Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68882
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
---|---|---|
dc.contributor.advisor | 隋中興(Chung-Hsiung Sui) | |
dc.contributor.author | Yu-Yang Kuo | en |
dc.contributor.author | 郭毓揚 | zh_TW |
dc.date.accessioned | 2021-06-17T02:40:09Z | - |
dc.date.available | 2021-02-20 | |
dc.date.copyright | 2021-02-20 | |
dc.date.issued | 2021 | |
dc.date.submitted | 2021-02-10 | |
dc.identifier.citation | Andreae, M. O., and P. Merlet, 2001: Emission of trace gases and aerosols from biomass burning. Global biogeochemical cycles, 15, 955-966. Bacmeister, J. T., M. J. Suarez, and F. R. Robertson, 2006: Rain reevaporation, boundary layer–convection interactions, and Pacific rainfall patterns in an AGCM. Journal of the Atmospheric Sciences, 63, 3383-3403. Chou, M.-D., and M. J. Suarez, 1994: An efficient thermal infrared radiation parameterization for use in general circulation models. ——, 1999: A solar radiation parameterization (CLIRAD-SW) for atmospheric studies. NASA Tech. Memo, 10460, 48. Chuang, M.-T., and Coauthors, 2015: Simulating the transport and chemical evolution of biomass burning pollutants originating from Southeast Asia during 7-SEAS/2010 Dongsha experiment. Atmospheric Environment, 112, 294-305. Darmenov, A., and A. da Silva, 2013: The quick fire emissions dataset (QFED)–documentation of versions 2.1, 2.2 and 2.4. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA TM-2013-104606, 32, 183. Dee, D. P., and Coauthors, 2011: The ERA‐Interim reanalysis: Configuration and performance of the data assimilation system. Quarterly Journal of the royal meteorological society, 137, 553-597. Gautam, R., and Coauthors, 2013: Characterization of aerosols over the Indochina peninsula from satellite-surface observations during biomass burning pre-monsoon season. Atmospheric Environment, 78, 51-59. Huang, H. Y., S. H. Wang, W. X. Huang, N. H. Lin, M. T. Chuang, A. M. da Silva, and C. M. Peng, 2020: Influence of Synoptic‐Dynamic Meteorology on the Long‐Range Transport of Indochina Biomass Burning Aerosols. Journal of Geophysical Research: Atmospheres, 125, e2019JD031260. Huang, L., W. Lin, F. Li, Y. Wang, and B. Jiang, 2019: Climate impacts of the biomass burning in Indochina on atmospheric conditions over southern China. Aerosol and Air Quality Research, 19, 2707-2720. Lau, K., and S. Yang, 1997: Climatology and interannual variability of the Southeast Asian summer monsoon. Advances in Atmospheric Sciences, 14, 141-162. Lau, K., M. Kim, and K. Kim, 2006: Asian summer monsoon anomalies induced by aerosol direct forcing: the role of the Tibetan Plateau. Climate dynamics, 26, 855-864. Lau, K. M., and K. M. Kim, 2006: Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical research letters, 33. Lau, W. K., 2016: The aerosol-monsoon climate system of Asia: A new paradigm. Journal of Meteorological Research, 30, 1-11. Lau, W. K., and Coauthors, 2017: Impacts of aerosol–monsoon interaction on rainfall and circulation over Northern India and the Himalaya Foothills. Climate Dynamics, 49, 1945-1960. Lee, D., Y. Sud, L. Oreopoulos, K.-M. Kim, W. Lau, and I.-S. Kang, 2014: Modeling the influences of aerosols on pre-monsoon circulation and rainfall over Southeast Asia. Atmospheric Chemistry and Physics, 14, 6853-6866. Li, Z., and Coauthors, 2016: Aerosol and monsoon climate interactions over Asia. Reviews of Geophysics, 54, 866-929. Liebmann, B., and C. A. Smith, 1996: Description of a complete (interpolated) outgoing longwave radiation dataset. Bulletin of the American Meteorological Society, 77, 1275-1277. Lin, N.-H., and Coauthors, 2013: An overview of regional experiments on biomass burning aerosols and related pollutants in Southeast Asia: From BASE-ASIA and the Dongsha Experiment to 7-SEAS. Atmospheric Environment, 78, 1-19. Lock, A., A. Brown, M. Bush, G. Martin, and R. Smith, 2000: A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests. Monthly weather review, 128, 3187-3199. Lu, M.-M., C.-H. Sui, J.-R. Sun, and P.-H. Lin, 2020: Influences of subseasonal to interannual oscillations on the SCS summer monsoon onset in 2018. Terrestrial, Atmospheric and Oceanic Sciences, 31, 197-209. Menon, S., J. Hansen, L. Nazarenko, and Y. Luo, 2002: Climate effects of black carbon aerosols in China and India. Science, 297, 2250-2253. Molod, A., L. Takacs, M. Suarez, and J. Bacmeister, 2015: Development of the GEOS-5 atmospheric general circulation model: Evolution from MERRA to MERRA2. Geoscientific Model Development, 8, 1339-1356. Moorthi, S., and M. J. Suarez, 1992: Relaxed Arakawa-Schubert. A parameterization of moist convection for general circulation models. Monthly Weather Review, 120, 978-1002. Pani, S. K., and Coauthors, 2016: Radiative effect of springtime biomass-burning aerosols over Northern Indochina during 7-SEAS/BASELInE 2013 campaign. Aerosol and Air Quality Research, 16, 2802-2817. Ramanathan, V., and G. Carmichael, 2008: Global and regional climate changes due to black carbon. Nature geoscience, 1, 221-227. Ramanathan, V., and Coauthors, 2005: Atmospheric brown clouds: Impacts on South Asian climate and hydrological cycle. Proceedings of the National Academy of Sciences, 102, 5326-5333. Randles, C., and Coauthors, 2017: The MERRA-2 aerosol reanalysis, 1980 onward. Part I: System description and data assimilation evaluation. Journal of Climate, 30, 6823-6850. Reid, J. S., and Coauthors, 2013: Observing and understanding the Southeast Asian aerosol system by remote sensing: An initial review and analysis for the Seven Southeast Asian Studies (7SEAS) program. Atmospheric Research, 122, 403-468. Rosenfeld, D., S. Sherwood, R. Wood, and L. Donner, 2014: Climate effects of aerosol-cloud interactions. Science, 343, 379-380. Stocker, T. F., and Coauthors, 2014: Climate Change 2013: The physical science basis. contribution of working group I to the fifth assessment report of IPCC the intergovernmental panel on climate change. Cambridge University Press. Sui, C.-H., and Coauthors, 2020: The South China Sea Two Islands Monsoon Experiment for studying convection and subseasonal to seasonal variability. Terr. Atmos. Ocean. Sci, 31, 103-129. Tsay, S.-C., and Coauthors, 2013: From BASE-ASIA toward 7-SEAS: A satellite-surface perspective of boreal spring biomass-burning aerosols and clouds in Southeast Asia. Atmospheric environment, 78, 20-34. Tsay, S.-C., and Coauthors, 2016: Satellite-surface perspectives of air quality and aerosol-cloud effects on the environment: An overview of 7-SEAS/BASELInE. Aerosol and Air Quality Research, 16, 2581-2602. Wang, B., 2002: Rainy season of the Asian–Pacific summer monsoon. Journal of Climate, 15, 386-398. Wang, B., Y. Zhang, and M. Lu, 2004: Definition of South China Sea monsoon onset and commencement of the East Asia summer monsoon. Journal of Climate, 17, 699-710. Yen, M.-C., and Coauthors, 2013: Climate and weather characteristics in association with the active fires in northern Southeast Asia and spring air pollution in Taiwan during 2010 7-SEAS/Dongsha Experiment. Atmospheric Environment, 78, 35-50. Zhang, Y., T. Li, B. Wang, and G. Wu, 2002: Onset of the summer monsoon over the Indochina Peninsula: Climatology and interannual variations. Journal of Climate, 15, 3206-3221. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68882 | - |
dc.description.abstract | 每年夏季季風肇始前的乾季,中南半島因農業活動所造成的生質燃燒,會排放大量的懸浮微粒到大氣中。本研究猜想這些懸浮微粒可能會改變東南亞季風演變的歷程。然而單純以觀測資料,難以去釐清這些懸浮微粒對季風系統的影響、以及可能造成的機制。為此本研究使用GEOS-5全球大氣氣候模式,去模擬2018年夏季季風肇始前後的氣候特徵;藉由開關中南半島上的生質燃燒排放作為實驗組及對照組,來探討懸浮微粒的輻射效應可能對東南亞季風演進所造成的影響。模擬結果顯示懸浮微粒的初步的輻射效應使中南半島當地的低層大氣變得更穩定。中南半島上對流抑制的環境阻礙了對流從赤道蘇門答臘地區北傳到中南半島的季節演變,也因此中南半島的夏季季風肇始時間被往後推移了兩候。季風肇始前的抑制環境也伴隨中南半島上反氣旋增強,進而增加華南、孟加拉灣等周遭區域的水氣輸送。當季節持續推移,夏季降水終究會在中南半島上發展,洗除懸浮微粒並終止其輻射作用。然而懸浮微粒在季風肇始前,已經改變了從孟加拉灣至中南半島上的水氣梯度。這將增加西南季風的水氣平流、強化季風肇始的強度,並加強夏季季風的環流。另外藉由診斷模式中各物理過程加熱率的變化,可發現季風肇始前環流與降水改變所造成的加熱,遠超過懸浮微粒的短波輻射直接影響。這也說明了懸浮微粒輻射的動力回饋效應藉由擾動大氣穩定度、與季風系統的非線性交互作用,可能顯著改變整個季節發展的演變歷程。 | zh_TW |
dc.description.abstract | Regional emissions through biomass burning in Indo-China Peninsula (ICP) during March and April are considered to influence the monsoon development in ICP and neighboring areas. However, it is difficult to identify the aerosol influence and the relevant mechanism by observational approach alone without modeling experiments. In this study, the Goddard Earth Observing System Model, Version 5 (GEOS-5) Atmospheric Global Climate Model (AGCM) is used to simulate the 2018 monsoon development with and without biomass burning aerosol emission in ICP. Model results show that the aerosol-radiative forcing results in stronger anticyclonic circulation and reduced precipitation in the ICP region during the pre-onset period. The suppressed condition obstructs the convection propagation from Sumatra to ICP and therefore delays the onset of ICP summer monsoon by 2-pentads. The intensified anticyclonic flow increases the moisture and the precipitation in southern China and Bay of Bengal (BOB). The wetter BOB and drier ICP lead to a stronger moist advection by the developing southwesterly flow and consequently an abrupt ICP monsoon onset. As the season goes on, seasonal rainfall starts to wash out the aerosols in ICP that shuts down the radiation effect. By diagnosing the heat budget in the pre-monsoon period, we show that the effect of aerosol forcing in ICP is associated with an enhanced subsidence warming, reduced convective heating, and more longwave cooling, indicating an amplified regional effect of the cumulative radiative heating by circulation and convection in ICP and surrounding areas. Aerosol-cloud-radiative forcing significantly change the seasonal evolution in ICP and neighboring southeast Asia. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:40:09Z (GMT). No. of bitstreams: 1 U0001-0802202115244600.pdf: 4418630 bytes, checksum: 4da991ecf0b28f8c9ea250c4d3c9808f (MD5) Previous issue date: 2021 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES v LIST OF TABLES viii Chapter 1 Introduction 1 Chapter 2 Data and Methodology 4 2.1 Observation datasets 4 2.2 GEOS-5 AGCM and experimental design 4 Chapter 3 Results 6 3.1 Seasonal evolution of AOD and rainfall 6 3.2 Circulation features during the pre-onset period 8 3.3 Circulation features during the post-onset period 9 3.4 Aerosol radiation effect and heating budget 10 Chapter 4 Discussion and conclusion 13 REFERENCE 15 TABLE 20 FIGURES 21 APPENDIX 38 | |
dc.language.iso | en | |
dc.title | 中南半島生質燃燒對東南亞夏季季風肇始之影響 | zh_TW |
dc.title | Influence of Indochina biomass burning aerosols on southeast Asia summer monsoon onset | en |
dc.type | Thesis | |
dc.date.schoolyear | 109-1 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 陳正平(Jen-Ping Chen),陳維婷(Wei-Ting Chen),陳韡鼐(Wei-Nai Chen) | |
dc.subject.keyword | 生質燃燒,中南半島,懸浮微粒與季風交互作用,季風肇始, | zh_TW |
dc.subject.keyword | Indochina,biomass burning,aerosol-monsoon interaction,monsoon onset, | en |
dc.relation.page | 39 | |
dc.identifier.doi | 10.6342/NTU202100681 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2021-02-16 | |
dc.contributor.author-college | 理學院 | zh_TW |
dc.contributor.author-dept | 大氣科學研究所 | zh_TW |
Appears in Collections: | 大氣科學系 |
Files in This Item:
File | Size | Format | |
---|---|---|---|
U0001-0802202115244600.pdf Restricted Access | 4.32 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.