請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69038完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇(Hung-Yu Wei) | |
| dc.contributor.author | Zhan-Lun Chang | en |
| dc.contributor.author | 張綻綸 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:48:30Z | - |
| dc.date.available | 2025-08-17 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | [1] Yu-Jen Ku, Dian-Yu Lin, Chia-Fu Lee, Ping-Jung Hsieh, Hung-Yu Wei, Chun-Ting Chou, and Ai-Chun Pang. 5g radio access network design with the fog paradigm: Confluence of communications and computing. IEEE Communications Magazine, 55(4):46–52, 2017. [2] Marco V Barbera, Sokol Kosta, Alessandro Mei, and Julinda Stefa. To offload or not to offload? the bandwidth and energy costs of mobile cloud computing. In 2013 Proceedings Ieee Infocom, pages 1285–1293. IEEE, 2013. [3] Qiang Fan and Nirwan Ansari. Application aware workload allocation for edge computing-based iot. IEEE Internet of Things Journal, 5(3):2146–2153, 2018. [4] Xudong Niu, Sujie Shao, Chen Xin, Jun Zhou, Shaoyong Guo, Xingyu Chen, and Feng Qi. Workload allocation mechanism for minimum service delay in edge computing-based power internet of things. IEEE Access, 7:83771–83784, 2019. [5] Xiang Sun and Nirwan Ansari. Latency aware workload offloading in the cloudlet network. IEEE Communications Letters, 21(7):1481–1484, 2017. [6] Mian Guo, Lei Li, and Quansheng Guan. Energy-efficient and delay-guaranteed workload allocation in iot-edge-cloud computing systems. IEEE Access, 7:78685–78697, 2019. [7] Ruilong Deng, Rongxing Lu, Chengzhe Lai, Tom H Luan, and Hao Liang. Optimal workload allocation in fog-cloud computing toward balanced delay and power consumption. IEEE internet of things journal, 3(6):1171–1181, 2016. [8] Yiqin Deng, Zhigang Chen, Deyu Zhang, and Ming Zhao. Workload scheduling toward worst-case delay and optimal utility for single-hop fog-iot architecture. IET Communications, 12(17):2164–2173, 2018. [9] Mengyu Liu and Yuan Liu. Price-based distributed offloading for mobile-edge computing with computation capacity constraints. IEEE Wireless Communications Letters, 7(3):420–423, 2017. [10] Seong-Hwan Kim, Sangdon Park, Min Chen, and Chan-Hyun Youn. An optimal pricing scheme for the energy-efficient mobile edge computation offloading with ofdma. IEEE Communications Letters, 22(9):1922–1925, 2018. [11] Tianchu Zhao, Sheng Zhou, Xueying Guo, Yun Zhao, and Zhisheng Niu. Pricing policy and computational resource provisioning for delay-aware mobile edge computing. In 2016 IEEE/CIC International Conference on Communications in China (ICCC), pages 1–6. IEEE, 2016. [12] Beomhan Baek, Joohyung Lee, Yuyang Peng, and Sangdon Park. Three dynamic pricing schemes for resource allocation of edge computing for iot environment. IEEE Internet of Things Journal, 7(5):4292–4303, 2020. [13] Jiadi Liu, Songtao Guo, Kai Liu, and Liang Feng. Resource provision and allocation based on microeconomic theory in mobile edge computing. IEEE Transactions on Services Computing, 2020. [14] Di Han, Wei Chen, and Yuguang Fang. A dynamic pricing strategy for vehicle assisted mobile edge computing systems. IEEE Wireless Communications Letters, 8(2):420–423, 2018. [15] Marie Siew, Desmond Wu Han Cai, Lingxiang Li, and Tony QS Quek. Dynamic pricing for resource-quota sharing in multi-access edge computing. IEEE Transactions on Network Science and Engineering, 2020. [16] Duong Tung Nguyen, Long Bao Le, and Vijay Bhargava. Price-based resource allocation for edge computing: A market equilibrium approach. IEEE Transactions on Cloud Computing, 2018. [17] Lingxiang Li, Marie Siew, Tony QS Quek, Ju Ren, Zhi Chen, and Yaoxue Zhang. Learning-based priority pricing for job offloading in mobile edge computing. arXiv preprint arXiv:1905.07749, 2019. [18] Tian Zhang. Data offloading in mobile edge computing: A coalition and pricing based approach. IEEE Access, 6:2760–2767, 2017. [19] Xiang Sun and Nirwan Ansari. Primal: Profit maximization avatar placement for mobile edge computing. In 2016 IEEE International Conference on Communications (ICC), pages 1–6. IEEE, 2016. [20] Quyuan Wang, Songtao Guo, Jiadi Liu, Chengsheng Pan, and Li Yang. Profit maximization incentive mechanism for resource providers in mobile edge computing. IEEE Transactions on Services Computing, 2019. [21] Abbas Kiani and Nirwan Ansari. Toward hierarchical mobile edge computing: An auction-based profit maximization approach. IEEE Internet of Things Journal, 4(6):2082–2091, 2017. [22] Mingjin Gao, Rujing Shen, Jun Li, Shihao Yan, Yonghui Li, Jinglin Shi, Zhu Han, and Li Zhuo. Computation offloading with instantaneous load billing for mobile edge computing. IEEE Transactions on Services Computing, 2020. [23] Jianchao Zheng, Yueming Cai, Yuan Wu, and Xuemin Shen. Dynamic computation offloading for mobile cloud computing: A stochastic game-theoretic approach. IEEE Transactions on Mobile Computing, 18(4):771–786, 2018. [24] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5):2795–2808, 2015. [25] Hamed Shah-Mansouri and Vincent WS Wong. Hierarchical fog-cloud computing for iot systems: A computation offloading game. IEEE Internet of Things Journal, 5(4):3246–3257, 2018. [26] Binwei Wu, Jie Zeng, Lu Ge, Xin Su, and Youxi Tang. Energy-latency aware offloading for hierarchical mobile edge computing. IEEE Access, 7:121982–121997, 2019. [27] Valeria Cardellini, Vittoria De Nitto Personé, Valerio Di Valerio, Francisco Facchinei, Vincenzo Grassi, Francesco Lo Presti, and Veronica Piccialli. A game-theoretic approach to computation offloading in mobile cloud computing. Mathematical Programming, 157(2):421–449, 2016. [28] Yang Liu, Changqiao Xu, Yufeng Zhan, Zhixin Liu, Jianfeng Guan, and Hongke Zhang. Incentive mechanism for computation offloading using edge computing: A stackelberg game approach. Computer Networks, 129:399–409, 2017. [29] Ying Wang, Sachula Meng, Yongce Chen, Ruijin Sun, Xinshui Wang, and Kai Sun. Multi-leader multi-follower stackelberg game based dynamic resource allocation for mobile cloud computing environment. Wireless Personal Communications, 93(2):461–480, 2017. [30] Sergio Barbarossa, Stefania Sardellitti, and Paolo Di Lorenzo. Joint allocation of computation and communication resources in multiuser mobile cloud computing. In 2013 IEEE 14th workshop on signal processing advances in wireless communications (SPAWC), pages 26–30. IEEE, 2013. [31] Dong Huang, Ping Wang, and Dusit Niyato. A dynamic offloading algorithm for mobile computing. IEEE Transactions on Wireless Communications, 11(6):1991–1995, 2012. [32] Yonggang Wen, Weiwen Zhang, and Haiyun Luo. Energy-optimal mobile application execution: Taming resource-poor mobile devices with cloud clones. In 2012 Proceedings Ieee Infocom, pages 2716–2720. IEEE, 2012. [33] Huijun Wu, Dijiang Huang, and Samia Bouzefrane. Making offloading decisions resistant to network unavailability for mobile cloud collaboration. In 9th IEEE International Conference on Collaborative Computing: Networking, Applications and Worksharing, pages 168–177. IEEE, 2013. [34] Xu Chen. Decentralized computation offloading game for mobile cloud computing. IEEE Transactions on Parallel and Distributed Systems, 26(4):974–983, 2014. [35] George Iosifidis, Lin Gao, Jianwei Huang, and Leandros Tassiulas. An iterative double auction for mobile data offloading. In 2013 11th International Symposium and Workshops on Modeling and Optimization in Mobile, Ad Hoc and Wireless Networks (WiOpt), pages 154–161. IEEE, 2013. [36] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); LTE physical layer; General description. Technical Specification (TS) 36.201, 3rd Generation Partnership Project (3GPP). Version 15.3.0. [37] Andrea Goldsmith. Wireless Communications. Cambridge University Press, USA, 2005. [38] Yuyi Mao, Changsheng You, Jun Zhang, Kaibin Huang, and Khaled B Letaief. A survey on mobile edge computing: The communication perspective. IEEE Communications Surveys Tutorials, 19(4):2322–2358, 2017. [39] Liqing Liu, Zheng Chang, Xijuan Guo, Shiwen Mao, and Tapani Ristaniemi. Multiobjective optimization for computation offloading in fog computing. IEEE Internet of Things Journal, 5(1):283–294, 2017. [40] Yanzhi Wang, Xue Lin, and Massoud Pedram. A nested two stage game-based optimization framework in mobile cloud computing system. In 2013 IEEE Seventh International Symposium on Service-Oriented System Engineering, pages 494–502. IEEE, 2013. [41] Zhiyi Zhou, Dongning Guo, and Michael L Honig. Licensed and unlicensed spectrum allocation in heterogeneous networks. IEEE Transactions on Communications, 65(4):1815–1827, 2017. [42] Mike Jia, Jiannong Cao, and Weifa Liang. Optimal cloudlet placement and user to cloudlet allocation in wireless metropolitan area networks. IEEE Transactions on Cloud Computing, 5(4):725–737, 2015. [43] Yuxuan Sun, Sheng Zhou, and Jie Xu. Emm: Energy-aware mobility management for mobile edge computing in ultra dense networks. IEEE Journal on Selected Areas in Communications, 35(11):2637–2646, 2017. [44] Min Chen and Yixue Hao. Task offloading for mobile edge computing in software defined ultra-dense network. IEEE Journal on Selected Areas in Communications, 36(3):587–597, 2018. [45] Xu Chen, Lei Jiao, Wenzhong Li, and Xiaoming Fu. Efficient multi-user computation offloading for mobile-edge cloud computing. IEEE/ACM Transactions on Networking, 24(5):2795–2808, 2016. [46] Changsheng You, Kaibin Huang, Hyukjin Chae, and Byoung-Hoon Kim. Energy-efficient resource allocation for mobile-edge computation offloading. IEEE Transactions on Wireless Communications, 16(3):1397–1411, 2016. [47] Hau Leung Lee and Morris A Cohen. A note on the convexity of performance measures of m/m/c queueing systems. Journal of Applied Probability, 20(4):920–923, 1983. [48] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) radio transmission and reception. Technical Specification (TS) 36.101, 3rd Generation Partnership Project (3GPP), 4 2020. Version 16.5.0. [49] Xinchen Lyu, Hui Tian, Cigdem Sengul, and Ping Zhang. Multiuser joint task offloading and resource optimization in proximate clouds. IEEE Transactions on Vehicular Technology, 66(4):3435–3447, 2016. [50] Tuyen X Tran and Dario Pompili. Joint task offloading and resource allocation for multi-server mobile-edge computing networks. IEEE Transactions on Vehicular Technology, 68(1):856–868, 2018. [51] 3GPP. Evolved Universal Terrestrial Radio Access (E-UTRA); Further advancements for E-UTRA physical layer aspects. Technical Report (TR) 36.814, 3rd Generation Partnership Project (3GPP), 3 2017. Version 9.2.0. [52] Chang Shu, Zhiwei Zhao, Yunpeng Han, Geyong Min, and Hancong Duan. Multiuser offloading for edge computing networks: A dependency-aware and latency-optimal approach. IEEE Internet of Things Journal, 7(3):1678–1689, 2019. [53] Xianling Meng, Wei Wang, Yitu Wang, Vincent KN Lau, and Zhaoyang Zhang. Closed-form delay-optimal computation offloading in mobile edge computing systems. IEEE Transactions on Wireless Communications, 18(10):4653–4667, 2019. [54] Qiang Fan and Nirwan Ansari. Workload allocation in hierarchical cloudlet networks. IEEE Communications Letters, 22(4):820–823, 2018 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/69038 | - |
| dc.description.abstract | 行動邊緣計算是一個在網路邊緣藉由計算能力來降低萬物聯網裝置計算負擔的極具發展潛力典範。在對於資源相對匱乏的邊緣節點有迫切資源需求的情況下,由於大量任務佔據邊緣節點造成的排隊延遲不僅對於滿足萬物聯網裝置的使用者體驗造成巨大的阻礙,也對於邊緣節點服務提供商的利益產生影響。然而,由於不同邊緣節點與雲端的服務提供商不一定一樣,由資源相對豐富的邊緣節點提供的服務必須要有經濟上的補償來彌補因為增加的計算量所造成的能源費用與初期建設的投資成本。 因此,一個在多層邊緣計算架構下具有固定定價與動態定價的混合定價工作分配機制不但是重要而且是迫切需要的。天然存在於第一層邊緣節點與第二層邊緣節點的階層關係與相互依賴性可以被斯塔克爾伯格賽局充分掌握。在此種賽局中,第二層邊緣節點決定服務價格與可以保證的計算遲延來最大化利益,而第一層邊緣節點在給定第二層邊緣節點的行為之下透過決定分配在的第二層邊緣節點、雲端與自己本身的工作量來最大化自己的利益。奠基於最佳的工作量分配,一個誠實的允入控制機制可以設計給第一層邊緣節點去決定多少與哪些萬物聯網裝置在不違反端到端延遲要求的前提下可以被服務。斯塔克爾伯格賽局均衡的存在與唯一性可以被證明。 模擬結果確認了提出方法的有效性,而且也剖析了幾個有趣的見解。 | zh_TW |
| dc.description.abstract | Mobile Edge Computing (MEC) is a promising paradigm to ease the computation burden of Internet-of-Things (IoT) devices by leveraging computing capabilities at the network edge. With the yearning needs for resource provision from the comparatively resource-limited edge nodes, the queueing delay owing to the massive amount of tasks at the edge node not only poses a colossal impediment to achieving satisfactory quality of experience (QoE) for the IoT device but also to the benefits of the edge nodes as a result of escalating energy expenditure. However, due to the fact that the service provider of edge nodes and the cloud may not be the same, the computing service of computationally competent entities should not be available without economic compensation for the incurred energy expenditure and the capital investment. Therefore, the mixed pricing workload allocation mechanism where fixed and dynamic pricing schemes are both inspected in the multi-layer edge computing structure is both crucial and much-needed. The inherent hierarchy and interdependence between the second-layer edge node (SLEN) and first-layer edge nodes (FLENs) are captured by Stackelberg game in which the SLEN determines the service price and the guaranteed processing delay it can provide to maximize its profit and given the action of the SLEN, FLENs prudently select the workload distribution between the SLEN, the cloud and itself to maximize its profit as well. Grounded on the optimal workload allocation, a truthful admission control mechanism is designed for FLENs to decide how many and which IoT devices are served under the requirement of meeting E2E latency constraints. The uniqueness and the existence of the Stackelberg equilibrium are proved. Simulation results confirm the effectiveness of our scheme and several insights are illustrated. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:48:30Z (GMT). No. of bitstreams: 1 U0001-1708202000075000.pdf: 843695 bytes, checksum: f6baa3ed51c9ee722671b9bc32b72ee1 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 摘要 iii Abstract iv 1 Introduction 1 2 Related Works 4 2.1 Workload Allocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2.2 Pricing and Profit Maximization . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Game Theoretic Computation Offloading . . . . . . . . . . . . . . . . . 6 3 System Model 8 3.1 IoT Devices Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3.2 First-layer Edge Nodes Model . . . . . . . . . . . . . . . . . . . . . . . 10 3.3 Second-layer Edge Node Model . . . . . . . . . . . . . . . . . . . . . . 12 3.4 The Cloud Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 4 Game Formulation 14 4.1 Players . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 4.2 Common Knowledge of The Game . . . . . . . . . . . . . . . . . . . . . 14 4.3 The Utility, The Action and The Information of The SLEN . . . . . . . . 15 4.4 The Utility, The Action and The Information of FLENs . . . . . . . . . . 15 4.5 The Utility, The Action and The Information of IoT Devices . . . . . . . 16 5 Game Analysis 18 5.1 Utility Optimization of FLENs . . . . . . . . . . . . . . . . . . . . . . . 19 5.2Utility Optimization of The SLEN . . . . . . . . . . . . . . . . . . . . . 25 5.3 Stackelberg Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 29 6 Simulation 31 6.1 Truthfulness in The E2E Latency Requirement . . . . . . . . . . . . . . 33 6.2 Actions of the SLEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 6.3 The Serving Ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 6.4 Revenue Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 6.5 Comparison with the fixed SLEN price scheme . . . . . . . . . . . . . . 41 7 Conclusion 42 Bibliography 43 | |
| dc.language.iso | en | |
| dc.subject | 定價 | zh_TW |
| dc.subject | 多層次邊緣計算 | zh_TW |
| dc.subject | 端到端延遲保證 | zh_TW |
| dc.subject | 斯塔克爾伯格賽局 | zh_TW |
| dc.subject | Multi-Layer Edge Computing | en |
| dc.subject | Stackelberg Game | en |
| dc.subject | End-To-End Latency Guarantee | en |
| dc.subject | Pricing | en |
| dc.title | 在多層邊緣計算架構中混合定價與延遲保證的工作分配機制:斯塔克爾伯格賽局方法 | zh_TW |
| dc.title | Mixed Pricing and Latency-Guaranteed Workload Allocation Mechanism in Multi-Layer Edge Computing: A Stackelberg Game Approach | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林澤 (Che Lin),柯拉飛(Rafael Kaliski),王志宇(Chih-Yu Wang),林忠緯(Chung-Wei Lin) | |
| dc.subject.keyword | 多層次邊緣計算,端到端延遲保證,斯塔克爾伯格賽局,定價, | zh_TW |
| dc.subject.keyword | Multi-Layer Edge Computing,End-To-End Latency Guarantee,Stackelberg Game,Pricing, | en |
| dc.relation.page | 49 | |
| dc.identifier.doi | 10.6342/NTU202003642 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202000075000.pdf 未授權公開取用 | 823.92 kB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
