請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68999完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭榮和 | |
| dc.contributor.author | Chien-Lin Chen | en |
| dc.contributor.author | 陳建霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:46:21Z | - |
| dc.date.available | 2022-08-28 | |
| dc.date.copyright | 2017-08-28 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-15 | |
| dc.identifier.citation | [1] ICCT, “Global Comparison of Passenger Car and Light-commercial Vehicle Fuel Economy/GHG Emissions Standards,” 2014.
[2] 最佳化軟體OPTIMUS, Available: http://www.cybernet-ap.com.tw/zh.php?m=363&t=67 [3] D. Hanselman, “Brushless Permanent Magnet Motor Design,” U.S.A:Cranston, 2003. [4] 楊傑, “應用電磁與熱傳模擬於電動車感應馬達改良設計,” 國立臺灣大學論文, 2016. [5] W. Tong, Mechanical Design of Electric Motors, CRC Press, 2014. [6] R. Saidur, “A review on electrical motors energy use and energy savings,” Renewable and Sustainable Energy Reviews, vol. 14, no. 3, pp. 877-898, 2010. [7] Z. Q. Zhu and D. Howe, “Electrical Machines and Drives for Electric, Hybrid, and Fuel Cell Vehicles,” Proc. IEEE, vol. 95, no. 4, pp.746-765, 2007. [8] M. Zeraoulia, M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: A comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, 2006. [9] T. A. Baudendistel and M. L. Turner, “A Novel Inverse-Magnetostrictive Force Sensor,” IEEE Sensors Journal, vol. 7, no. 2, pp. 245-250, 2007. [10] K. Y. Jeong, C. H. Park and C. S. Koh, “Comparison of iron loss at different manufacturing process of actual stator core,” International Conference on Electrical Machines and Systems, Busan, 2013. [11] M. Yabumoto, C. Kaido, T. Wakisaka, T. Kubota and N. Suzuki, “Electrical steel sheet for traction motors of hybrid/electric vehicles,” Nippon steel technical report, no.87, 2003 [12] 張金鋒, 陳盛基, “電動車感應馬達多目標函數參數優化設計,” 機械月刊, 447期,pp. 42-55, 2012. [13] 藍榮志, 梁志豪, 蔡明釗, 黃友伯, 洪聯馨, “高效能高功率電動車用感應馬達研發,” 機械月刊, 448期, pp. 70-80, 2012. [14] S. Jurkovic, J. C. Morgante, K. M. Rahman and P. J. Savagian, “Electric machine design and selection for General Motors e-Assist Light Electrification Technology,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 906-913, 2012. [15] K. W. Jeon, T. K. Chung and S. C. Hahn, “NEMA class a slot shape optimization of induction motor for electric vehicle using response surface method,” International Conference Electrical Machines and Systems, Beijing, 2011. [16] K. Asghar, “Analysis of Switched Reluctance Motor Drives for Reduced Torque Ripple Using FPGA Based Simulation Technique,”American Journal of Information Sciences, 6, pp.1-11, 2013 [17] I. Boldea and S. A. Nasar, “The Induction Machines Design Handbook,” CRC Press, 2009. [18] Y. Li, S. Li and B. Sarlioglu, “Analysis of pulsating torque in squirrel cage induction machines by investigating stator slot and rotor bar dimensions for traction applications,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 246-253, 2013. [19] J. Kwack , S. Min and J. P. Hong, “Optimal stator design of interior permanent magnet motor to reduce torque ripple using level set method,” IEEE Trans. Magn., vol. 46, no. 6, pp.2108 -2111, 2010. [20] G. Kron, “Induction motor slot combinations: Rules to predetermine