Hladky, L. L. 2008. Co-infection by two criniviruses alters accumulation of each virus in a host-specific manner and influences efficiency of virus transmission. Phytopathology 98:1340-1345.
Wu, C. H., Lee, S. C., and Wang, C. W. 2011. Viral protein targeting to the cortical endoplasmic reticulum is required for cell-cell spreading in plants. The Journal of cell biology 193:521-535.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69073-
dc.description.abstract近年來,紅龍果已成為台灣市場重要之熱帶果樹,而田間調查結果顯示果園裡的植株幾乎全數帶有為害紅龍果之Potexvirus屬絲狀病毒,其中包含仙人掌X病毒(Cactus virus X, CVX)與紅龍果X病毒(Pitaya virus X, PiVX)。CVX普遍存在於多種仙人掌科植物,於2001年首度被記載可感染紅龍果,並造成輕微斑駁(mild mottling)病徵;而PiVX則由本實驗室於2008年發現、鑑定並命名,此二病毒於紅龍果上複合感染的現象非常普遍。為了瞭解CVX與PiVX在寄主植物體內是否有相互影響之情形,我們使用CVX與PiVX感染性選殖株為實驗材料,期望從複合感染時病毒複製之情形,以及在植株上之分布狀態,這兩層面探討兩病毒之關係。在CVX與PiVX對彼此複製之影響的研究上,我們從單細胞層次及組織層次進行探討,比較單獨及複合接種處理下兩病毒之RNA累積情形;使用之植物材料包含圓葉菸草(Nicotiana benthamiana)、白藜(Chenopodium quinoa)和紅龍果(Hylocereus undatus)之原生質體(protoplasts),以及白藜與紅龍果植株。採用之分析策略為北方雜合分析法及反轉錄即時聚合酶鏈鎖反應,透過專ㄧ性RNA探針以及能區分CVX與PiVX之專一性引子對,偵測病毒之RNA累積。我們發現CVX與PiVX兩病毒複合感染於菸草原生質體、以及紅龍果原生質體與植株時,表現出協力作用;在感染白藜原生質體及植株時,則呈現拮抗作用。另一方面,我們構築了能表現螢光蛋白之病毒選殖株CVX-mCherry、CVX-EGFP及PiVX-EGFP,進行兩種病毒於植物體內分布之觀察。將CVX-mCherry與PiVX-EGFP複合接種至白藜或紅龍果植株上,經共軛焦螢光顯微鏡觀察,發現兩病毒於兩種寄主上皆表現出空間區隔之互斥現象。將上述結果與CVX-mCherry / CVX-EGFP以及CVX-mCherry / CymMV-EGFP複合感染白藜之結果比較,顯示此互斥現象在白藜組織上與病毒序列相似度呈正相關;相較之下,病毒在紅龍果植株表現之空間區隔現象是否與序列相似度有關,還有待確認。若將表現不同螢光基因之病毒以轉錄體型式接種至紅龍果原生質體,則可發現不少細胞皆同時表現兩種螢光訊號。綜合上述結果,我們認為當CVX與PiVX共同感染紅龍果時,應可進入同一細胞,並共創對彼此複製有利之環境,儘管於細胞間移動階段兩病毒並不容易移動至同一細胞內,如此的協力作用仍可能是田間紅龍果普遍受此二病毒複合感染的原因之一。此協力作用具寄主專一性,詳細機制還有待更多的研究探討釐清。zh_TW
dc.description.abstractIn recent years, pitaya has become an important tropical fruit in Taiwan markets. Field investigations showed that almost all pitaya plants in orchards are infected by viruses including two members of the genus Potexvirus, Cactus virus X (CVX) and Pitaya virus X (PiVX). CVX was first reported to infect pitaya, causing mild mottling, by Dr. R. F. Liou’s team in 2001. And PiVX was found, identified and named by our lab in 2008. Since mixed infections of CVX and PiVX on pitayas are very common, the aim of this study is to investigate whether there are interactions between these two viruses in host plants. The study was divided into two parts including viral replication and virus distribution in planta. To analyze viral RNA accumulation, the infectious clones of CVX and PiVX were singly or doubly inoculated to either protoplasts of tobacco (Nicotiana benthamiana), quinoa (Chenopodium quinoa) and pitaya (Hylocereus undatus) or seedlings of quinoa and pitaya. Through northern hybridization using specific RNA probes and RT-qPCR using specific primers of CVX and PiVX, we detected each viral RNA accumulation and found that these two viruses performed synergistic interaction when mixed infection on tobacco and pitaya but showed antagonistic interaction on quinoa. In the virus distribution study, viral infectious clones expressing different exogenous fluorescent proteins (CVX-mCherry, CVX-EGFP and PiVX-EGFP) were prepared and mechanically inoculated on leaves of quinoa and cotyledons of pitaya seedlings. According to the results of laser confocal fluorescence microscopy, CVX-mCherry and CVX-EGFP revealed stronger spatial separation than CVX-mCherry and PiVX-EGFP on quinoa inoculated leaves. Whereas, the signals of mix-inoculated CVX-mCherry and CymMV-EGFP showed completely overlapping on quinoa. The degree of mutual exclusion between two mix-inoculated viruses on quinoa is positively related to their sequence homology. However, the spatial separation observed on pitaya did not reveal relation with viral sequences and needs further study. When mix-inoculated with viral transcripts of CVX-mCherry / CVX-EGFP or CVX-mCherry / PiVX-EGFP, many pitaya protoplasts were found to express two fluorescence signals which means two viruses can infect the same cell during inoculation. According to these data, we propose that CVX and PiVX can enter the same cells simultaneously during mixed infection. After that, these two viruses create a friendly environment which is beneficial to each other. This may partially explain the common situation of mixed infection in field. The synergistic effect between CVX and PiVX is host specific, and the mechanism needs further experiments to clarify.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:50:27Z (GMT). No. of bitstreams: 1
ntu-106-R03633030-1.pdf: 25852549 bytes, checksum: e4e199978264f1a058a245ff907361a5 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要………………………………………………………………………………...i
英文摘要……………………………………………………………………………...iii
壹、 前言
一、 Potexvirus屬病毒之介紹…………………………………………………......1
二、 紅龍果病毒之介紹………………………………………………………….5
三、 植物病毒之交互作用……………………………………………………….8
四、 研究動機…………………………………………………………………….11
貳、 材料與方法
一、 植物材料及栽種方式………………………………………………………13
二、 病毒cDNA株來源及質體DNA之中量製備……………………………....13
三、 生體外轉錄體之製備……………………………………………………….14
四、 原生質體之製備與接種
(一) 圓葉菸草原生質體之製備…………………………………………….15
(二) 白藜原生質體之製備………………………………………………….16
(三) 紅龍果原生質體之製備……………………………………………….16
(四) 計算原生質體數量…………………………………………………….17
(五) 原生質體之接種……………………………………………………….17
五、 白藜及紅龍果植株之機械接種…………………………………………….18
六、 植物全RNA之純化…………………………………………………………18
七、 探針設計與製備
(一) 探針設計及專一性測試……………………………………………….19
(二) RNA探針之製備………………………………………………………20
八、 北方雜合分析法…………………………………………………………….21
九、 反轉錄即時聚合酶鏈鎖反應……………………………………………….22
十、 帶有不同螢光基因之CVX與PiVX病毒株之構築………………………..23
十一、 螢光病毒載體於植物體之接種及顯微觀察………………………….24
參、 結果
一、 CVX與PiVX於單細胞之交互作用
(一) 於圓葉菸草原生質體………………………………………………….26
(二) 於白藜原生質體……………………………………………………….27
(三) 於紅龍果原生質……………………………………………………….27
二、 CVX與PiVX於植物體之交互作用
(一) 於白藜植株…………………………………………………………….28
(二) 於紅龍果植株………………………………………………………….28
三、 CVX-EGFP/mCherry、PiVX-EGFP之分布
(一) 螢光病毒載體測試…………………………………………………….29
(二) 於白藜植株(接種葉)…………………………………………………...29
(三) 於紅龍果植株………………………………………………………….31
(四) 於紅龍果原生質體…………………………………………………….31
肆、 討論
一、 複合感染有利CVX與PiVX於紅龍果及菸草細胞之RNA累積…………33
二、 CVX與PiVX之協力作用具寄主專一性…………………………………..35
三、 帶有不同螢光基因之CVX與PiVX於白藜接種葉上表現互斥作用……..37
四、 帶有不同螢光基因之CVX與PiVX於紅龍果組織及原生質體之表現…..38
伍、 參考文獻………………………………………………………………………….40
附圖…………………………………………………………………………………….48
附表…………………………………………………………………………………….68
附錄…………………………………………………………………………………….69
dc.language.isozh-TW
dc.title仙人掌X病毒與紅龍果X病毒交互作用之探討zh_TW
dc.titleInvestigation of the interaction between Cactus virus X and Pitaya virus Xen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林詩舜(Shih-Shun Lin),蔡慶修(Ching-Hsiu Tsai)
dc.subject.keyword紅龍果,仙人掌X病毒,紅龍果X病毒,病毒-病毒交互作用,北方雜合分析法,反轉錄即時聚合?鏈鎖反應,共軛焦螢光顯微鏡,zh_TW
dc.subject.keywordpitaya,Cactus virus X,Pitaya virus X,virus-virus interaction,northern hybridization,q-RT-PCR,laser confocal fluorescence microscope,en
dc.relation.page72
dc.identifier.doi10.6342/NTU201703243
dc.rights.note有償授權
dc.date.accepted2017-08-15
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
25.25 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved