請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6887
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳端容(Duan-Rung Chen) | |
dc.contributor.author | Li-Hsin Chang | en |
dc.contributor.author | 張立欣 | zh_TW |
dc.date.accessioned | 2021-05-17T09:20:22Z | - |
dc.date.available | 2017-09-17 | |
dc.date.available | 2021-05-17T09:20:22Z | - |
dc.date.copyright | 2012-09-17 | |
dc.date.issued | 2012 | |
dc.date.submitted | 2012-04-27 | |
dc.identifier.citation | 英文部分:
World Health Organization (WHO)http://www.who.int/en/ International Agency For Research On Cancer(IARC) http://www.iarc.fr/ A Jernal, R Siegel, & Ward, E. (2006). Cancer statistics. Cancer J Clin. A., B., Cohn, M. S., Wolff, P. M., Cirillo, R. I., & Sholtz. (2007). DDT and breast cancer in young women: new data on the significance of age at exposure Environ Health Perspect, 10, 1406-1414. A. Stewart Fotheringham, C. B., Martin Charlton. (2002). Geographically weighted regression: the analysis of spatially varying relationships. Anselin, L. (1995). Local Indicators of Spatial Association—LISA. GEOgraphic ANALYSIS, 27(2), 93-115. Anselin, L. (1999). Spatial Econometrics,Dellas:Bruton Center,School of Social Sciences,University of Texas. Britt, K., Ashworth, A., & Smalley, M. (2007). Endocrine-Related Cancer. 14, 907-933. Brody, J. G., Aschengrau, A., McKelvey, W., Rudel, R. A., Swartz, C. H., & Kennedy, T. (2004). Breast cancer risk and historical exposure to pesticides from wide-area applications assessed with GIS. Environ Health Perspect, 112(8), 889-897. Calle EE, & MJ, T. (2004). Obedity and cancer. Oncogene, 23, 6365-6378. Chie WC, Li CY, & CS, H. (1998). Oral contraceptives and breast cancer risk in Taiwan, a country of low incidence of breast cancer and low use of oral contraceptives. Int J Cancer, 77, 219-223. Cho E, Chen WY, & DJ, H. (2006). Red meat intake and risk of breast cancer among premenopausal women. Arch Intern Med, 166, 2253-2259. Cho E, Spiegelman D, & DJ, H. (2003). Premenopausal fat intake and risk of breast cancer. J Natl Cancer Inst, 95, 1079-1085. Claus EB, Risch NJ, & WD, T. (1990). Age at onset as an indicator of familial risk of breast cancer. Am J Epidemiol, 131, 961-972. Cottet V, Touvier M, & A, F. (2009). Postmenopausal breast cancer risk and dietary patterns in the E3 N-EPIC prospective cohort study. Am J Epidemiol, 170, 1257-1267. Cunningham, R., Shaw, C., Blakely, T., Atkinson, J., & Sarfati, D. (2010). Ethnic and socioeconomic trends in breast cancer incidence in New Zealand. BMC Cancer, 10, 674. Dai, D., & Oyana, T. J. (2008). Spatial variations in the incidence of breast cancer and potential risk associated with soil dioxin contamination in Midland, Saginaw, and Bay Counties, Michigan, USA Environmental Health, 7, 1-19. Dano H, Andersen O, Ewertz M, Petersen JH, & E, L. (2003). Socioeconomic status and breast cancer in Denmark. Int J Epidemiol, 32, 218-224. De Stefani E, Deneo-Pellegrini H, & P, B. (2009). Dietary patterns and risk of cancer: a factor analysis in Uruguay. Int J Cancer, 124, 1391-1397. Demetrius Albanesa, A. S. a. M. S. M. (1987). Time-related factors in research on diet and cancer Journal of Chronic Diseases, 40(2), 39S-44S. F Fioretti, A. T., C Bosetti, C La Vecchia, E Negri, F Barbone,R Talamini, and S Franceschi. (1999). Risk factors for breast cancer in nulliparous women. British Journal of Cancer, 79(11/12), 1923-1928. Faggiano F, Partanen T, Kogevinas M, & P, B. (1997). Socioeconomic differences in cancer incidence and mortality. Unit of Environmental Cancer Epidemiology, International Agency for Research on Cancer, Lyon, France., 138, 65-176. Glass, G. E. (2000). Update:spatial aspects of epidemiology: the interface with medical geography. Epidemiol Rev, 22, 136-139. Goodchild, M. F. (1986). Spatial autocorrelation,CN: Geo Books. Graham, A. J., Atkinson, P. M., & Danson, F. M. (2004). Spatial analysis for epidemiology. Acta Tropica, 91, 219-225. Griffith, D. (1996). Spatial statistical analysis and GIS: exploring computational simplifications for estimating the neighborhood spatial forecasting model. Gwenn Menvielle, Anton E. Kunst, & Gils, C. H. V. (2011). The Contribution of Risk Factors to the Higher Incidence of Invasive and In Situ Breast Cancers in Woman With Highter Levels of Education in the European Prospective Investigation Into Cancer and Nutrition 2011. American Journal of Epidemiology, 173, 26-37. Heck KE, & Pamuk ER. (1997). Explaining the relation between education and postmenopausal breast cancer. Am J Epidemiol, 145, 366-372. Hella Dano, Otto Andersen, Marianne Ewertz, Petersen, J. H., & Lynge1, E. (2003). Socioeconomic status and breast cancer in Danmark. International Journal of Epidemiology, 32, 218-224. Houlston RS, McCarter E, & S, P. (1992). Family history and risk of breast cancer. J Med Genet, 29, 154-157. Jay LEE, & Wong, D. W. S. (2001). Statistical Analysis With Arcview GIS.US:John Wiley & Sons, INC. K, C. (2009). Bilateral Breast Cancer. Formos Journal Surgery, 42, 139-145. Krebs, E. E., Taylor, B. C., Cauley, J. A., Stone, K. L., Bowman, P. J., & Ensrud, K. E. (2006). Measures of adiposity and risk of breast cancer in older postmenopausal women. J Am Geriatr Soc, 54(1), 63-69. L., A. (1999). The future of spatial analysis in the social sciences. Geographic Information Sciences, 5, 67-76. Lee MM, Chang IY, & CF, H. (2005). Breast cancer and dietary factors in Taiwanese women. Cancer Causes Control 16, 929-937. Lin TM, Ko RT, & KP, C. (1970). Cancer of the female breast: some epidemiologic aspects of cancer of the breast in Taiwan. J Formos Med Assoc, 69, 38-47. M S Wolff, G. W. C., J C Barrett, and J Huff. (1996). Breast Cancer and Environmental Risk Factors: Epidemiological and Experimental Findings. pharmacology and toxicology, 36, 573-596. Marjorie L. McCullough, H. S. F., W. Ryan Diver, Alpa V. Patel, Michael J. Thun and Eugenia E. Calle. (2005). Risk Factors for Fatal Breast Cancer in African-American Women and White Women in a Large US Prospective Cohort. American Journal of Epidemiology, 162(8), 734-742. Martin Kulldorff1, Eric J. Feuer1, Barry A. Miller1 and Laurence S. Freedma1. (1997). Breast Cancer Clusters in the Northeast United States: A Geographic Analysis. 146(2), 161-170. Michael, J. D., Michael, F. G., & Longley, p. (2007). Geospatial analysis: a comprehensive guide to principles,techniques and software tools. Michels, & K.B. (2006). Preschool diet and adult risk of breast cancer. Int J Cancer, 118, 749-754. Mills PK, Beeson WL, & RL, P. (1989). Prospective study of exogenous hormone use and breast cancer in Seventh-day Adventists. Cancer, 64, 591-597. Mohsen Rezaeian, G. D., Selwyn St Leger, Louis Appleby. (2007a). Geographical epidemiology, spatial analysis and geographical information systems: a multidisciplinary glossary. Journal Epidemiol Community Health (61), 98-102. Mohsen Rezaeian, G. D., Selwyn St Leger, Louis Appleby. (2007b). Geographical epidemiology, spatial analysis and geographical information systems: a multidisciplinary glossary. Epidemiol & Community Health, 61(2), 98-102. Newman B, Moorman PG, & R, M. (1995). The Carolina Breast Cancer Study. integrating population-based epidemiology and molecular biology.Breast Cancer Res Treat, 35, 51-60. Peggy Reynolds, S. H., Debbie E. Goldberg, Hoda Anton-Culver, Leslie Bernstein, Dennis Deapen, Pamela L. Horn-Ross, David Peel, Richard Pinder, Ronald K. Ross, Dee West, William E. Wright and Argyrios Ziogas. (2004). Active Smoking, Household Passive Smoking, and Breast Cancer: Evidence From the California Teachers Study. journal of the national cancer institute, 96(1), 29-37. Rudel, J. G. B. a. R. A. (2003). Environmental pollutants and breast cancer. Environ Health Perspect, 111(8), 1007-1019. Ruth Cunningham, Caroline Shaw, & Blakely, T. (2010). BMC Cancer. Ethnic and socioeconomic trends in breast cancer incidence in New Zealand, 10:674. Schatzkin, D. K. W. a. A. (1994). Temporal trends in the socioeconomic gradient for breast cancer mortality among US women. American Journal of Public Health, 84(6), 1003-1006. Schernhammer, E. S. K., Candyce H.*; Laden, Francine*‡§; Hankinson, Susan E.*‡. (2006). Night Work and Risk of Breast Cancer. epidemiology, 17(1), 108-111. Steenland K, Henley J, & Epidemiol, T. M. A. J. (2002). All-cause and causespecific death rates by educational status for two million people in two American Cancer Society cohorts,1959-1996. American Journal of Epidemiology, 156, 11-21. Strand BH, Kunst A, & M, H. (2007). The reversed social gradient: higher breast cancer mortality in the higher educated compared to lower educated. Eur J Cancer, 43, 1200-1207. Tonje Braaten, E. W., Merethe Kumle, Hans-Olov Adami, Eiliv Lund. (2004). Education and risk of breast cancer in the Norwegian-Swedish women's lifestyle and health cohort study. 110(4), 579-583. Trentham-Dietz A, Newcomb PA, & BE, S. (1997). Body size and risk of breast cancer. Am J Epidemiol, 145, 1011 –1019. Trichopoulos D, M. B., Cole P. (1972). Menopause and breast cancer risk. National Center for Biotechnology Information, 48(3), 605-613. Ulla M. Forssen, L. E. R., Anders Ahlbom, Maria Feychting. (2005). Occupational Magnetic Fields and Female Breast Cancer: A Case-Control Study using Swedish Population Registers and New Exposure Data American Journal of Epidemiology, 161(3), 250-259. Veronesi U, Boyle P, Goldhirsch A, & G, O. (2005). Breast cancer. Lancet, 365, 1727-1741. Vieira, V. M., Webster, T. F., Weinberg, J. M., & Aschengrau, A. (2008). Spatial-temporal analysis of breast cancer in upper Cape Cod, Massachusetts. Int J Health Geogr, 7, 46. Week, & J.R. (2004). The Role of Spatial Analysis in Demographic in Sparially Integrated Social Scial Science,New York. Oxford. Wong, D. W. S. (2005). Statistical analysis of geographic information with ArcView GIS and ArcGIS / Wu, A. H., Yu, M. C., Tseng, C. C., Stanczyk, F. Z., & Pike, M. C. (2009). Dietary patterns and breast cancer risk in Asian American women. Am J Clin Nutr, 89(4), 1145-1154. Yoshiharu Fukuda, Keiko Nakamura, Umezaki, M., & Takano, T. (2005). Variations in societal characteristics of spatial disease clusters:examples of colon, lung and breast in japan. International Journal of Health Geographics, 4. Z. Joyce Fana, , Daniel T. Lacklandb, Stuart R. Lipsitzb, Joyce S. Nicholasb, Brent M. Eganc, W. Tim Garveyd and Florence N. Hutchisone. (2007). Geographical patterns of end-stage renal disease incidence and risk factors in rural and urban areas of South Carolina health &place, 13(1), 179-187. 中文部分: 行政院衛生署國民健康(http://www.bhp.doh.gov.tw/BHPnet/Portal/Default.aspx) 乳癌診斷與治療共識(2004)。國家衛生研究院。 王宥人. (2001). 地區剝奪與女性乳癌及子宮頸癌之相關性硏究. 台灣大學衛生政策與管理研究所碩士論文. 施義雄. (1999). 台灣地區癌症發生率與環境之相關分析及其地理資訊系統的建構. 私立中國醫藥學院環境醫學研究所碩士論文. 胡立諄、賴進貴. (2006). 臺灣女性癌症的空間分析. 台灣地理資訊學刊(4), 39-55. 范慶龍、賴進貴. (2006). 環境汙染與惡性腫瘤空間關係-以癌症地圖之肝癌及肺癌為例. (16), 205-220. 張金堅, 郭文宏, & 王明暘. (2008). 台灣乳癌之流行病學. 中華癌醫會誌, 24(2), 85-93. 梁蕲善. (1991). 地理學計量分析,臺北:文化大學. 楊宛霖 、 林幸慧. (2006). 乳癌高危險群之評估及處置. 基層醫學, 21(3), 68-71. 張春蘭、劉英毓(2006) 台灣地理資訊系統於公共衛生之研究與應用.13:57-80. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6887 | - |
dc.description.abstract | 目的:流行病學結合地理科學已經成為研究趨勢。本研究想透過疾病地圖與空間分析方法瞭解台灣地區女性乳癌在未滿40歲及40歲以上發生率、盛行率與死亡率之空間分佈情形並比較不同年份的時空變異,進而利用空間統計方法探索資料的空間特性,尋找乳癌群聚地區的社會環境致病因子。
方法:採橫斷式研究設計、次級資料分析,運用2005-2007年「癌症登記資料庫」、「死因檔資料庫」以及衛生署「鄉鎮癌症就診統計-乳癌」,研究對象為女性乳癌患者。空間分析以最近鄰居法(k-Nearest Neighbors)之最近五個鄉鎮(k=5)為鄰區的權重矩陣,病已全域型空間自相關指標Moran’s I與區域型空間自相關LISA進行空間相依性分析,探討乳癌是否呈現群聚現象。本研究並進一步探討社會環境因子與乳癌的相關性,利用空間延遲模型探討空間鄰近效應與利用地理加權迴歸解釋地理變異情形。 結果:台灣地區女性在2005-2007年三個年段之未滿40歲之乳癌準準化盛行率與40歲以上乳癌標準化發生率及盛行率有顯著群聚現象;2005-2007年死亡率在全年齡都沒有發現群聚現象。進一步針對群聚現象瞭解與社會環境因子之相關性,結果發現與都市化綜合發展、速食店密度和女性平均工時皆為顯著正向相關;而與工業區沒有統計顯著。利用空間延遲模型發現空間鄰近效應有達到顯著影響,因而使用地理加權迴歸解釋地理變異情形。在地理加權迴歸與傳統一般迴歸進行模式比較之後發現,地理加權迴歸之參數估計較傳統迴歸來的精確,顯示利用地理加權迴歸分析,可在控制地理變異下探討社會環境因子對乳癌的影響,可視為較佳分析模式。 結論:本研究利用空間分析瞭解台灣地區女性乳癌之社會環境危險因子,發現乳癌確實存在區位特性,希望相關單位針對乳癌防治能更因地制宜以達到有效預防的成效。 | zh_TW |
dc.description.abstract | The combination of Epidemiology and Earth Sciences has become a research trend lately. The purpose of this research is to understand the occurrence rate, the prevalence of breast cancer and the death rate among Taiwanese women whom are below forty and above forty years old through disease mapping and spatial analysis regarding different years of spatial distribution and temporal and spatial variation. Thus, use spatial statistical method to explore the spatial characteristics of the data and to search for the social causative agent among breast cancer cluster region.
The subjects were female breast cancer patient. Based on cross-sectional study design and secondary data analysis apply 2005~2007 Cancer Registry Database, Cause of Death File Database and Department of Health of Rural Area Cancer Treatment Statistics – Breast Cancer. Spatial analysis is based on K Nearest Neighbors method and five of the nearest towns (k=5) are adjacent areas’ spatial weight matrix. The disease has global spatial autocorrelation index, Moran’s I and regional spatial autocorrelation index, LISA, are as spatial dependency analysis to investigate whether breast cancer is cluster phenomenon or not. This research will further explore the correlation between the society environmental factor and breast cancer, the use of space delay model of spatial proximity effect and geographically weighted regression to explain the geographic mutation. Within 2005 to 2007, the three year period has shown that breast cancer under age of 40 quasi-standardized prevalence and over forty years old, breast cancer standardized incidence and prevalence of significant clustering phenomenon among Taiwanese women. However, there is no indication showing that death rate does not appear to be cluster phenomenon among all ages. To further understand clustering phenomenon of social environmental factor, the result shows that urbanization, fast food chain stores density, and average female working hours are significant and positive correlation. Though, there is no valid statistics of industrial area. It is found that the use of space delay model of spatial proximity effect has significant impact and because of that, geographically weighted regression has been used to explain the geographic mutation. After comparing geographically weighted regression and traditional regression model, geographically weighted regression has more accurate parameter estimation than traditional regression model. It is indicated that geographically weighted regression method can be seen as the best analysis model regarding investigate the impact of social environmental factor towards breast cancer while controlling geographic variation. This research uses spatial analysis to comprehend the relationship between breast cancer among Taiwanese women and social environmental risk factor. As a result, breast cancer does exist the characteristics of locational factor. Hope the relevant units for breast cancer prevention can be more adapted to local conditions in order to achieve effective prevention. | en |
dc.description.provenance | Made available in DSpace on 2021-05-17T09:20:22Z (GMT). No. of bitstreams: 1 ntu-101-R98843011-1.pdf: 9044202 bytes, checksum: 5d5c08ec11d5b2a2277c87e868b9cbfa (MD5) Previous issue date: 2012 | en |
dc.description.tableofcontents | 目錄
摘要 i Abstract ............................................................ii 目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 第一節 研究背景與動機 1 第二節 研究目的 4 第二章 文獻回顧 5 第一節 乳癌之定義與診斷 5 第二節 乳癌危險因子 7 第三節 空間分析應用 13 第三章 研究方法 15 第一節 研究假說 15 第二節 研究流程 17 第三節 研究資料來源 19 第四節 研究對象與變項操作型定義 21 第五節 統計分析方法 26 第四章 研究結果 38 第一節 描述性統計 38 第二節 空間聚集分析 44 第三節 雙變項分析與因素分析 66 第四節 一般最小平方迴歸模型(OLS) 70 第五節 空間計量延遲模型 76 第六節 地理加權迴歸(GWR) 79 第五章 討論 92 第一節 研究討論 92 第二節 資料及研究方法 95 第二節 研究限制 96 第六章 結論與建議 97 第一節 結論 97 第二節 研究未來建議 98 參考文獻 99 附錄 106 | |
dc.language.iso | zh-TW | |
dc.title | 台灣地區社會環境因子對女性乳癌空間分佈模式
之相關性分析(2005-2007年) | zh_TW |
dc.title | Environmental factors associated with the spatial distribution of female breast cancers in Taiwan (2005-2007). | en |
dc.type | Thesis | |
dc.date.schoolyear | 100-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 林季平(Ji-Ping Lin),溫在弘(Zai-Hong Wen),季瑋珠(Wei-Chu Ji) | |
dc.subject.keyword | 乳癌,社會環境因子,空間分析,地理加權迴歸,地理延遲模型, | zh_TW |
dc.subject.keyword | Breast cancer,Environment factors,Spatial analysis,Geographically weighted regression,Geographically spatial lag model., | en |
dc.relation.page | 106 | |
dc.rights.note | 同意授權(全球公開) | |
dc.date.accepted | 2012-04-27 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 健康政策與管理研究所 | zh_TW |
顯示於系所單位: | 健康政策與管理研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-101-1.pdf | 8.83 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。