Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 生理學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68863
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor余佳慧(Chia-Hui Yu)
dc.contributor.authorYi-Hsuan Lien
dc.contributor.author李憶萱zh_TW
dc.date.accessioned2021-06-17T02:39:11Z-
dc.date.available2022-09-08
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation1. Backhed, F., et al., Host-bacterial mutualism in the human intestine. Science, 2005. 307(5717): p. 1915-20.
2. Fontaine, N., et al., Intestinal mucin distribution in the germ-free rat and in the heteroxenic rat harbouring a human bacterial flora: effect of inulin in the diet. British Journal of Nutrition, 2007. 75(06): p. 881.
3. Robertson, A.M. and D.P. Wright, Bacterial glycosulphatases and sulphomucin degradation. Can J Gastroenterol, 1997. 11(4): p. 361-6.
4. Nieuw Amerongen, A.V., et al., Sulfomucins in the human body. Biol Chem, 1998. 379(1): p. 1-18.
5. Johansson, M.E., et al., The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci U S A, 2008. 105(39): p. 15064-9.
6. Bennett, K.M., S.L. Walker, and D.D. Lo, Epithelial microvilli establish an electrostatic barrier to microbial adhesion. Infect Immun, 2014. 82(7): p. 2860-71.
7. Farquhar, M.G. and G.E. Palade, Junctional complexes in various epithelia. J Cell Biol, 1963. 17: p. 375-412.
8. Balda, M.S. and K. Matter, Tight junctions. J Cell Sci, 1998. 111 ( Pt 5): p. 541-7.
9. Niessen, C.M., Tight junctions/adherens junctions: basic structure and function. J Invest Dermatol, 2007. 127(11): p. 2525-32.
10. De Smet, K. and R. Contreras, Human antimicrobial peptides: defensins, cathelicidins and histatins. Biotechnol Lett, 2005. 27(18): p. 1337-47.
11. Bals, R., Epithelial antimicrobial peptides in host defense against infection. Respir Res, 2000. 1(3): p. 141-50.
12. Parikh, A.A., et al., Interleukin-6 production in human intestinal epithelial cells increases in association with the heat shock response. J Surg Res, 1998. 77(1): p. 40-4.
13. Stadnyk, A.W., Intestinal epithelial cells as a source of inflammatory cytokines and chemokines. Can J Gastroenterol, 2002. 16(4): p. 241-6.
14. Li, C.K., et al., Production of proinflammatory cytokines and inflammatory mediators in human intestinal epithelial cells after invasion by Trichinella spiralis. Infect Immun, 1998. 66(5): p. 2200-6.
15. Jobin, C., et al., TNF receptor-associated factor-2 is involved in both IL-1 beta and TNF-alpha signaling cascades leading to NF-kappa B activation and IL-8 expression in human intestinal epithelial cells. J Immunol, 1999. 162(8): p. 4447-54.
16. Sasaki, M., et al., Invasive Escherichia coli are a feature of Crohn's disease. Lab Invest, 2007. 87(10): p. 1042-54.
17. Huebner, C., et al., The probiotic Escherichia coli Nissle 1917 reduces pathogen invasion and modulates cytokine expression in Caco-2 cells infected with Crohn's disease-associated E. coli LF82. Appl Environ Microbiol, 2011. 77(7): p. 2541-4.
18. Fukata, M. and M. Arditi, The role of pattern recognition receptors in intestinal inflammation. Mucosal Immunol, 2013. 6(3): p. 451-63.
19. Bischoff, S.C., et al., Intestinal permeability--a new target for disease prevention and therapy. BMC Gastroenterol, 2014. 14: p. 189.
20. Ulluwishewa, D., et al., Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr, 2011. 141(5): p. 769-76.
21. Laukoetter, M.G., M. Bruewer, and A. Nusrat, Regulation of the intestinal epithelial barrier by the apical junctional complex. Curr Opin Gastroenterol, 2006. 22(2): p. 85-9.
22. Kim, J.M., et al., Apoptosis of human intestinal epithelial cells after bacterial invasion. J Clin Invest, 1998. 102(10): p. 1815-23.
23. Negroni, A., S. Cucchiara, and L. Stronati, Apoptosis, Necrosis, and Necroptosis in the Gut and Intestinal Homeostasis. Mediators Inflamm, 2015. 2015: p. 250762.
24. Gitter, A.H., et al., Leaks in the epithelial barrier caused by spontaneous and TNF-alpha-induced single-cell apoptosis. Faseb j, 2000. 14(12): p. 1749-53.
25. Halliez, M.C., et al., Giardia duodenalis induces paracellular bacterial translocation and causes postinfectious visceral hypersensitivity. Am J Physiol Gastrointest Liver Physiol, 2016. 310(8): p. G574-85.
26. Wu, S., et al., Bacteroides fragilis enterotoxin cleaves the zonula adherens protein, E-cadherin. Proc Natl Acad Sci U S A, 1998. 95(25): p. 14979-84.
27. Hoy, B., et al., Distinct roles of secreted HtrA proteases from gram-negative pathogens in cleaving the junctional protein and tumor suppressor E-cadherin. J Biol Chem, 2012. 287(13): p. 10115-20.
28. Boyle, E.C., N.F. Brown, and B.B. Finlay, Salmonella enterica serovar Typhimurium effectors SopB, SopE, SopE2 and SipA disrupt tight junction structure and function. Cell Microbiol, 2006. 8(12): p. 1946-57.
29. Thanabalasuriar, A., et al., The bacterial virulence factor NleA is required for the disruption of intestinal tight junctions by enteropathogenic Escherichia coli. Cell Microbiol, 2010. 12(1): p. 31-41.
30. Simovitch, M., et al., EspM inhibits pedestal formation by enterohaemorrhagic Escherichia coli and enteropathogenic E. coli and disrupts the architecture of a polarized epithelial monolayer. Cell Microbiol, 2010. 12(4): p. 489-505.
31. Drago, S., et al., Gliadin, zonulin and gut permeability: Effects on celiac and non-celiac intestinal mucosa and intestinal cell lines. Scand J Gastroenterol, 2006. 41(4): p. 408-19.
32. Boivin, M.A., et al., Mechanism of interferon-gamma-induced increase in T84 intestinal epithelial tight junction. J Interferon Cytokine Res, 2009. 29(1): p. 45-54.
33. McKay, D.M., et al., Phosphatidylinositol 3'-kinase is a critical mediator of interferon-gamma-induced increases in enteric epithelial permeability. J Pharmacol Exp Ther, 2007. 320(3): p. 1013-22.
34. Al-Sadi, R.M. and T.Y. Ma, IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol, 2007. 178(7): p. 4641-9.
35. Bruewer, M., et al., Proinflammatory Cytokines Disrupt Epithelial Barrier Function by Apoptosis-Independent Mechanisms. The Journal of Immunology, 2003. 171(11): p. 6164-6172.
36. Kalischuk, L.D., F. Leggett, and G.D. Inglis, Campylobacter jejuni induces transcytosis of commensal bacteria across the intestinal epithelium through M-like cells. Gut Pathog, 2010. 2: p. 14.
37. Clark, E., et al., Interferon gamma induces translocation of commensal Escherichia coli across gut epithelial cells via a lipid raft-mediated process. Gastroenterology, 2005. 128(5): p. 1258-67.
38. Wu, L.L., et al., Commensal bacterial endocytosis in epithelial cells is dependent on myosin light chain kinase-activated brush border fanning by interferon-gamma. Am J Pathol, 2014. 184(8): p. 2260-74.
39. Clark, E.C., et al., Glutamine deprivation facilitates tumour necrosis factor induced bacterial translocation in Caco-2 cells by depletion of enterocyte fuel substrate. Gut, 2003. 52(2): p. 224-30.
40. Cossart, P. and P.J. Sansonetti, Bacterial invasion: the paradigms of enteroinvasive pathogens. Science, 2004. 304(5668): p. 242-8.
41. Reis, R.S. and F. Horn, Enteropathogenic Escherichia coli, Samonella, Shigella and Yersinia: cellular aspects of host-bacteria interactions in enteric diseases. Gut Pathog, 2010. 2(1): p. 8.
42. Croxen, M.A. and B.B. Finlay, Molecular mechanisms of Escherichia coli pathogenicity. Nat Rev Microbiol, 2010. 8(1): p. 26-38.
43. Mounier, J., et al., The IpaC carboxyterminal effector domain mediates Src-dependent actin polymerization during Shigella invasion of epithelial cells. PLoS Pathog, 2009. 5(1): p. e1000271.
44. Patel, J.C. and J.E. Galan, Manipulation of the host actin cytoskeleton by Salmonella--all in the name of entry. Curr Opin Microbiol, 2005. 8(1): p. 10-5.
45. Carayol, N. and G. Tran Van Nhieu, Tips and tricks about Shigella invasion of epithelial cells. Curr Opin Microbiol, 2013. 16(1): p. 32-7.
46. Ke, Y., Z. Chen, and R. Yang, Yersinia pestis: mechanisms of entry into and resistance to the host cell. Front Cell Infect Microbiol, 2013. 3: p. 106.
47. Wassenaar, T.M. and P. Panigrahi, Is a foetus developing in a sterile environment? Lett Appl Microbiol, 2014. 59(6): p. 572-9.
48. Wopereis, H., et al., The first thousand days - intestinal microbiology of early life: establishing a symbiosis. Pediatr Allergy Immunol, 2014. 25(5): p. 428-38.
49. Adlerberth, I. and A.E. Wold, Establishment of the gut microbiota in Western infants. Acta Paediatr, 2009. 98(2): p. 229-38.
50. Rajilic-Stojanovic, M. and W.M. de Vos, The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol Rev, 2014. 38(5): p. 996-1047.
51. Qin, J., et al., A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 2010. 464(7285): p. 59-65.
52. Tannock, G.W., et al., Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol, 2000. 66(6): p. 2578-88.
53. Bik, E.M., Composition and function of the human-associated microbiota. Nutr Rev, 2009. 67 Suppl 2: p. S164-71.
54. Brestoff, J.R. and D. Artis, Commensal bacteria at the interface of host metabolism and the immune system. Nat Immunol, 2013. 14(7): p. 676-84.
55. O'Hara, A.M. and F. Shanahan, The gut flora as a forgotten organ. EMBO Rep, 2006. 7(7): p. 688-93.
56. Jandhyala, S.M., et al., Role of the normal gut microbiota. World J Gastroenterol, 2015. 21(29): p. 8787-803.
57. Round, J.L. and S.K. Mazmanian, The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009. 9(5): p. 313-23.
58. Cerf-Bensussan, N. and V. Gaboriau-Routhiau, The immune system and the gut microbiota: friends or foes? Nat Rev Immunol, 2010. 10(10): p. 735-44.
59. Chow, J., H. Tang, and S.K. Mazmanian, Pathobionts of the gastrointestinal microbiota and inflammatory disease. Curr Opin Immunol, 2011. 23(4): p. 473-80.
60. Hornef, M., Pathogens, Commensal Symbionts, and Pathobionts: Discovery and Functional Effects on the Host. ILAR J, 2015. 56(2): p. 159-62.
61. Reddy, B.S. and K. Watanabe, Effect of intestinal microflora on 2,2'-dimethyl-4-aminobiphenyl-induced carcinogenesis in F344 rats. J Natl Cancer Inst, 1978. 61(5): p. 1269-71.
62. Uronis, J.M., et al., Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One, 2009. 4(6): p. e6026.
63. Polk, D.B. and R.M. Peek, Jr., Helicobacter pylori: gastric cancer and beyond. Nat Rev Cancer, 2010. 10(6): p. 403-14.
64. Wroblewski, L.E., R.M. Peek, Jr., and K.T. Wilson, Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin Microbiol Rev, 2010. 23(4): p. 713-39.
65. Atherton, J.C., The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol, 2006. 1: p. 63-96.
66. Martin, H.M., et al., Enhanced Escherichia coli adherence and invasion in Crohn's disease and colon cancer. Gastroenterology, 2004. 127(1): p. 80-93.
67. Viljoen, K.S., et al., Quantitative profiling of colorectal cancer-associated bacteria reveals associations between fusobacterium spp., enterotoxigenic Bacteroides fragilis (ETBF) and clinicopathological features of colorectal cancer. PLoS One, 2015. 10(3): p. e0119462.
68. Zhao, L., et al., The Composition of Colonic Commensal Bacteria According to Anatomical Localization in Colorectal Cancer. Engineering, 2017. 3(1): p. 90-97.
69. Behnsen, J., et al., Probiotics: properties, examples, and specific applications. Cold Spring Harb Perspect Med, 2013. 3(3): p. a010074.
70. Dewhirst, F.E., et al., The human oral microbiome. J Bacteriol, 2010. 192(19): p. 5002-17.
71. Darfeuille-Michaud, A., et al., Presence of adherent Escherichia coli strains in ileal mucosa of patients with Crohn's disease. Gastroenterology, 1998. 115(6): p. 1405-13.
72. Kleessen, B., et al., Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroenterol, 2002. 37(9): p. 1034-41.
73. Deitch, E.A., et al., Obstructed intestine as a reservoir for systemic infection. Am J Surg, 1990. 159(4): p. 394-401.
74. Bjarnason, I. and T.J. Peters, In vitro determination of small intestinal permeability: demonstration of a persistent defect in patients with coeliac disease. Gut, 1984. 25(2): p. 145-50.
75. Madara, J.L. and J.S. Trier, Structural abnormalities of jejunal epithelial cell membranes in celiac sprue. Lab Invest, 1980. 43(3): p. 254-61.
76. Hsiao, J.K., et al., Magnetic resonance imaging detects intestinal barrier dysfunction in a rat model of acute mesenteric ischemia/reperfusion injury. Invest Radiol, 2009. 44(6): p. 329-35.
77. Mazzon, E., et al., Effect of stress on the paracellular barrier in the rat ileum. Gut, 2002. 51(4): p. 507-13.
78. Kiliaan, A.J., et al., Stress stimulates transepithelial macromolecular uptake in rat jejunum. Am J Physiol, 1998. 275(5 Pt 1): p. G1037-44.
79. Ogura, Y., et al., A frameshift mutation in NOD2 associated with susceptibility to Crohn's disease. Nature, 2001. 411(6837): p. 603-6.
80. Duerr, R.H., et al., A genome-wide association study identifies IL23R as an inflammatory bowel disease gene. Science, 2006. 314(5804): p. 1461-3.
81. Sartor, R.B., Mechanisms of disease: pathogenesis of Crohn's disease and ulcerative colitis. Nat Clin Pract Gastroenterol Hepatol, 2006. 3(7): p. 390-407.
82. Kaser, A., S. Zeissig, and R.S. Blumberg, Inflammatory bowel disease. Annu Rev Immunol, 2010. 28: p. 573-621.
83. Cheifetz, A.S., Management of active Crohn disease. Jama, 2013. 309(20): p. 2150-8.
84. Di Sabatino, A., et al., Increased enterocyte apoptosis in inflamed areas of Crohn's disease. Dis Colon Rectum, 2003. 46(11): p. 1498-507.
85. Hollander, D., et al., Increased intestinal permeability in patients with Crohn's disease and their relatives. A possible etiologic factor. Ann Intern Med, 1986. 105(6): p. 883-5.
86. Welcker, K., et al., Increased intestinal permeability in patients with inflammatory bowel disease. Eur J Med Res, 2004. 9(10): p. 456-60.
87. Antoni, L., et al., Intestinal barrier in inflammatory bowel disease. World J Gastroenterol, 2014. 20(5): p. 1165-79.
88. Kashani, A., et al., Leclercia adecarboxylata Bacteremia in a Patient with Ulcerative Colitis. Case Rep Gastrointest Med, 2014. 2014: p. 457687.
89. Gardiner, K.R., et al., Significance of systemic endotoxaemia in inflammatory bowel disease. Gut, 1995. 36(6): p. 897-901.
90. Breslin, N.P., et al., Intestinal permeability is increased in a proportion of spouses of patients with Crohn's disease. Am J Gastroenterol, 2001. 96(10): p. 2934-8.
91. Zeissig, S., et al., Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 2007. 56(1): p. 61-72.
92. Das, P., et al., Comparative tight junction protein expressions in colonic Crohn's disease, ulcerative colitis, and tuberculosis: a new perspective. Virchows Arch, 2012. 460(3): p. 261-70.
93. Lupp, C., et al., Host-mediated inflammation disrupts the intestinal microbiota and promotes the overgrowth of Enterobacteriaceae. Cell Host Microbe, 2007. 2(2): p. 119-29.
94. Heller, F., et al., Interleukin-13 is the key effector Th2 cytokine in ulcerative colitis that affects epithelial tight junctions, apoptosis, and cell restitution. Gastroenterology, 2005. 129(2): p. 550-64.
95. Seksik, P., et al., Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut, 2003. 52(2): p. 237-42.
96. Mylonaki, M., et al., Molecular characterization of rectal mucosa-associated bacterial flora in inflammatory bowel disease. Inflamm Bowel Dis, 2005. 11(5): p. 481-7.
97. Frank, D.N., et al., Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel diseases. Proc Natl Acad Sci U S A, 2007. 104(34): p. 13780-5.
98. Tabaqchali, S., D.P. O'Donoghue, and K.A. Bettelheim, Escherichia coli antibodies in patients with inflammatory bowel disease. Gut, 1978. 19(2): p. 108-13.
99. Darfeuille-Michaud, A., et al., High prevalence of adherent-invasive Escherichia coli associated with ileal mucosa in Crohn’s disease. Gastroenterology, 2004. 127(2): p. 412-421.
100. Eaves-Pyles, T., et al., Escherichia coli isolated from a Crohn's disease patient adheres, invades, and induces inflammatory responses in polarized intestinal epithelial cells. Int J Med Microbiol, 2008. 298(5-6): p. 397-409.
101. Boudeau, J., et al., Invasive ability of an Escherichia coli strain isolated from the ileal mucosa of a patient with Crohn's disease. Infect Immun, 1999. 67(9): p. 4499-509.
102. O'Brien, C.L., et al., Comparative genomics of Crohn's disease-associated adherent-invasive Escherichia coli. Gut, 2016. 66(8): p. 1382-1389.
103. Lu, C., et al., MIR106B and MIR93 prevent removal of bacteria from epithelial cells by disrupting ATG16L1-mediated autophagy. Gastroenterology, 2014. 146(1): p. 188-99.
104. Bretin, A., et al., Activation of the EIF2AK4-EIF2A/eIF2alpha-ATF4 pathway triggers autophagy response to Crohn disease-associated adherent-invasive Escherichia coli infection. Autophagy, 2016. 12(5): p. 770-83.
105. Meraz, M.A., et al., Targeted disruption of the Stat1 gene in mice reveals unexpected physiologic specificity in the JAK-STAT signaling pathway. Cell, 1996. 84(3): p. 431-42.
106. Ossa, J.C., et al., Adherent-invasive Escherichia coli blocks interferon-gamma-induced signal transducer and activator of transcription (STAT)-1 in human intestinal epithelial cells. Cell Microbiol, 2013. 15(3): p. 446-57.
107. Glasser, A.L., et al., Adherent Invasive Escherichia coli Strains from Patients with Crohn's Disease Survive and Replicate within Macrophages without Inducing Host Cell Death. Infection and Immunity, 2001. 69(9): p. 5529-5537.
108. Bringer, M.A., et al., Replication of Crohn's disease-associated AIEC within macrophages is dependent on TNF-alpha secretion. Lab Invest, 2012. 92(3): p. 411-9.
109. Denizot, J., et al., Adherent-invasive Escherichia coli induce claudin-2 expression and barrier defect in CEABAC10 mice and Crohn's disease patients. Inflamm Bowel Dis, 2012. 18(2): p. 294-304.
110. Boudeau, J., N. Barnich, and A. Darfeuille-Michaud, Type 1 pili-mediated adherence of Escherichia coli strain LF82 isolated from Crohn's disease is involved in bacterial invasion of intestinal epithelial cells. Mol Microbiol, 2001. 39(5): p. 1272-84.
111. Carvalho, F.A., et al., Crohn's disease adherent-invasive Escherichia coli colonize and induce strong gut inflammation in transgenic mice expressing human CEACAM. J Exp Med, 2009. 206(10): p. 2179-89.
112. Chan, C.H., D. Cook, and C.P. Stanners, Increased colon tumor susceptibility in azoxymethane treated CEABAC transgenic mice. Carcinogenesis, 2006. 27(9): p. 1909-16.
113. Hamilton, W. and D. Sharp, Diagnosis of colorectal cancer in primary care: the evidence base for guidelines. Fam Pract, 2004. 21(1): p. 99-106.
114. Global Burden of Disease Cancer, C., et al., Global, Regional, and National Cancer Incidence, Mortality, Years of Life Lost, Years Lived With Disability, and Disability-Adjusted Life-years for 32 Cancer Groups, 1990 to 2015: A Systematic Analysis for the Global Burden of Disease Study. JAMA Oncol, 2017. 3(4): p. 524-548.
115. Jess, T., et al., Increased risk of intestinal cancer in Crohn's disease: a meta-analysis of population-based cohort studies. Am J Gastroenterol, 2005. 100(12): p. 2724-9.
116. Eaden, J.A., K.R. Abrams, and J.F. Mayberry, The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut, 2001. 48(4): p. 526-35.
117. Bernstein, C.N., et al., Cancer risk in patients with inflammatory bowel disease: a population-based study. Cancer, 2001. 91(4): p. 854-62.
118. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
119. Sopik, V., et al., BRCA1 and BRCA2 mutations and the risk for colorectal cancer. Clin Genet, 2015. 87(5): p. 411-8.
120. Baena, R. and P. Salinas, Diet and colorectal cancer. Maturitas, 2015. 80(3): p. 258-64.
121. Armaghany, T., et al., Genetic alterations in colorectal cancer. Gastrointest Cancer Res, 2012. 5(1): p. 19-27.
122. Valle, L., Genetic predisposition to colorectal cancer: where we stand and future perspectives. World J Gastroenterol, 2014. 20(29): p. 9828-49.
123. Song, M., W.S. Garrett, and A.T. Chan, Nutrients, foods, and colorectal cancer prevention. Gastroenterology, 2015. 148(6): p. 1244-60 e16.
124. Kohoutova, D., et al., Escherichia coli strains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infect Dis, 2014. 14: p. 733.
125. Wong, C. and K. Goh, Chronic hepatitis B infection and liver cancer. Biomed Imaging Interv J, 2006. 2(3): p. e7.
126. Leung, N., HBV and liver cancer. Med J Malaysia, 2005. 60 Suppl B: p. 63-6.
127. Pattle, S.B. and P.J. Farrell, The role of Epstein-Barr virus in cancer. Expert Opin Biol Ther, 2006. 6(11): p. 1193-205.
128. Choi, B.I., et al., Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev, 2004. 17(3): p. 540-52, table of contents.
129. Matsuoka, M., Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology, 2005. 2: p. 27.
130. Bonnet, M., et al., Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res, 2014. 20(4): p. 859-67.
131. Kostic, A.D., et al., Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res, 2012. 22(2): p. 292-8.
132. Ahn, J., et al., Human gut microbiome and risk for colorectal cancer. J Natl Cancer Inst, 2013. 105(24): p. 1907-11.
133. Chen, W., et al., Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS One, 2012. 7(6): p. e39743.
134. Gao, R., et al., Gut microbiota and colorectal cancer. Eur J Clin Microbiol Infect Dis, 2017. 36(5): p. 757-769.
135. Gagniere, J., et al., Gut microbiota imbalance and colorectal cancer. World J Gastroenterol, 2016. 22(2): p. 501-18.
136. Castellarin, M., et al., Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res, 2012. 22(2): p. 299-306.
137. Hsu, R.Y., et al., LPS-induced TLR4 signaling in human colorectal cancer cells increases beta1 integrin-mediated cell adhesion and liver metastasis. Cancer Res, 2011. 71(5): p. 1989-98.
138. Newman, J.V., et al., Bacterial infection promotes colon tumorigenesis in Apc(Min/+) mice. J Infect Dis, 2001. 184(2): p. 227-30.
139. Yurdakul, D., A. Yazgan-Karatas, and F. Sahin, Enterobacter Strains Might Promote Colon Cancer. Curr Microbiol, 2015. 71(3): p. 403-11.
140. Yu, L.C.-H., S.-C. Wei, and Y.-H. Ni, Interplay between the gut microbiota and epithelial innate signaling in colitis-associated colon carcinogenesis. Cancer Research Frontiers, 2017. 3(1): p. 1-28.
141. Choi, H.J., et al., Enteropathogenic Escherichia coli-induced macrophage inhibitory cytokine 1 mediates cancer cell survival: an in vitro implication of infection-linked tumor dissemination. Oncogene, 2013. 32(41): p. 4960-9.
142. Cougnoux, A., et al., Bacterial genotoxin colibactin promotes colon tumour growth by inducing a senescence-associated secretory phenotype. Gut, 2014. 63(12): p. 1932-42.
143. Buc, E., et al., High prevalence of mucosa-associated E. coli producing cyclomodulin and genotoxin in colon cancer. PLoS One, 2013. 8(2): p. e56964.
144. Arthur, J.C., et al., Intestinal inflammation targets cancer-inducing activity of the microbiota. Science, 2012. 338(6103): p. 120-3.
145. Dalmasso, G., et al., The bacterial genotoxin colibactin promotes colon tumor growth by modifying the tumor microenvironment. Gut Microbes, 2014. 5(5): p. 675-80.
146. Guerra, L., R. Guidi, and T. Frisan, Do bacterial genotoxins contribute to chronic inflammation, genomic instability and tumor progression? FEBS J, 2011. 278(23): p. 4577-88.
147. Raisch, J., et al., Intracellular colon cancer-associated Escherichia coli promote protumoral activities of human macrophages by inducing sustained COX-2 expression. Lab Invest, 2015. 95(3): p. 296-307.
148. Wang, D. and R.N. Dubois, The role of COX-2 in intestinal inflammation and colorectal cancer. Oncogene, 2010. 29(6): p. 781-8.
149. Prorok-Hamon, M., et al., Colonic mucosa-associated diffusely adherent afaC+ Escherichia coli expressing lpfA and pks are increased in inflammatory bowel disease and colon cancer. Gut, 2014. 63(5): p. 761-70.
150. Wu, S., et al., A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med, 2009. 15(9): p. 1016-22.
151. Goodwin, A.C., et al., Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci U S A, 2011. 108(37): p. 15354-9.
152. Rubinstein, M.R., et al., Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe, 2013. 14(2): p. 195-206.
153. Yang, Y., et al., Fusobacterium nucleatum Increases Proliferation of Colorectal Cancer Cells and Tumor Development in Mice by Activating Toll-Like Receptor 4 Signaling to Nuclear Factor-kappaB, and Up-regulating Expression of MicroRNA-21. Gastroenterology, 2017. 152(4): p. 851-866 e24.
154. Chen, Y., et al., Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget, 2017. 8(19): p. 31802-31814.
155. Abed, J., et al., Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe, 2016. 20(2): p. 215-25.
156. Kostic, A.D., et al., Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe, 2013. 14(2): p. 207-15.
157. Wang, X., Y. Yang, and M.M. Huycke, Commensal bacteria drive endogenous transformation and tumour stem cell marker expression through a bystander effect. Gut, 2015. 64(3): p. 459-68.
158. De Robertis, M., et al., The AOM/DSS murine model for the study of colon carcinogenesis: From pathways to diagnosis and therapy studies. J Carcinog, 2011. 10: p. 9.
159. Fiala, E.S., Investigations into the metabolism and mode of action of the colon carcinogens 1,2-dimethylhydrazine and azoxymethane. Cancer, 1977. 40(5 Suppl): p. 2436-45.
160. Okayasu, I., et al., Promotion of colorectal neoplasia in experimental murine ulcerative colitis. Gut, 1996. 39(1): p. 87-92.
161. Pepin, J., Vancomycin for the treatment of Clostridium difficile Infection: for whom is this expensive bullet really magic? Clin Infect Dis, 2008. 46(10): p. 1493-8.
162. Rimola, A., et al., Oral, nonabsorbable antibiotics prevent infection in cirrhotics with gastrointestinal hemorrhage. Hepatology, 1985. 5(3): p. 463-7.
163. Butler, M.S., et al., Glycopeptide antibiotics: back to the future. J Antibiot (Tokyo), 2014. 67(9): p. 631-44.
164. Van Bambeke, F., Glycopeptides and glycodepsipeptides in clinical development: a comparative review of their antibacterial spectrum, pharmacokinetics and clinical efficacy. Curr Opin Investig Drugs, 2006. 7(8): p. 740-9.
165. Levine, D.P., Vancomycin: a history. Clin Infect Dis, 2006. 42 Suppl 1: p. S5-12.
166. Haltalin, K.C., et al., Comparison of orally absorbable and nonabsorbable antibiotics in shigellosis. A double-blind study with ampicillin and neomycin. J Pediatr, 1968. 72(5): p. 708-20.
167. Kotra, L.P., J. Haddad, and S. Mobashery, Aminoglycosides: perspectives on mechanisms of action and resistance and strategies to counter resistance. Antimicrob Agents Chemother, 2000. 44(12): p. 3249-56.
168. Taber, H.W., et al., Bacterial uptake of aminoglycoside antibiotics. Microbiol Rev, 1987. 51(4): p. 439-57.
169. Hobbie, S.N., et al., Binding of neomycin-class aminoglycoside antibiotics to mutant ribosomes with alterations in the A site of 16S rRNA. Antimicrob Agents Chemother, 2006. 50(4): p. 1489-96.
170. Cherian, P.T., et al., Gastrointestinal localization of metronidazole by a lactobacilli-inspired tetramic acid motif improves treatment outcomes in the hamster model of Clostridium difficile infection. J Antimicrob Chemother, 2015. 70(11): p. 3061-9.
171. Edwards, D.I., Mechanism of antimicrobial action of metronidazole. J Antimicrob Chemother, 1979. 5(5): p. 499-502.
172. Mukherjee, T. and H. Boshoff, Nitroimidazoles for the treatment of TB: past, present and future. Future Med Chem, 2011. 3(11): p. 1427-54.
173. Tomasz, A., The mechanism of the irreversible antimicrobial effects of penicillins: how the beta-lactam antibiotics kill and lyse bacteria. Annu Rev Microbiol, 1979. 33: p. 113-37.
174. Chow, J.W., Aminoglycoside resistance in enterococci. Clin Infect Dis, 2000. 31(2): p. 586-9.
175. Yoshizawa, S., D. Fourmy, and J.D. Puglisi, Structural origins of gentamicin antibiotic action. Embo j, 1998. 17(22): p. 6437-48.
176. Seeberg, V.P., P.L. Illg, and D.J. Brown, The intestinal absorption of penicillin G. Science, 1946. 104(2702): p. 342.
177. Bhardwaj, R.K., et al., Delineation of human peptide transporter 1 (hPepT1)-mediated uptake and transport of substrates with varying transporter affinities utilizing stably transfected hPepT1/Madin-Darby canine kidney clones and Caco-2 cells. J Pharmacol Exp Ther, 2005. 314(3): p. 1093-100.
178. Bluggs, C.W., M.A. Pilling, and et al., The absorption, distribution, and excretion of streptomycin in man. J Clin Invest, 1946. 25: p. 94-102.
179. Moazed, D. and H.F. Noller, Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature, 1987. 327(6121): p. 389-94.
180. Watanabe, K., Y. Kodama, and S. Harayama, Design and evaluation of PCR primers to amplify bacterial 16S ribosomal DNA fragments used for community fingerprinting. J Microbiol Methods, 2001. 44(3): p. 253-62.
181. Muyzer, G., E.C. de Waal, and A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol, 1993. 59(3): p. 695-700.
182. Farmer, J.J., 3rd, et al., Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J Clin Microbiol, 1985. 21(1): p. 46-76.
183. Barker, N., Adult intestinal stem cells: critical drivers of epithelial homeostasis and regeneration. Nat Rev Mol Cell Biol, 2014. 15(1): p. 19-33.
184. Nambiar, P.R., et al., Preliminary analysis of azoxymethane induced colon tumors in inbred mice commonly used as transgenic/knockout progenitors. Int J Oncol, 2003. 22(1): p. 145-50.
185. Neufert, C., C. Becker, and M.F. Neurath, An inducible mouse model of colon carcinogenesis for the analysis of sporadic and inflammation-driven tumor progression. Nat Protoc, 2007. 2(8): p. 1998-2004.
186. Klimesova, K., et al., Altered gut microbiota promotes colitis-associated cancer in IL-1 receptor-associated kinase M-deficient mice. Inflamm Bowel Dis, 2013. 19(6): p. 1266-77.
187. Zackular, J.P., et al., Manipulation of the Gut Microbiota Reveals Role in Colon Tumorigenesis. mSphere, 2016. 1(1).
188. Zackular, J.P., et al., The gut microbiome modulates colon tumorigenesis. MBio, 2013. 4(6): p. e00692-13.
189. Colussi, D., et al., Molecular pathways involved in colorectal cancer: implications for disease behavior and prevention. Int J Mol Sci, 2013. 14(8): p. 16365-85.
190. Danielsen, S.A., et al., Portrait of the PI3K/AKT pathway in colorectal cancer. Biochim Biophys Acta, 2015. 1855(1): p. 104-21.
191. Hassanzadeh, P., Colorectal cancer and NF-kappaB signaling pathway. Gastroenterol Hepa
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68863-
dc.description.abstract背景:結腸直腸癌 (colorectal cancer, CRC) 的發生率在台灣已經連續八年蟬聯冠軍。而發炎性腸道疾病 (inflammatory bowel disease, IBD) 的病患罹患CRC的風險較正常人高出兩倍以上。過去對於CRC的研究主要著重在基因以及生活飲食習慣的探討,但最近逐漸發現,CRC的形成也與腸道菌叢有密切關連性。例如在IBD患者腸黏膜中所發現的黏附侵入性大腸桿菌 (Adherent-invasive Escherichia coli, AIEC) 可以透過活化巨噬細胞發炎反應而間接地影響癌症進展;具有pks基因可產生毒素colibactin的大腸桿菌 (E. coli) 則會導致上皮細胞之去氧核醣核酸 (deoxyribonucleic acid, DNA) 受損而促進腫瘤生成。然而時至今日,對於腸道菌是否可透過內化 (internalization) 至腸道上皮細胞,而影響細胞增生速率和促進腫瘤的形成則尚未明瞭。目的:探討細菌及毒性因子之入侵是否影響腸道上皮細胞的增生或死亡。方法: 給予BALB/c小鼠三個循環的氧化偶氮甲烷 (azoxymethane, AOM) 及葡聚醣硫酸鈉 (dextran sodium sulphate, DSS) 以誘導CRC產生,抗生素處理組則會經口給予含有抗生素的飲用水一週。爾後觀察小鼠腫瘤形成量及細菌內吞至大腸上皮細胞的數量,並將內化細菌分離利用16S rDNA定序辨認菌株種類。在細胞實驗的部分,將人類大腸癌細胞株Caco-2與小鼠大腸上皮細胞分離出的菌株進行共培養4小時測量細菌內吞之情形,並利用細胞計數和流式細胞術觀察24及48小時後Caco-2細胞增生情形。此外,測量細胞DNA的片段化程度代表細胞凋亡 (apoptosis),而培養液中乳酸脫氫酶之活性則代表細胞壞死 (necrosis) 的程度。結果:給予AOM/DSS會導致小鼠結直腸腫瘤的形成,以及增加大腸上皮細胞的內吞細菌量;而口服抗生素處理後可有效降低腫瘤量及減少大腸上皮細胞的細菌量。這些內化至腸道上皮細胞的細菌包括有Escherichia coli、Enterobacter cloacae、Enterococcus faecalis、Staphylococcus。將這些細菌與Caco-2細胞共培養進行實驗則可以發現,小鼠腸道上皮內化的E. coli和人類AIEC LF82具有最強的入侵能力,且可以在細胞中存活至少五天。小鼠腸道上皮分離的E. coli含毒性因子fimA、fimH、htrA,但不含pksR和dsbA;其入侵能力和毒性因子皆會隨著重複內化至細胞中而增加。此外,小鼠腸道上皮細胞分離的E.coli感染Caco-2細胞後會導致Caco-2細胞數目增加和細胞週期加速;但若將細菌的毒性因子htrA基因剔除,Caco-2細胞增生加速現象則隨之消失。最後,E.coli亦會導致細胞凋亡但無細胞壞死情形。結論:抗生素處理可抑制小鼠腸道腫瘤的形成和降低腸道上皮細胞的細菌內吞量,顯示細菌與致癌有關。腸道上皮細胞內吞的E.coli表現毒性因子htrA,且會促進上皮細胞增生,因此在腫瘤形成的過程中可能扮演著重要的角色。zh_TW
dc.description.abstractBackground: The incidence of colorectal cancer (CRC) had been the highest among other types of cancers for 8 years in Taiwan; patients with inflammatory bowel disease (IBD) had a higher risk. Beyond the notion of heredity and living habits, colonic bacteria also play critical roles in tumor formation. The IBD-associated adherent-invasive Escherichia coli (AIEC) activate macrophages to promote tumorigenesis indirectly through inflammatory response. The pks+ colibactin-producing E. coli caused epithelial cell DNA damage to promote tumor growth. However, it remains unclear whether bacterial internalization may increase epithelial cell proliferation and tumorigenesis. Aim: To investigate whether the invasion of intestinal bacteria and virulence factors may promote epithelial proliferation and/or cell death. Methods: BALB/c mice were subjected to chemical induction of CRC by three cycles of azoxymethane (AOM)/dextran sodium sulfate (DSS). In some groups, antibiotics were administered to AOM/DSS (A/D) mice. Bacteria isolated from mouse colonocytes were sequenced for 16S rDNA. Human Caco-2BBe cells were apically exposed to the mouse internalized bacteria for 4 hours for measurement of bacterial endocytosis. Cell proliferation was measured by cell number counting and flow cytometry. Cell death was determined by DNA fragmentation and lactodehydrogenase assay. Results: Mice subjected to AOM/DSS developed colorectal tumors and exhibited increased bacterial internalization in colonocytes. Treatment with antibiotics reduced the tumor burden, as well as the endocytosed bacterial counts. The mouse endocytosed bacterial strains included Escherichia coli、Enterobacter cloacae、Enterococcus faecalis、Staphylococcus. By in vitro co-culture experiments with Caco-2 cells, higher levels of bacterial internalization were found after challenge with mouse isolated E. coli and human AIEC LF82 strains, compared to Enterobacter, Enterococcus and Staphylococcus. Moreover, the mouse internalized E. coli survived in Caco-2 cells for at least 5 days. The mouse internalized E. coli expressed virulence factors such as fimA, fimH and htrA, but not pksR or dsbA; the bacterial invasive ability and virulent levels were both increased following sequential passage into Caco-2 cells. Lastly, mouse isolated E. coli incresaed cell proliferation and cycle progression of Caco-2 cells, of which deletion of bacterial htrA gene abolished the cellular hyperproliferative effects. In addition, mouse isolated E.coli also induced apoptosis, but not necrosis, of Caco-2 cells. Conclusions: Antibiotic treatment inhibited colon tumorigenesis in mouse models, which may be partly through reducing bacterial endocytosis. Internalized E. coli expressed virulence factors and induced epithelial hyperproliferation, suggesting that the bacteria may play an important role in tumorigenesis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:39:11Z (GMT). No. of bitstreams: 1
ntu-106-R04441005-1.pdf: 2073720 bytes, checksum: c9fef6b7ac991e766e9887b0427164df (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖表目錄 IX
ㄧ、前言 1
1. 腸道屏障功能 (Intestinal barrier function) 1
2. 上皮細胞通透性 (Epithelial permeability) 2
2.1 間細胞途徑 (paracellular pathway) 3
2.2 穿細胞途徑 (transcellular pathway) 4
3. 腸腔之常生細菌 (commensals) 5
3.1 共生菌 (symbiotics) 5
3.2 病生菌 (pathobiont) 6
4. 腸道屏障功能失常和腸道菌相失衡之相關疾病 6
4.1 發炎性腸道疾病 (inflammatory bowel disease, IBD) 7
4.1.1 發炎性腸道疾病與腸道屏障功能失常之關聯 7
4.1.2 發炎性腸道疾病與腸道菌相失衡之關聯 8
4.2 結腸直腸癌 (colorectal cancer, CRC) 10
4.2.1 結腸直腸癌與腸道菌叢之關聯 10
5. 研究目的與假設 12
二、材料與方法 13
1. 動物模式 13
1.1 發炎性結腸直腸癌模式 (Colitis-associated colorectal cancer model) 13
1.2 單獨給予AOM或DSS藥劑組別 16
2. 結直腸腫瘤數量及大小測量 16
3. 小鼠腸道上皮細胞分離技術 (epithelial cell isolation) 及內吞細菌計數 16
3.1 內吞細菌之定量分析 (bacteria endocytosis assay/gentamicin resistant assay) 17
4. 內吞細菌之定性分析 17
4.1 菌種分析-16S核糖體去氧核醣核酸 (16S ribosomal DNA, 16S rDNA) 定序 17
4.1.1 萃取細菌之去氧核醣核酸 (DNA) 17
4.1.2 細菌16S rDNA之聚合酶連鎖反應 (Polymerase Chain Reaction, PCR) 18
4.1.3 PCR產物 (16S rDNA) 純化 18
4.1.4 16S rDNA定序及分析 18
4.2 細菌毒性因子分析 19
4.2.1 細菌毒性因子之聚合酶連鎖反應 (PCR) 19
4.2.2 電泳 (Electrophoresis) 20
4.3 細菌生長曲線繪製 21
4.4 區別腸桿菌科細菌的方法 (IMViC test) 21
4.4.1 蚓垛試驗 (Indole test) 21
4.4.2 甲基紅試驗 (Methyl red test) 21
4.4.3 伏普試驗 (Voges Proskauer test) 22
4.4.4 檸檬酸鹽利用試驗 (Citrate utilization test) 22
5. 小鼠糞便之細菌抗藥性測試 (VNMA resistance test) 22
6. 細菌毒性因子htrA剔除 (htrA deletion) 22
7. 細胞實驗 24
7.1 細菌共培養實驗 24
7.2 細胞內吞細菌計數 (bacteria endocytosis assay/gentamicin resistant assay) 25
7.3 細胞上層細菌計數 (apical bacteria count) 25
8. 細胞週期分析 (cell cycle analysis) 和流式細胞技術 (flow cytometry) 26
9. 細胞死亡分析 (cell death analysis) 26
9.1 凋亡 (apoptosis) 測定 26
9.2 壞死 (necrosis) 測定 27
9.3 缺口末端標記技術 (TdT-mediate dUTP-biotin nick end labeling, TUNEL) 28
10. 細胞質之蛋白質萃取 29
11. 西方墨點法 (Western blotting) 29
11.1 十二烷基硫酸鈉聚丙烯酰胺凝膠電泳 (sodium dodecyl sulfate polyacrylamide gel electrophoresis, SDS-PAGE) 29
11.1.1 膠體製備 30
11.1.2 電泳 30
11.2 轉漬 (Transferring) 30
11.3 封鎖 (Blocking) 31
11.4 一級抗體及二級抗體之免疫結合 31
12. 統計分析方法 (Statistical analysis) 32
三、結果 33
1. 腸癌小鼠模式中飲用抗生素之病理變化 33
1.1 抗生素處理可降低結直腸腫瘤量 33
1.2 抗生素處理對於腫瘤細胞增生及死亡的影響 33
1.3 抗生素處理對於腫瘤組織中訊息途徑的調控 33
1.4 抗生素處理可減少小鼠糞便的細菌量 34
1.5 抗生素組小鼠糞便中的細菌對於VNMA並無抗藥性 34
1.6 抗生素處理可減少小鼠腸道上皮細胞之內吞細菌量 34
2. 小鼠大腸上皮細胞及人類黏膜所分離出的細菌特性 35
2.1 細菌之生長曲線無明顯差異性 36
2.2 細菌進入上皮細胞的數量呈現劑量效應 (dose response) 36
2.3 共培養實驗中七株細菌的內化量和生長量比較 37
2.4 E.coli的入侵能力隨著重複的細胞內化而越來越強 37
2.5 E.coli之毒性因子隨著重複的細胞內化而表現量增加 38
2.6 腸桿菌科細菌可於上皮細胞存活至少五天 38
3. 小鼠大腸上皮及人類腸道黏膜內化的細菌對於上皮細胞增生或死亡的影響 38
3.1 小鼠大腸上皮及人類黏膜分離之E.coli可促進Caco-2增生 38
3.2 剔除htrA基因之E.coli無法促進Caco-2增生 39
3.3 小鼠大腸上皮及人類黏膜分離之E.coli會導致Caco-2凋亡但不造成壞死 39
四、討論 41
五、附表與附圖 47
六、文獻參考 65
dc.language.isozh-TW
dc.title發炎性腸癌模式中上皮細胞對內吞細菌之反應探討zh_TW
dc.titleIntestinal Epithelial Response to Bacterial Endocytosis in Colitis-associated Colon Cancersen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee倪衍玄(Yen-Hsuan Ni),舒竹青(Jwu-Ching Shu)
dc.subject.keyword結腸直腸癌,大腸桿菌,細菌內吞,細胞增生,zh_TW
dc.subject.keywordcolorectal cancer,Escherichia coli,bacterial endocytosis,cell proliferation,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201703801
dc.rights.note有償授權
dc.date.accepted2017-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept生理學研究所zh_TW
顯示於系所單位:生理學科所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
2.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved