Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69071
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林曉青(Hsiao-Ching Lin)
dc.contributor.authorLi-Xun Chenen
dc.contributor.author陳立訓zh_TW
dc.date.accessioned2021-06-17T02:50:20Z-
dc.date.available2025-08-17
dc.date.copyright2020-09-17
dc.date.issued2020
dc.date.submitted2020-08-17
dc.identifier.citation1. Dar, R. A.; Shahnawaz, M.; Rasool, S.; Qazi, P. H. J. J. P., Natural product medicines: A literature update. The Journal of Phytopharmacology 2017, 6 (6), 349-351.
2. Koehn, F. E.; Carter, G. T., The evolving role of natural products in drug discovery. Nature Reviews Drug Discovery 2005, 4 (3), 206-220.
3. Newman, D. J.; Cragg, G. M., Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. Journal of Natural Products 2020, 83 (3), 770-803
4. Harvey, A. L.; Edrada-Ebel, R.; Quinn, R. J., The re-emergence of natural products for drug discovery in the genomics era. Nature Reviews Drug Discovery 2015, 14 (2), 111-129.
5. Gaudêncio, S. P.; Pereira, F., Dereplication: racing to speed up the natural products discovery process. Natural Product Reports 2015, 32 (6), 779-810.
6. Keller, N. P.; Turner, G.; Bennett, J. W., Fungal secondary metabolism — from biochemistry to genomics. Nature Reviews Microbiology 2005, 3 (12), 937-947.
7. Walsh, C. T.; O'Brien, R. V.; Khosla, C., Nonproteinogenic Amino Acid Building Blocks for Nonribosomal Peptide and Hybrid Polyketide Scaffolds. Angewandte Chemie International Edition 2013, 52 (28), 7098-7124.
8. Fischbach, M. A.; Walsh, C. T., Assembly-line enzymology for polyketide and nonribosomal Peptide antibiotics: logic, machinery, and mechanisms. Chemical reviews 2006, 106 (8), 3468-96.
9. Bloudoff, K.; Schmeing, T. M., Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochimica et biophysica acta. Proteins and proteomics 2017, 1865 (11 Pt B), 1587-1604.
10. Challis, G. L.; Ravel, J.; Townsend, C. A., Predictive, structure-based model of amino acid recognition by nonribosomal peptide synthetase adenylation domains. Chemistry Biology 2000, 7 (3), 211-224.
11. Walsh, C. T., Insights into the chemical logic and enzymatic machinery of NRPS assembly lines. Natural Product Reports 2016, 33 (2), 127-35.
12. Beld, J.; Sonnenschein, E. C.; Vickery, C. R.; Noel, J. P.; Burkart, M. D., The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Natural Product Reports 2014, 31 (1), 61-108.
13. McErlean, M.; Overbay, J.; Van Lanen, S., Refining and expanding nonribosomal peptide synthetase function and mechanism. Journal of Industrial Microbiology Biotechnology 2019, 46 (3), 493-513.
14. Miller, B. R.; Gulick, A. M., Structural Biology of Nonribosomal Peptide Synthetases. Methods in Molecular Biology 2016, 1401, 3-29.
15. Du, L.; Lou, L., PKS and NRPS release mechanisms. Natural Product Reports 2010, 27 (2), 255-78.
16. Hamed, R. B.; Gomez-Castellanos, J. R.; Henry, L.; Ducho, C.; McDonough, M. A.; Schofield, C. J., The enzymes of β-lactam biosynthesis. Natural Product Reports 2013, 30 (1), 21-107.
17. Bruner, S. D.; Weber, T.; Kohli, R. M.; Schwarzer, D.; Marahiel, M. A.; Walsh, C. T.; Stubbs, M. T., Structural basis for the cyclization of the lipopeptide antibiotic surfactin by the thioesterase domain SrfTE. Structure 2002, 10 (3), 301-10.
18. Roongsawang, N.; Washio, K.; Morikawa, M., Diversity of nonribosomal peptide synthetases involved in the biosynthesis of lipopeptide biosurfactants. International journal of molecular sciences 2010, 12 (1), 141-72.
19. Haynes, S. W.; Ames, B. D.; Gao, X.; Tang, Y.; Walsh, C. T., Unraveling terminal C-domain-mediated condensation in fungal biosynthesis of imidazoindolone metabolites. Biochemistry 2011, 50 (25), 5668-79.
20. Sung, C. T.; Chang, S. L.; Entwistle, R.; Ahn, G.; Lin, T. S.; Petrova, V.; Yeh, H. H.; Praseuth, M. B.; Chiang, Y. M.; Oakley, B. R.; Wang, C. C. C., Overexpression of a three-gene conidial pigment biosynthetic pathway in Aspergillus nidulans reveals the first NRPS known to acetylate tryptophan. Fungal genetics and biology 2017, 101, 1-6.
21. Hai, Y.; Jenner, M.; Tang, Y., Complete Stereoinversion of l-Tryptophan by a Fungal Single-Module Nonribosomal Peptide Synthetase. Journal of the American Chemical Society 2019, 141 (41), 16222-16226.
22. Xu, Y.; Orozco, R.; Wijeratne, E. M.; Gunatilaka, A. A.; Stock, S. P.; Molnár, I., Biosynthesis of the cyclooligomer depsipeptide beauvericin, a virulence factor of the entomopathogenic fungus Beauveria bassiana. Chemistry Biology 2008, 15 (9), 898-907.
23. Yu, D.; Xu, F.; Zhang, S.; Zhan, J., Decoding and reprogramming fungal iterative nonribosomal peptide synthetases. Nature Communications 2017, 8 (1), 15349.
24. Dan, Q.; Newmister, S. A.; Klas, K. R.; Fraley, A. E.; McAfoos, T. J.; Somoza, A. D.; Sunderhaus, J. D.; Ye, Y.; Shende, V. V.; Yu, F.; Sanders, J. N.; Brown, W. C.; Zhao, L.; Paton, R. S.; Houk, K. N.; Smith, J. L.; Sherman, D. H.; Williams, R. M., Fungal indole alkaloid biogenesis through evolution of a bifunctional reductase/Diels–Alderase. Nature Chemistry 2019, 11 (11), 972-980.
25. Hai, Y.; Huang, A. M.; Tang, Y., Structure-guided function discovery of an NRPS-like glycine betaine reductase for choline biosynthesis in fungi. Proceedings of the National Academy of Sciences 2019, 116 (21), 10348.
26. Herbst, D. A.; Townsend, C. A.; Maier, T., The architectures of iterative type I PKS and FAS. Natural Product Reports 2018, 35 (10), 1046-1069.
27. Yun, C.-S.; Motoyama, T.; Osada, H., Biosynthesis of the mycotoxin tenuazonic acid by a fungal NRPS–PKS hybrid enzyme. Nature Communications 2015, 6 (1), 8758.
28. Fisch, K. M., Biosynthesis of natural products by microbial iterative hybrid PKS–NRPS. RSC Advances 2013, 3 (40), 18228-18247.
29. Kishimoto, S.; Tsunematsu, Y.; Matsushita, T.; Hara, K.; Hashimoto, H.; Tang, Y.; Watanabe, K., Functional and Structural Analyses of trans C-Methyltransferase in Fungal Polyketide Biosynthesis. Biochemistry 2019, 58 (38), 3933-3937.
30. Tsunematsu, Y.; Fukutomi, M.; Saruwatari, T.; Noguchi, H.; Hotta, K.; Tang, Y.; Watanabe, K., Elucidation of pseurotin biosynthetic pathway points to trans-acting C-methyltransferase: generation of chemical diversity. Angewandte Chemie International Edition 2014, 53 (32), 8475-9.
31. Zou, Y.; Xu, W.; Tsunematsu, Y.; Tang, M.; Watanabe, K.; Tang, Y., Methylation-Dependent Acyl Transfer between Polyketide Synthase and Nonribosomal Peptide Synthetase Modules in Fungal Natural Product Biosynthesis. Organic Letters 2014, 16 (24), 6390-6393.
32. Kosol, S.; Gallo, A.; Griffiths, D.; Valentic, T. R.; Masschelein, J.; Jenner, M.; de los Santos, E. L. C.; Manzi, L.; Sydor, P. K.; Rea, D.; Zhou, S.; Fülöp, V.; Oldham, N. J.; Tsai, S.-C.; Challis, G. L.; Lewandowski, J. R., Structural basis for chain release from the enacyloxin polyketide synthase. Nature Chemistry 2019, 11 (10), 913-923.
33. Mahenthiralingam, E.; Song, L.; Sass, A.; White, J.; Wilmot, C.; Marchbank, A.; Boaisha, O.; Paine, J.; Knight, D.; Challis, Gregory L., Enacyloxins Are Products of an Unusual Hybrid Modular Polyketide Synthase Encoded by a Cryptic Burkholderia ambifaria Genomic Island. Chemistry Biology 2011, 18 (5), 665-677.
34. Masschelein, J.; Sydor, P. K.; Hobson, C.; Howe, R.; Jones, C.; Roberts, D. M.; Ling Yap, Z.; Parkhill, J.; Mahenthiralingam, E.; Challis, G. L., A dual transacylation mechanism for polyketide synthase chain release in enacyloxin antibiotic biosynthesis. Nature Chemistry 2019, 11 (10), 906-912.
35. Christianson, D. W., Structural and Chemical Biology of Terpenoid Cyclases. Chemical reviews 2017, 117 (17), 11570-11648.
36. Lin, H.-C.; Chooi, Y.-H.; Dhingra, S.; Xu, W.; Calvo, A. M.; Tang, Y., The Fumagillin Biosynthetic Gene Cluster in Aspergillus fumigatus Encodes a Cryptic Terpene Cyclase Involved in the Formation of β-trans-Bergamotene. Journal of the American Chemical Society 2013, 135 (12), 4616-4619.
37. Lin, H.-C.; Tsunematsu, Y.; Dhingra, S.; Xu, W.; Fukutomi, M.; Chooi, Y.-H.; Cane, D. E.; Calvo, A. M.; Watanabe, K.; Tang, Y., Generation of Complexity in Fungal Terpene Biosynthesis: Discovery of a Multifunctional Cytochrome P450 in the Fumagillin Pathway. Journal of the American Chemical Society 2014, 136 (11), 4426-4436.
38. Matsuda, Y.; Bai, T.; Phippen, C. B. W.; Nødvig, C. S.; Kjærbølling, I.; Vesth, T. C.; Andersen, M. R.; Mortensen, U. H.; Gotfredsen, C. H.; Abe, I.; Larsen, T. O., Novofumigatonin biosynthesis involves a non-heme iron-dependent endoperoxide isomerase for orthoester formation. Nature Communications 2018, 9 (1), 2587.
39. Petersen, L. M.; Hoeck, C.; Frisvad, J. C.; Gotfredsen, C. H.; Larsen, T. O., Dereplication guided discovery of secondary metabolites of mixed biosynthetic origin from Aspergillus aculeatus. Molecules 2014, 19 (8), 10898-921.
40. Vesth, T. C.; Nybo, J. L.; Theobald, S.; Frisvad, J. C.; Larsen, T. O.; Nielsen, K. F.; Hoof, J. B.; Brandl, J.; Salamov, A.; Riley, R.; Gladden, J. M.; Phatale, P.; Nielsen, M. T.; Lyhne, E. K.; Kogle, M. E.; Strasser, K.; McDonnell, E.; Barry, K.; Clum, A.; Chen, C.; LaButti, K.; Haridas, S.; Nolan, M.; Sandor, L.; Kuo, A.; Lipzen, A.; Hainaut, M.; Drula, E.; Tsang, A.; Magnuson, J. K.; Henrissat, B.; Wiebenga, A.; Simmons, B. A.; Mäkelä, M. R.; de Vries, R. P.; Grigoriev, I. V.; Mortensen, U. H.; Baker, S. E.; Andersen, M. R., Investigation of inter- and intraspecies variation through genome sequencing of Aspergillus section Nigri. Nature Genetics 2018, 50 (12), 1688-1695.
41. Gao, Y. Q.; Guo, C. J.; Zhang, Q.; Zhou, W. M.; Wang, C. C.; Gao, J. M., Asperaculanes A and B, two sesquiterpenoids from the fungus Aspergillus aculeatus. Molecules 2014, 20 (1), 325-34.
42. 李奇芳,2018,解析棘孢麴黴之倍半萜類-Aculenes 的生合成途徑,國立臺灣大學生命科學院生化科學所碩士論文,臺北
43. He, Y.; Wang, B.; Chen, W.; Cox, R. J.; He, J.; Chen, F., Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnology Advances 2018, 36 (3), 739-783.
44. Zaleta-Rivera, K.; Xu, C.; Yu, F.; Butchko, R. A. E.; Proctor, R. H.; Hidalgo-Lara, M. E.; Raza, A.; Dussault, P. H.; Du, L., A Bidomain Nonribosomal Peptide Synthetase Encoded by FUM14 Catalyzes the Formation of Tricarballylic Esters in the Biosynthesis of Fumonisins. Biochemistry 2006, 45 (8), 2561-2569.
45. Bloudoff, K.; Schmeing, T. M., Structural and functional aspects of the nonribosomal peptide synthetase condensation domain superfamily: discovery, dissection and diversity. Biochimica et Biophysica Acta - Proteins and Proteomics 2017, 1865 (11, Part B), 1587-1604.
46. Xu, W.; Chooi, Y.-H.; Choi, J. W.; Li, S.; Vederas, J. C.; Da Silva, N. A.; Tang, Y., LovG: The Thioesterase Required for Dihydromonacolin L Release and Lovastatin Nonaketide Synthase Turnover in Lovastatin Biosynthesis. Angewandte Chemie International Edition 2013, 52 (25), 6472-6475.
47. Qin, T.; Porco Jr, J. A., Total Syntheses of Secalonic Acids A and D. Angewandte Chemie International Edition 2014, 53 (12), 3107-3110.
48. Yamazaki, H.; Ukai, K.; Namikoshi, M., Asperdichrome, an unusual dimer of tetrahydroxanthone through an ether bond, with protein tyrosine phosphatase 1B inhibitory activity, from the Okinawan freshwater Aspergillus sp. TPU1343. Tetrahedron Letters 2016, 57 (7), 732-735.
49. Sanchez, J. F.; Entwistle, R.; Hung, J.-H.; Yaegashi, J.; Jain, S.; Chiang, Y.-M.; Wang, C. C. C.; Oakley, B. R., Genome-Based Deletion Analysis Reveals the Prenyl Xanthone Biosynthesis Pathway in Aspergillus nidulans. Journal of the American Chemical Society 2011, 133 (11), 4010-4017.
50. Chiang, Y.-M.; Szewczyk, E.; Davidson, A. D.; Entwistle, R.; Keller, N. P.; Wang, C. C. C.; Oakley, B. R., Characterization of the Aspergillus nidulans Monodictyphenone Gene Cluster. Applied and Environmental Microbiology 2010, 76 (7), 2067.
51. Szwalbe, A. J.; Williams, K.; Song, Z.; de Mattos-Shipley, K.; Vincent, Jason L.; Bailey, A. M.; Willis, C. L.; Cox, R. J.; Simpson, T. J., Characterisation of the biosynthetic pathway to agnestins A and B reveals the reductive route to chrysophanol in fungi. Chemical Science 2019, 10 (1), 233-238.
52. Neubauer, L.; Dopstadt, J.; Humpf, H.-U.; Tudzynski, P., Identification and characterization of the ergochrome gene cluster in the plant pathogenic fungus Claviceps purpurea. Fungal Biology and Biotechnology 2016, 3, 2-2.
53. Hu, J.; Li, H.; Chooi, Y.-H., Fungal Dirigent Protein Controls the Stereoselectivity of Multicopper Oxidase-Catalyzed Phenol Coupling in Viriditoxin Biosynthesis. Journal of the American Chemical Society 2019, 141 (20), 8068-8072.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69071-
dc.description.abstract在細菌與真菌中,非核糖體胜肽合成酶為催化生成非核糖體胜肽之酵素。棘孢素是由棘孢麴黴所生產的萜烯胺基酸天然雜合物。先前的研究中發現 ane 基因群負責棘孢素的生物合成。然而,對於下列兩個步驟中的重要酵素及其機制仍尚未了解:(1) 倍半萜類的骨架轉換為十四碳倍半萜類之去甲基化反應。(2) 參與在轉移脯胺酸形成萜烯胺基酸雜合物反應中,非核糖體肽合成酶 AneB和水解酶 AneE 之催化功能。
為了了解倍半萜類去甲基化反應,我們使用米麴菌作為異源表達系統,並重建三個細胞色素 P450s−AneD、AneF 以及 AneG之功能。結果發現這三個細胞色素 P450s 的接續催化能誘發十五碳倍半萜類的去甲基化,進而生成十四碳倍半萜產物。為了鑑定 AneB 的功能,我們以突變以及表達部分片段 AneB 以進行生物轉化試驗。實驗結果確認 AneB 催化功能的關鍵胺基酸位點,並藉此提出萜烯胺基酸的合成機轉。另外,藉由體外以及體內試驗,我們證明了水解酶 AneE 具有促進非核糖體肽合成酶催化功能的效果。此外,比起野生型的菌株,我們發現在 AneE 基因敲除的棘孢麴黴菌株中有兩種二次代謝物無法被生產,這表示 AneE 可能參與其生物合成步驟。我們成功分離並鑑定此兩種代謝物麥角黃酮酸 D 和 F,但水解酶在此途徑扮演的角色仍需進一步的探討。
在本次研究當中,我們發現十四碳倍半萜類的生成機制,並進一步鑑定了非核糖體胜肽合成酶和水解酶的催化特性。此研究擴增了棘孢素的生合成途徑,並使得生物體生產萜烯胺基酸之天然物的方式更被為了解。
zh_TW
dc.description.abstractNon-ribosomal peptide synthetases (NRPSs) catalyze the formation of backbone of non-ribosomal peptides (NRPs) in many bacteria and fungi. Aculenes are amino acid-terpene hybrid natural products produced by Aspergillus aculeatus. In the previous study, the ane gene cluster that is responsible for the biosynthesis of aculenes has been identified. However, the enzymes and their mechanisms involved in the two key steps to form aculenes remained unknown, (i) demethylation process to convert the sesquiterpene (C15) core skeleton to the norsesquiterpene (C14); (ii) the function of the hydrolase (AneE) and the NRPS (AneB) involved in proline transfer to form the terpene-amino acid hybrid products.
To understand the demethylation process from the sesquiterpene skeleton, we have reconstituted three cytochrome P450s in the Aspergillus oryzae heterologous system. The results showed that three cytochrome P450s (AneD, AneF, and AneG) are required and catalyze a stepwise demethylation process. To characterize the function of AneB (NRPS), the truncated and mutated AneB have been generated. Based on the results of the biotransformation experiments, several key residues in AneB were discovered and the catalytic mechanism was proposed. In both of in vitro and in vivo experiments, the results supported that the role of AneE (hydrolase) to facilitate the formation of terpene-amino acid product catalyzed by AneB. On the other hand, we observed that AneE may take part in the biosynthesis of other two secondary metabolites from A. aculeatus due to their disappearance in the AneE deleted mutant compared to the wild type strain. Those two metabolites have been purified and elucidated as secalonic acids D and F. The role of AneE involved in the biosynthesis of secalonic acids will be further investigated.
Our study elucidated the key steps in the formation of norsesquiterpenes and characterized the biochemical properties of the NRPS and hydrolase in aculenes biosynthesis. The study expanded the biosynthetic pathway of aculenes and led to understand how nature generates amino acid-terpene hybrid natural products
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:50:20Z (GMT). No. of bitstreams: 1
U0001-1608202023343700.pdf: 8487932 bytes, checksum: 78279030185f725b809e6b06aaa5881f (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents謝辭 i
中文摘要 ii
Abstract iv
Table of Contents vi
List of Figures xi
List of Schemes xv
List of Tables xvi
Abbreviations xvii
1. Introduction 1
1.1 Non-ribosomal peptide synthetases (NRPSs) 1
1.2 Product release mechanism 5
1.2.1 TE domain performs hydrolysis or macro-cyclization 5
1.2.2 C domain mediates product release 6
1.2.3 Reductive domain (R domain) catalyzes reductive release 7
1.2.4 Ketosynthase (KS) domain carries out Dieckmann cyclization 7
1.3 The biosynthesis of hybrid-type NPs 10
1.3.1 Polyketide-nonribosomal peptide (PK-NRP) hybrid NPs 10
1.3.2 Polyketide-terpene (PK-TC) hybrid NPs 11
1.4 Aculenes and Terpene-amino acid Hybrids 14
1.4.1 Aspergillus aculeatus and aculenes biosynthetic pathway 14
1.4.2 The role of AneB and AneE in aculene biosynthetic pathway 15
1.5 Aim of study 17
2. Materials and Method 18
2.1 Strain, medium, and cultivation condition 18
2.2 General chemical method 19
2.3 General Molecular biology experiment 20
2.4 Construction of plasmid 24
2.4.1 Construction of plasmids for the heterologous expression in S. cerevisiae 24
2.4.2 Construction of plasmids of aneC-aneF-xw55, aneD-xw02, and aneG-xw06 for the heterologous expression in S. cerevisiae 24
2.4.3 Construction of plasmids of aneB-xw55, aneB-S596A-xw55 or aneB-C-xw55, aneE-xw06 for purification of AneB and AneE from S. cerevisiae 25
2.4.4 Construction of plasmids of aneB-A-xw55, aneB-T-xw55, aneB-C-xw55, and aneB-AT-xw55 for biotrasformation of S. cerevisiae 25
2.4.5 Construction of plasmids for biotrasformation of S. cerevisiae expressing mutant aneB 26
2.4.6 Construction of plasmids of AneC-pAdeA, aneF-pPTRI, AneC-aneF-pAdeA, AneD-pTAex3, and AneG-pPTRI for Aspergillus oryzae transformation 27
2.4.7 Construction of plasmids of aneB, aneB-A domain, aneB-T domain, aneB-C domain, and aneB-S596A for purification of AneB from Escherichia coli 28
2.5 Heterologous reconstitution of aculenes upstream pathway by Saccharomyces cerevisiae 29
2.6 Heterologous reconstitution of aculenes upstream pathway by Aspergillus oryzae 30
2.7. Protein Purification from S. cerevisiae or Escherichia coli 32
2.7.1 Expression and Purification of AneB and AneE from S. cerevisiae 32
2.7.2 Expression and Purification of AneB from Escherichia coli 32
2.7.3 Expression and purification of His6 or His10-tagged protein 34
2.7.4 Expression and Purification of AneB from E. coli by anti-FLAG M2 resin 34
2.8 Biotransformation of S. cerevisiae expressing aneB 35
2.8.1 Biotrasformation of S. cerevisiae expressing A domain, T domain, C domain, or A-T di-domain of aneB 35
