請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68939完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 歐展言(Chan-Yen Ou) | |
| dc.contributor.author | Ying-Chun Chen | en |
| dc.contributor.author | 陳映君 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:43:11Z | - |
| dc.date.available | 2020-09-08 | |
| dc.date.copyright | 2017-09-08 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-16 | |
| dc.identifier.citation | Arimura, N., Hattori, A., Kimura, T., Nakamuta, S., Funahashi, Y., Hirotsune, S., ... Kaibuchi, K. CRMP‐2 directly binds to cytoplasmic dynein and interferes with its activity. Journal of neurochemistry 2 380-390 (2009) Bosco, D. A., Morfini, G., Karabacak, N. M., Song, Y., Gros-Louis, F., Pasinelli, P., ... Frosch, M. P. Wild-type and mutant SOD1 share an aberrant conformation and a common pathogenic pathway in ALS. Nature neuroscience 11, 1396-1403 (2010) Campbell, P. D., Shen, K., Sapio, M. R., Glenn, T. D., Talbot, W. S., Marlow, F. L. Unique function of Kinesin Kif5A in localization of mitochondria in axons. Journal of Neuroscience 44, 14717-14732 (2014) Engelender, S., Sharp, A. H., Colomer, V., Tokito, M. K., Lanahan, A., Worley, P., ... Ross, C. A. Huntingtin-associated Protein 1 (HAP1) Interacts with the p150 Glued Bubunit of Dynactin. Human molecular genetics 13, 2205-2212 (1997) Fukata, Y., Itoh, T. J., Kimura, T., Ménager, C., Nishimura, T., Shiromizu, T., ... Kaibuchi, K. CRMP-2 binds to tubulin heterodimers to promote microtubule assembly. Nature cell biology 8, 583-591 (2002) Hall, D. H., Hedgecock, E. M. Kinesin-related gene unc-104 is required for axonal transport of synaptic vesicles in C. elegans. Cell 5 837-847 (1991) Hall, D. H., Treinin, M. How does morphology relate to function in sensory arbors?. Trends in neurosciences 9 443-451 (2011) Harms, M. B., Ori-McKenney, K. M., Scoto, M., Tuck, E. P., Bell, S., Ma, D., ... Miller, L. J. Mutations in the tail domain of DYNC1H1 cause dominant spinal muscular atrophy. Neurology 22 1714-1720 (2012) Hurd, D. D., Saxton, W. M. Kinesin mutations cause motor neuron disease phenotypes by disrupting fast axonal transport in Drosophila. Genetics 3 1075-1085 (1996) Inagaki, N., Chihara, K., Arimura, N., Ménager, C., Kawano, Y., Matsuo, N., ... Kaibuchi, K. CRMP-2 induces axons in cultured hippocampal neurons. Nature neuroscience 8 781 (2001) Kimura Arimura Fukata, T., Nariko, Y., Watanabe, H., Iwamatsu, A., Kaibuchi, K. Tubulin and CRMP‐2 complex is transported via Kinesin‐1. Journal of neurochemistry 6 1371-1382 (2005) Levy, M., Faas, G. C., Saggau, P., Craigen, W. J., Sweatt, J. D. Mitochondrial regulation of synaptic plasticity in the hippocampus. Journal of Biological Chemistry 20 17727-17734 (2003) Li, W., Herman, R. K., Shaw, J. E. Analysis of the Caenorhabditis elegans axonal guidance and outgrowth gene unc-33. Genetics 3 675-689 (1992) Maday, S., Wallace, K. E., Holzbaur, E. L. Autophagosomes initiate distally and mature during transport toward the cell soma in primary neurons. Journal of Cell Biology 4 407-417 (2012) Maniar, T. A., Kaplan, M., Wang, G. J., Shen, K., Wei, L., Shaw, J. E., ... Bargmann, C. I. UNC-33 (CRMP) and ankyrin organize microtubules and localize kinesin to polarize axon-dendrite sorting. Nature neuroscience 1 48-56 (2012) McGuire, J. R., Rong, J., Li, S. H., Li, X. J. Interaction of Huntingtin-associated Protein-1 with Kinesin Light Chain IMPLICATIONS IN INTRACELLULAR TRAFFICKING IN NEURONS. Journal of Biological Chemistry 6 3552-3559 (2006) Moughamian, A. J., Holzbaur, E. L. Dynactin is required for transport initiation from the distal axon. Neuron 2 331-343 (2012) Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., Hirokawa, N. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 7 1209-1220 (1994) Ou, C. Y., Poon, V. Y., Maeder, C. I., Watanabe, S., Lehrman, E. K., Fu, A. K., ... Shen, K. Two cyclin-dependent kinase pathways are essential for polarized trafficking of presynaptic components. Cell 5 846-858 (2010) Pilling, A. D., Horiuchi, D., Lively, C. M., Saxton, W. M. Kinesin-1 and Dynein are the primary motors for fast transport of mitochondria in Drosophila motor axons. Molecular biology of the cell 4 2057-2068 (2006) Rawson, R. L., Yam, L., Weimer, R. M., Bend, E. G., Hartwieg, E., Horvitz, H. R., ... Jorgensen, E. M. Axons degenerate in the absence of mitochondria in C. elegans. Current Biology 7 760-765 (2014) Reid, E., Kloos, M., Ashley-Koch, A., Hughes, L., Bevan, S., Svenson, I. K., ... Rubinsztein, D. C. A kinesin heavy chain (KIF5A) mutation in hereditary spastic paraplegia (SPG10). The American Journal of Human Genetics 5 1189-1194 (2002) Russo, G. J., Louie, K., Wellington, A., Macleod, G. T., Hu, F., Panchumarthi, S., Zinsmaier, K. E. Drosophila Miro is required for both anterograde and retrograde axonal mitochondrial transport. Journal of Neuroscience 17 5443-5455 (2009) Sakamoto, R., Byrd, D. T., Brown, H. M., Hisamoto, N., Matsumoto, K., Jin, Y. The Caenorhabditis elegans UNC-14 RUN domain protein binds to the kinesin-1 and UNC-16 complex and regulates synaptic vesicle localization. Molecular biology of the cell 2 483-496 (2005) Schwarz, T. L. Mitochondrial trafficking in neurons. Cold Spring Harbor Perspectives in Biology 6 a011304 (2013) Stokin, G. B., Lillo, C., Falzone, T. L., Brusch, R. G., Rockenstein, E., Mount, S. L., ... Goldstein, L. S. Axonopathy and transport deficits early in the pathogenesis of Alzheimer's disease. Science 5713 1282-1288 (2005) Taylor, C. A., Yan, J., Howell, A. S., Dong, X., Shen, K. RAB-10 regulates dendritic branching by balancing dendritic transport. PLOS Genetics 12 e1005695 (2015) Tsuboi, D., Hikita, T., Qadota, H., Amano, M., Kaibuchi, K. Regulatory machinery of UNC‐33 Ce‐CRMP localization in neurites during neuronal development in Caenorhabditis elegans. Journal of neurochemistry 6 1629-1641 (2005) Zhao, C., Takita, J., Tanaka, Y., Setou, M., Nakagawa, T., Takeda, S., ... Saito, M. Charcot-Marie-Tooth disease type 2A caused by mutation in a microtubule motor KIF1Bβ. Cell 5 587-597 (2001) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68939 | - |
| dc.description.abstract | 神經元(neuron)分成兩個主要構造: 樹突(dendrite)與軸突(axon),粒線體(mitochondria)能夠提供神經元生長與傳導訊息所需的能量,並且可在微管(microtubule)上藉由動力蛋白(motor protein)運輸到突觸(synapse)或是受傷區域來提供能量。運輸粒線體的動力蛋白分為兩類: 往微管正極移動的驅動蛋白(kinesin)和往微管負極移動的動力蛋白(dynein)。先前的研究指出,如果粒線體在神經元運輸的過程受損,會導致許多神經退化性疾病,像是阿茲海默氏症,但是粒線體在神經元當中運輸的機制仍然不是很清楚。在我的研究當中,我觀察粒線體在線蟲PVD神經當中是如何分布的,並且將PVD神經分成樹突正極和負極區域、與軸突共三區,並且統計粒線體在神經分布的總量、在樹突與軸突分布的比例與在較長的負極樹突中分布的距離。我發現在一般情況下往正極移動的驅動蛋白在PVD神經除了會調控粒腺體送往軸突,也會調控粒線體送到負極的樹突區域,而往負極移動的動力蛋白則會調控粒線體送往PVD上最傾向負極的突觸區域。此外,我發現調控驅動蛋白運輸胞器的UNC-33蛋白對於調控粒線體運送到軸突扮演很重要的角色。我進一步的研究發現UNC-33蛋白主要是經由調控驅動蛋白-1(kinesin-1)和其他驅動蛋白來促進粒線體運送到軸突區域。我將UNC-33L蛋白表現在PVD神經後發現能夠回復失去UNC-33在神經造成型態與粒線體運輸的缺陷。最後,我進行了與粒線體運輸有關的基因檢測(forward genetic screening),並且發現了許多可能會和UNC-33一起調控粒線體運輸的基因。總結以上的結果,UNC-33蛋白會調控神經構造的形成並且調控驅動蛋白來促進粒線體運輸到軸突。 | zh_TW |
| dc.description.abstract | Nervous systems transmit signals in animal bodies that is mediated by neurons with two different compartments: the somatodendritic and the axonal compartment. In neurons, energy is supplied by mitochondria, which needs to be located at some places like synapses or injury loci where energy is demanded. It has been shown that impaired mitochondrial transport is associated to many neurodegenerative diseases. However, the mechanisms of proper transport and distribution of mitochondria in neurons remain unclear. Mitochondria are transported by microtubule (MT)-based motor proteins such as kinesin superfamily proteins (KIFs) and cytoplasmic dyneins. In my study, I used PVD neurons in C. elegans and studied mitochondrial distribution in three parts of PVDs: anterior MT minus-end-out dendrites, posterior plus-end-out dendrites, and axon. In order to understand how motors regulate mitochondrial transport, I quantified the amount of mitochondria in different neurites and analyzed their distribution on dendrites or the axon, as well as transport distance on the long minus-end dendrites. Surprisingly, I found that kinesin-1 is required not only for axonal mitochondrial transport but also mitochondrial distribution in MT minus-end-out dendrites, while dynein preferably mediates mitochondrial transport to the minus-end dendrites. After examining basic roles of motors, I observed that in kinesin-1 regulator unc-33 mutant, the axonal mitochondria were absent, suggesting the essential role of UNC-33 for axonal mitochondrial transport. Furthermore, I demonstrated that UNC-33 functions through kinesin motors in mitochondrial transport. Only expression of the UNC-33L isoform in PVD neuron could rescue neuronal morphogenesis and mitochondrial transport defects of unc-33 but not the other two isoforms (UNC-33M and UNC-33S). Finally, I performed a forward genetic screening, and found several candidates that might cooperate with UNC-33 to regulate mitochondrial transport. Together, my data suggest that UNC-33 plays important roles in neuronal morphogenesis and regulates mitochondrial transport through motor proteins. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:43:11Z (GMT). No. of bitstreams: 1 ntu-106-R04442026-1.pdf: 9237024 bytes, checksum: 69a7432dd479471aacf69036eae246c2 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要……………………………………………………………………………..…………………….. i ABSTRACT……………………………………………………………………….……………….....ii CONTENTS……………………………………………………………………………………….....iv I. INTRODUCTION……………………………………………………………………….…….......1 1.1 Microtubule-based mitochondrial transport supplies energy for neuronal growth and function.1 1.2 Motor protein components……………………...………………………………………………1 1.3Mitochondrial transport defect is associated with neurodegenerative diseases……….……….2 II. MATERIALS AND METHODS………………………………………………………………..5 2.1 Strains and genetics…………………..…………………………………………………………5 2.2 Cloning and constructs……………………………………………………………………....5 2.3 Combination of different genotype………………...…………………………………………..6 2.4 Worms lysis for genomic DNA…………………………………………………………………7 2.5 Imaging and quantification…………………………………...………………………..………7 2.6 Forward genetic screening….………………………………...………………………..………8 III. RESULTS……………………………….………………………………………………………9 3.1 Mitochondria distribution in C. elegans PVD neuron is regulated by motor proteins in PVD neurons…………………………………………………………………..………...……….....9 3.2 KIF5/UNC-116 regulates mitochondrial polarized distribution in different compartments…..10 3.3 KIF1/UNC-104 regulates mitochondrial transport out of the axon…………………….……..12 3.4 Dynein regulates mitochondrial transport toward minus-end dendrites………………………13 3.5 unc-116 and unc-104 regulate mitochondrial transport in different pathways…………….….14 3.6 unc-116 and dhc-1 antagonize each other in regulating mitochondrial transport……………..15 3.7 UNC-33 is essential to axonal mitochondrial transport……….........…………………………17 3.8 UNC-33 does not inhibit dynein to regulate axonal mitochondrial transport………………....19 3.9 UNC-33 functions through kinesin-1 and unknown plus-end motors to regulate mitochondrial transport.……………………………………………………………..………….....................20 3.10 UNC-33L rescues dendritic morphology and mitochondrial transport in PVD neuron...……22 3.11 The candidate #5-17-2 regulates mitochondrial transport and neuronal morphology……….23 IV. DISCUSSION…………………………………………………………………………………...26 4.1 KIF5/UNC-116 regulates mitochondrial polarized distribution on minus-end dendrites……..26 4.2 KIF1/UNC-104 regulates mitochondrial transport out of the axon……...................................27 4.3 Dynein regulates mitochondrial transport back to the cell body……........................................28 4.4 UNC-33L controls axonal growth and is critical to axonal mitochondrial transport…….........28 V. FIGURES………………………………………………………………………………………...30 Figure 1. Mitochondrial distribution is regulated by motor proteins in PVD neurons....................31 Figure 2. Molecular motors play distinct roles in regulating mitochondrial transport…………….33 Figure3. Unknown motors might participate in mitochondrial transport……………………….....35 Figure 4. UNC-33 is essential to axonal mitochondrial transport…................................................37 Figure 5. UNC-33 functions through Kinesin-1 and unknown plus-end motors to regulate mitochondrial transport.…..………………………………………….……………….41 Figure 6. UNC-33L rescues dendritic morphology and mitochondrial transport in PVD neuron………………………………………………………………...………………44 Figure 7. The candidate #5-17-2 regulates mitochondrial transport and neuronal morphology. ……………………………………………………………….………46 Supplemental Figure 1. Mitochondria were retained in the cell body in unc-116 and dhc-1 mutants…………………………………………………………………..48 Supplemental Figure 2. unc-33 axonal length is rescued by expression of UNC-33L……………50 VI. TABLE…………………………………………………………………………………………..51 VII. REFERENCE………………………………………………………………………………….52 VIII. APPENDIX…………………………………………………………………………….……...57 7.1 Constructs and transgenic worms…….......................................................................................57 7.2 Primers for genotyping and sequencing ……............................................................................57 7.3 Plasmid sequence and cDNAs ……...........................................................................................58 7.4 Worms for quantification ……...................................................................................................65 | |
| dc.language.iso | zh-TW | |
| dc.subject | UNC-33蛋白 | zh_TW |
| dc.subject | 動力蛋白 | zh_TW |
| dc.subject | 驅動蛋白 | zh_TW |
| dc.subject | 粒線體運輸 | zh_TW |
| dc.subject | 腦衰反應調節蛋白(CRMP-2) | zh_TW |
| dc.subject | mitochondrial transport | en |
| dc.subject | kinesin | en |
| dc.subject | dynein motors | en |
| dc.subject | UNC-33 | en |
| dc.subject | CRMP-2 | en |
| dc.title | 探討粒線體在線蟲PVD神經中不同區域的運送 | zh_TW |
| dc.title | The study of mitochondria transport regulation in different neuronal compartments in C. elegans PVD neuron | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 林敬哲(Jin-Jer Lin),簡正鼎(Jheng-Ding Jian) | |
| dc.subject.keyword | 粒線體運輸,驅動蛋白,動力蛋白,UNC-33蛋白,腦衰反應調節蛋白(CRMP-2), | zh_TW |
| dc.subject.keyword | mitochondrial transport,kinesin, dynein motors,UNC-33,CRMP-2, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201703526 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-16 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生物化學暨分子生物學研究所 | zh_TW |
| 顯示於系所單位: | 生物化學暨分子生物學科研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 9.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