crawling vibration, noise and hooks in the speed-torque curve.” IEEE Trans., vol. 50, 1931. [21] A. Boglietti, R. Bojoi, A. Cavagnino, P. Guglielmi and A. Miotto, “Analysis and modeling of rotor slot enclosure effects in high speed induction motors,” Proc. IEEE Energy Conversion Congress and Exposition, pp. 154-161, 2011. [22] K. Yamazaki, Y. Haruishi and T. Ara, “Calculation of negative torque caused by slot ripples of induction motors,” IEEE Trans. Magn., vol. 40, no. 2, pp. 778-781, 2004. [23] W. Q. Chu and Z. Q. Zhu, “Investigation of Torque Ripples in Permanent Magnet Synchronous Machines With Skewing,” IEEE Trans. Magn., vol.49, No.3, pp.1211-1220, 2013. [24] C. H. Rok, J. T. Won , I. D. Yeong, S. K. Jae, and S. Y. Ju, “Design of outer rotor type induction motor having high power density for in-wheel system,” In Electrical Machines and Systems (ICEMS), 2012 15th International Conference on, pp. 1-4, 2012. [25] M. Laba,“Traction Motor Field Experience and Cost Opportunities,”SAE 2012 Powertrain Electric Motors Symposium, Detroit, MI, 2012. [26] C. Wei, “Multi-set rectangular copper hairpin windings for electric machines,” U.S. Patent No. 7034428, 2005. [27] D. S. Jung, Y. H. Kim, U. H. Lee and H. D. Lee, “Optimum Design of the Electric Vehicle Traction Motor using the Hairpin Winding,” IEEE, 2012 [28] 郭建宏, “應用於電動車與複合動力車之高效率感應電動機設計研究,” 國立臺灣大學論文, 2015. [29] H. M. Hämäläinen, J. J. Pyrhönen and J. Puranen, “Minimizing Skin Effect In Random Wound High Speed Machine Stator,” IEEE,2009 [30] J. Sagarduy and A. J. Moses, “Copper Winding Losses in Matrix Converter-Fed Induction Motors: A Study Based on Skin Effect and Conductor Heating,” IEEE, 2008 [31] 李明勇, 陳敏, 翟建勇, 錢照明, “高頻電感線圈損耗的分析和計算,” 浙江大學, 2007. [32] 國際電工協會的IEC-60287, Available: www.bullwill.com.tw/controller/download.php?ID=232&type=download [33] D. H. Park, S. H. Seo, Y. J. Kim and S.Y. Jung, “Comparison of loss and thermal analysisaccording to square conductor division considering skin effect,” IEEE, 2014 [34] S. H. Rhyu, Y. K. Kim, J. J. Lee, J. M. Seo and I. S. Jung, “Design of the End-Coil Structure with Square Conductor for the Automobile ISG,” KINTEX, Korea, 2015. [35] T. Ishigami, Y. Tanaka and H. Homma, “Motor Stator With Thick Rectangular Wire Lap Windings for HEVs,” IEEE Transactions On Industry Applications, vol.51, NO.4, 2015. [36] 許溢適編譯, 實用電動機設計手冊, 文笙書局, 1996. [37] 湯蘊璆, 電機學, 機械工業, 2006 [38] 余兆東, “應用非凌駕排序基因演算法於有效─無效功率調度最佳化,” 國立臺北科技大學論文, 2014. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68999 | - |
| dc.description.abstract | 本研究以改良電動車感應馬達的效率、力矩漣波與功率密度為研究主軸。藉由Hairpin繞組設計增加佔槽率,進而減少馬達損失,並透過參數最佳化方法,達到性能提升之目的。
首先,對原型馬達進行實驗測試與模擬分析,藉由結果得到可以改良的目標。接下來,應用磁路分析軟體進行各參數探討,其中包含了解Hairpin設計對馬達造成的磁路影響,如渦流效應、磁飽和等,以及為了使Hairpin設計有更好的結果,針對定子槽型、定轉子槽數、氣隙大小等參數作改良影響的探討。之後導入最佳化軟體,並建立一套優化流程,對各參數進行最佳化分析,在符合限制條件下,得到最佳的參數匹配,達到磁路改良之目的。 | zh_TW |
| dc.description.abstract | The goal of this research is to improve the efficiency , torque ripple , and power density of induction motor for electric vehicle. By the design of Hairpin winding which is benefit for increasing slot fill factor and reducing the loss and through the parameter optimization method, to achieve the purpose of performance improvement.
First, experimenting and analyzing the prototype to discover improvable targets. Next, applying electromagnetic field simulation software to access all the factors including eddy effect and magnetic saturation, the magnetic impact from Hairpin. Moreover, reforming factors like slot shape of stator , slot number of stator and rotor ,and air gap for better results. Then, applying optimization software to find the best condition that fulfills the limitations and expectations for the purpose of reforming magnetic circuit. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:46:21Z (GMT). No. of bitstreams: 1 ntu-106-R04522528-1.pdf: 7538579 bytes, checksum: ab42afc8c40f3a881140309c5f7c5c4e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要 I
ABSTRACT II 目錄 III 圖目錄 V 表目錄 VIII 符號說明 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 論文架構 3 1.4 研究工具介紹 4 1.4.1 RMxprt 4 1.4.2 Maxwell 2D/3D 4 1.4.3 ANSYS Workbench 5 1.4.4 OPTIMUS [2] 5 第二章 理論背景與文獻回顧 6 2.1 感應馬達理論背景 6 2.1.1 磁場介紹[4] 7 2.1.2 動力特性[4] 8 2.1.3 馬達損失 11 2.2 文獻回顧 15 2.2.1 馬達趨勢 15 2.2.2 馬達性能目標 16 2.2.3 Hairpin 繞組 21 2.2.4 小結 27 第三章 原型馬達分析與驗證 28 3.1 分析與驗證流程及方法 28 3.2 RMXPRT特性分析 29 3.2.1 模型建立 29 3.2.2 輸出性能分析 32 3.2.3 參數分析 34 3.3 MAXWELL 2D性能分析 36 3.3.1 模型建立 36 3.3.2 2D磁路分析 40 3.4 實驗測試驗證 42 3.4.1 測試方法與測試設備介紹 42 3.4.2 測試項目及測試結果 44 3.4.3 模擬與實驗結果驗證 48 3.5 小結 50 第四章 馬達各參數磁路分析 51 4.1 HAIRPIN繞組之RMXPRT分析 51 4.1.1 模型建立 52 4.1.2 性能分析 52 4.1.3 功率密度之改良參數探討 55 4.1.4 功率密度改良分析 60 4.2 HAIRPIN設計之MAXWELL 2D分析 63 4.2.1 模型建立 63 4.2.2 效率之改良參數分析 65 4.2.3 力矩漣波之改良參數分析 71 4.3 HAIRPIN設計之MAXWELL 3D分析 73 4.3.1 繞線端部之改良參數分析 75 4.3.2 探討繞線方式 77 4.4 小結 79 第五章 馬達參數最佳化 80 5.1 模型建立與設定 80 5.1.1 軟體連結 81 5.2 最佳化方法與演算法 82 5.2.1 最佳化方法 82 5.2.2 演算法 88 5.3 最佳化分析 89 5.3.1 效率與力矩漣波的多目標最佳化 89 5.3.2 功率密度最佳化 95 5.4 小結 98 第六章:結論與未來方向 99 6.1 研究成果 99 6.2 未來趨勢與改進方向 100 參考文獻 101 | |
| dc.language.iso | zh-TW | |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | 感應馬達 | zh_TW |
| dc.subject | 電動車 | zh_TW |
| dc.subject | Hairpin | zh_TW |
| dc.subject | 磁路 | zh_TW |
| dc.subject | 渦流效應 | zh_TW |
| dc.subject | magnetic circuit | en |
| dc.subject | optimization | en |
| dc.subject | eddy effect | en |
| dc.subject | induction motor | en |
| dc.subject | electric vehicle | en |
| dc.subject | Hairpin | en |
| dc.title | Hairpin繞組之電動車感應馬達改良設計 | zh_TW |
| dc.title | An Improved Design of Induction Motor for EV with Hairpin Winding | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂百修,楊士進 | |
| dc.subject.keyword | 感應馬達,電動車,Hairpin,磁路,渦流效應,最佳化, | zh_TW |
| dc.subject.keyword | induction motor,electric vehicle,Hairpin,magnetic circuit,eddy effect,optimization, | en |
| dc.relation.page | 103 | |
| dc.identifier.doi | 10.6342/NTU201703459 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 7.36 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