2.8.2 Biotransformation of S. cerevisiae expressing mutant aneB 35
2.8.3 Biotransformation of S. cerevisiae expressing aneBE 36
2.9 In vitro assay of AneB and AneE 37
2.10 Chemical complementation in Aspergillus aculeatus 37
2.11.1 Isolation and purification of aculene D (4), asperaculane G (13) from Aspergillus oryzae 38
2.11.2 Isolation and purification of asperaculane H (14) from S. cerevisiae 40
2.11.3 Isolation and purification of secalonic acid D (15) and secalonic acid F (16) from A. aculeatus 42
3. Result and Discussion 43
3.1.1 The demethylation process to form norsesquiterpene 43
3.1.2 Heterologous expression of upstream pathway of aculenes in S. cerevisiae 45
3.1.3 Reconstitution of aculene biosynthetic pathway in Aspergillus oryzae 48
3.1.4 Isolation and purification of asperaculane G (13) from Aspergillus oryzae expressing aneCDFG 52
3.1.5 Chemical complementation of asperaculane G (13) in A. aculeatus mutants 55
3.2 Isolation and purification of asperaculnae H (14) from S. cerevisiae 57
3.3 The expand aculene biosynthetic pathway 58
3.4 Bioinformatic analysis of the domains and catalytic motifs of AneB 61
3.4.1 Purification of the truncated and mutanted AneB proteins 63
3.4.2 Biotransformation of S. cerevisiae expressing truncated aneB supplemented by aculene D 66
3.4.3 Biotransformation of S. cerevisiae expressing mutanted aneB supplemented by aculene D 68
3.5.1 The role of AneE in the aculene biosynthetic pathway 70
3.5.2 Biotransformation of S. cerevisiae expressing aneB and aneE 71
3.5.3 In vitro assay of AneB and AneE 73
3.6 The catalytic mechanism of the terpene-amino acid formation 75
3.7 AneE hydrolase may participate in other secondary metabolite biosynthesis 77
3.7.1 Isolation and purification of secalonic acid D (15) from ∆aneD mutant of A. aucleatus 77
3.7.2 Isolation and purification of secalonic acid F (16) from ∆aneD mutant of A. aucleatus 79
3.7.3 The role of AneA and AneE in the secalonic acid biosynthesis 82
4. Conclusion 86
5. Reference 87
6. Appendix 91
dc.language.isoen
dc.subject非核糖體肽合成酶zh_TW
dc.subject細胞色素 P450zh_TW
dc.subject去甲基化zh_TW
dc.subject萜烯胺基酸zh_TW
dc.subject非核糖體肽合成酶zh_TW
dc.subject水解酶zh_TW
dc.subject水解酶zh_TW
dc.subject細胞色素 P450zh_TW
dc.subject去甲基化zh_TW
dc.subject萜烯胺基酸zh_TW
dc.subjectTerpene-amino acid hybriden
dc.subjectdemethylationen
dc.subjecthydrolaseen
dc.subjectnon-ribosomal peptide synthetaseen
dc.subjectcytochrome P450en
dc.title解析棘孢素生物合成途徑中形成萜烯胺基酸之酶工具zh_TW
dc.titleCharacterization of the Enzymatic Machineries for the Formation of Terpene-Amino acid Hybrid Compounds in Aculenes Biosynthesisen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳世雄(Shih-Hsiung Wu),林俊宏(Chun-Hung Lin),李宗璘(Tsung-Lin Li)
dc.subject.keyword萜烯胺基酸,去甲基化,細胞色素 P450,水解酶,非核糖體肽合成酶,zh_TW
dc.subject.keywordTerpene-amino acid hybrid,demethylation,cytochrome P450,hydrolase,non-ribosomal peptide synthetase,en
dc.relation.page127
dc.identifier.doi10.6342/NTU202003636
dc.rights.note有償授權
dc.date.accepted2020-08-18
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
U0001-1608202023343700.pdf
  未授權公開取用
8.29 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved