Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68850
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳耀銘(Yaow-Ming Chen)
dc.contributor.authorLi-Huan Kaoen
dc.contributor.author高立桓zh_TW
dc.date.accessioned2021-06-17T02:38:32Z-
dc.date.available2018-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.citation[1] I. H. Hwang, K. S. Ahn, H. C. Lim, and S. S. Kim, 'Design, development and performance of a 50 kW grid connected PV system with three phase current-controlled inverter,' in Proc. IEEE. Photovoltaic Specialists Conference, Anchorage, AK, 2000, pp. 1664-1667.
[2] Y. Shi, R. Li, Y. Xue, and H. Li, 'High-frequency-link-based grid-tied PV system with small DC-link capacitor and low-frequency ripple-free maximum power point tracking,' IEEE Trans. Power Electron., vol. 31, no. 1, pp. 328-339, Jan. 2016.
[3] L. Zhang, K. Sun, Y. Xing, and J. Zhao, 'Parallel operation of modular single-phase transformerless grid-tied PV inverters with common DC bus and AC bus,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 3, no. 4, pp. 858-869, Dec. 2015.
[4] L. B. G. Campanhol, S. A. O. da Silva, A. A. de Oliveira, and V. D. Bacon, 'Dynamic performance improvement of a grid-tied PV system using a feed-forward control loop acting on the NPC inverter currents,' IEEE Trans. Ind. Electron., vol. 64, no. 3, pp. 2092-2101, Mar. 2017.
[5] M. O. Badawy and Y. Sozer, 'Power flow management of a grid tied PV-battery system for electric vehicles charging,' IEEE Trans. Ind. Appl., vol. 53, no. 2, pp. 1347-1357, Mar./Apr. 2017.
[6] J. F. Ardashir, M. Sabahi, S. H. Hosseini, F. Blaabjerg, E. Babaei, and G. B. Gharehpetian, 'A single-phase transformerless inverter with charge pump circuit concept for grid-tied PV applications,' IEEE Trans. Ind. Electron., vol. 64, no. 7, pp. 5403-5415, Jul. 2017.
[7] R. Teodorescu, M. Liserre, P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems, ISBN: 978-0-470-05751-3, Wiley-IEEE Press, Feb. 2011.
[8] J. Kim and C. Kim, 'A DC–DC boost converter with variation tolerant MPPT technique and efficient ZCS circuit for thermoelectric energy harvesting applications,' IEEE Trans. Power Electron., vol. 28, no. 8, pp. 3827-3833, Aug. 2013.
[9] H. C. Chen and W. J. Lin, 'MPPT and voltage balancing control with sensing only inductor current for photovoltaic-fed, three-level, boost-type converters,' IEEE Trans. Power Electron., vol. 29, no. 1, pp. 29-35, Jan. 2014.
[10] D. G. Montoya, C. A. Ramos-Paja, and R. Giral, 'Improved design of sliding-mode controllers based on the requirements of MPPT techniques,' IEEE Trans. Power Electron., vol. 31, no. 1, pp. 235-247, Jan. 2016.
[11] C.-Y. Tang, Y.-T. Chen, and Y.-M. Chen, 'PV power system with multi-mode operation and low-voltage ride-through capability,' IEEE Trans. Ind. Electron., vol. 62, no. 12, pp. 7524-7533, Dec. 2015.
[12] N. Kumar, T. K. Saha, and J. Dey, 'Sliding-mode control of PWM dual inverter-based grid-connected PV system: modeling and performance analysis,' IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 2, pp. 435-444, Jun. 2016.
[13] L. Moran, P. Ziogas, and G. Joos, “Design aspects of synchronous PWM rectifier-inverter systems under unbalanced input voltage conditions,” IEEE Trans. Ind. Appl., vol. 28, no. 6, pp. 1286–1293, Nov./Dec. 1992.
[14] M. Liserre, C. Klumpner, F. Blaabjerg, V. Monopoli, and A. Dell’Aquila, “Evaluation of the ride-through capability of an active-front-end adjustable speed drive under real grid conditions,” in Proc. IEEE IECON, 2004, pp. 1688–1693.
[15] E. Afshari, G. R. Moradi, Y. Yang, B. Farhangi, and S. Farhangi, 'A review on current reference calculation of three-phase grid-connected PV converters under grid faults,' in Proc. IEEE PECI, Champaign, Illinois, 2017, pp. 1-7.
[16] H. D. Tafti, A. I. Maswood, Z. Lim, G. H. P. Ooi, and P. H. Raj, 'A review of active/reactive power control strategies for PV power plants under unbalanced grid faults,' in Proc. IEEE ISGT ASIA, Bangkok, 2015, pp. 1-6.
[17] P. Rodriguez, A. V. Timbus, R. Teodorescu, M. Liserre, and F. Blaabjerg, 'Flexible active power control of distributed power generation systems during grid faults,' IEEE Trans. Ind. Electron., vol. 54, no. 5, pp. 2583-2592, Oct. 2007.
[18] K. Ma, W. Chen, M. Liserre, and F. Blaabjerg, 'Power controllability of a three-phase converter with an unbalanced AC source,' IEEE Trans. Power Electron., vol. 30, no. 3, pp. 1591-1604, Mar. 2015.
[19] D. P. Hohm and M. E. Ropp, 'Comparative study of maximum power point tracking algorithms using an experimental, programmable, maximum power point tracking test bed,' in Proc. IEEE. Photovoltaic Specialists Conference, Anchorage, AK, 2000, pp. 1699-1702.
[20] K. H. Hussein, I. Muta, T. Hoshino, and M. Osakada, 'Maximum photovoltaic power tracking: an algorithm for rapidly changing atmospheric conditions,' in Proc. IEE. Generation, Transmission and Distribution, vol. 142, no. 1, pp. 59-64, Jan. 1995.
[21] N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, 'Optimization of perturb and observe maximum power point tracking method,' IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963-973, Jul. 2005.
[22] A. Durgadevi, S. Arulselvi, and S. P. Natarajan, 'Study and implementation of maximum power point tracking (MPPT) algorithm for photovoltaic systems,' in Proc. IEEE. ICEES, Newport Beach, CA, 2011, pp. 240-245.
[23] C. T. Rim, D. Y. Hu, and G. H. Cho, 'Transformers as equivalent circuits for switches: general proofs and D-Q transformation-based analyses,' IEEE Trans. Ind. Appl., vol. 26, no. 4, pp. 777-785, Jul./Aug. 1990.
[24] S.-B. Han, N.-S. Choi, C.-T. Rim, and G.-H. Cho, 'Modeling and analysis of static and dynamic characteristics for buck-type three-phase PWM rectifier by circuit DQ transformation,' IEEE Trans. Power Electron., vol. 13, no. 2, pp. 323-336, Mar. 1998.
[25] M. Liang and T. Q. Zheng, 'Synchronous PI control for three-phase grid-connected photovoltaic inverter,' Chinese Control and Decision Conference, Xuzhou, 2010, pp. 2302-2307.
[26] F. Chen, Q. Zhang, A. Amirahmadi, and I. Batarseh, 'Modeling and analysis of DC-link voltage for three-phase four-wire two-stage micro-inverter,' in Proc. IEEE APEC, 2014, Fort Worth, TX, 2014, pp. 3000-3005.
[27] J. Jung, S. Lim, and K. Nam, 'A feedback linearizing control scheme for a PWM converter-inverter having a very small DC-link capacitor,' IEEE Trans. Ind. Appl., vol. 35, no. 5, pp. 1124-1131, Sep./Oct. 1999.
[28] N. Hur, J. Jung, and K. Nam, 'A fast dynamic DC-link power-balancing scheme for a PWM converter-inverter system,' IEEE Trans. Ind. Appl., vol. 48, no. 4, pp. 794-803, Aug 2001.
[29] M. Hagiwara and H. Akagi, 'An approach to regulating the DC-link voltage of a voltage-source BTB system during power line faults,' IEEE Trans. Ind. Appl., vol. 41, no. 5, pp. 1263-1271, Sep./Oct. 2005.
[30] J. Alcalá, E. Bárcenas, and V. Cárdenas, 'Practical methods for tuning PI controllers in the DC-link voltage loop in Back-to-Back power converters,' in Proc. IEEE IPEC, San Luis Potosi, 2010, pp. 46-52.
[31] Q. N. Trinh and H. H. Lee, 'An advanced current control strategy for three-phase shunt active power filters,' IEEE Trans. Ind. Electron., vol. 60, no. 12, pp. 5400-5410, Dec. 2013.
[32] L. Shen, G. Asher, S. Bozhko, P. Chintanbhai, and P. Wheeler, 'Active DC bus capacitor harmonic current minimization method for back-to-back converters,' in Proc. IET PEMD, Manchester, 2014, pp. 1-5.
[33] Z. Qin, H. Wang, F. Blaabjerg, and P. C. Loh, 'Investigation into the control methods to reduce the DC-link capacitor ripple current in a back-to-back converter,' in Proc. IEEE ECCE, Pittsburgh, PA, 2014, pp. 203-210.
[34] B.-G. Gu and K. Nam, 'A DC-link capacitor minimization method through direct capacitor current control,' IEEE Trans. Ind. Appl., vol. 42, no. 2, pp. 573-581, Mar./Apr. 2006.
[35] L. Yin, Z. Zhao, T. Lu, F. He, and L. Yuan, 'A predictive DC voltage control scheme for back-to-back converters based on energy balance modeling,' International Conference on Electrical Machines and Systems, Beijing, 2011, pp. 1-6.
[36] Y. M. Chen, C. H. Chang, and H. C. Wu, 'DC-link capacitor selections for the single-phase grid-connected PV system,' in Proc. IEEE PEDS, Taipei, 2009, pp. 72-77.
[37] Y. M. Chen, C. S. Cheng, and H. C. Wu, 'Grid-connected hybrid PV/wind power generation system with improved DC bus voltage regulation strategy,' in Proc. IEEE APEC, 2006, Dallas, TX, 2006, pp. 1088-1094.
[38] Y. M. Chen, H. C. Wu, Y. C. Chen, K. Y. Lee, and S. S. Shyu, 'The AC line current regulation strategy for the grid-connected PV system,' IEEE Trans. Power Electron., vol. 25, no. 1, pp. 209-218, Jan. 2010.
[39] Copper Development Association. (2002). Power Quality and Utilisation Guide [Online]. Available: http://copperalliance.org.uk/resource-library/power-quality-and-utilisation-guide
[40] E. J. Coster, J. M. A. Myrzik, and W. L. Kling, 'Effect of grid disturbances on fault-ride-through behaviour of MV-connected DG-units, in especially CHP-plants,' in Proc. CIGRE/IEEE PES Joint Symposium, Calgary, AB, 2009, pp. 1-11.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68850-
dc.description.abstract本論文提出了一種新的控制方法,即三相併網太陽能電力系統的直流匯流排電壓漣波消除方法,它可以消除不平衡電網條件下的直流匯流排漣波。當電網故障發生時,由於不平衡電壓,傳統的太陽能換流器會產生兩倍市電頻率振盪的實虛功,導致直流匯流排電壓波動,對太陽能系統的穩定性造成不利影響。除此之外,注入電網的電流可能會失真。
本文提出的直流匯流排電壓漣波消除方法的目的是消除不平衡電網下的直流匯流排電壓漣波,並且不需要額外的電路。此外,前級轉換器和後級換流器之間的通信機制是不必要的。本論文介紹此方法的操作原理和數學推導,並從電腦模擬結果和1kVA原型機實作來驗證該方法的可行性。
zh_TW
dc.description.abstractA new control method, the dc-link voltage ripple cancellation (DVRC), for three-phase grid-tied PV power systems is proposed to cancel the dc-link ripple during unbalanced grid conditions. When a grid fault occurs, the conventional PV inverter system will generate double-line frequency active/reactive power due to the unbalanced grid voltage. It causes the dc-link voltage fluctuating, which is bad for PV system's stability. Moreover, the current injected to the grid may suffer from distortion.
The objective of the proposed DVRC method is to cancel the dc-link voltage ripple in an unbalanced grid without the need of additional circuits. Besides, communication mechanisms between the front-end converter and the rear-end inverter are not necessary. Operational principles and mathematical derivations of the proposed DVRC are presented in this thesis. Both simulation results and hardware verifications obtained from a 1kVA prototype circuit demonstrate the feasibility of the proposed DVRC method.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:38:32Z (GMT). No. of bitstreams: 1
ntu-106-R04921019-1.pdf: 3403326 bytes, checksum: 46d567ed1a6c680e50204054c6af03e2 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS v
LIST OF FIGURES viii
LIST OF TABLES xi
ABBREVIATIONS xii
Chapter 1 Introduction 1
1.1 Background 1
1.2 Motivation 2
1.3 Outline 3
Chapter 2 Review of Three-Phase Grid-Tied PV Power Systems 5
2.1 Overview 5
2.2 Power Converter 6
2.2.1 PV Panel 6
2.2.2 Maximum Power Point Tracking (MPPT) 8
2.3 Three-phase Inverter 9
2.3.1 Circuit Configuration 10
2.3.2 Sinusoidal Pulse Width Modulation (SPWM) 10
2.3.3 Power Flow Control 13
2.3.4 DC-Link Voltage Control 17
2.4 Unbalanced Grid Conditions 18
2.4.1 Causes of Unbalance 19
2.4.2 Types of Fault Conditions 19
2.4.3 Oscillation Power Issue 20
Chapter 3 DC-Link Voltage Ripple Cancellation 22
3.1 DVRC Concept 22
3.2 Mathematical Derivation 24
3.3 Computer Simulation and Verification 28
3.3.1 Normal Grid Condition 28
3.3.2 Unbalanced Grid Condition 29
Chapter 4 Hardware Implementation 32
4.1 Circuit Diagram and Specifications 32
4.2 Inverter Power Stage 36
4.2.1 IGBT 36
4.2.2 Pre-charge Resistor and Bypass Relay 37
4.2.3 DC-Link Capacitor Design 38
4.3 Inverter Control Stage 39
4.3.1 Microcontroller 39
4.3.2 Peripheral Circuit 40
4.3.3 Voltage and Current Detection Circuit 43
4.3.4 Driver Circuit 45
4.4 Boost Control Stage 46
4.4.1 Voltage and Current Detection Circuit 46
4.4.2 DVRC Signal Processing Circuit 48
4.5 System Control Procedure 52
4.5.1 Front-End Boost Converter Control Procedures 52
4.5.2 Rear-End Inverter Control Procedures 58
Chapter 5 Experimental Results 62
5.1 Normal Grid Condition 62
5.2 Unbalanced Grid Condition 66
Chapter 6 Conclusions and Future Works 71
6.1 Conclusions 71
6.2 Future Works 72
REFERENCES 73
dc.language.isoen
dc.subject兩倍市電頻率zh_TW
dc.subject直流匯流排電壓漣波zh_TW
dc.subject不平衡電力系統zh_TW
dc.subject三相併網太陽能換流器zh_TW
dc.subjectthree-phase grid-tied PV inverteren
dc.subjectunbalanced power systemen
dc.subjectdc-link voltage rippleen
dc.subjectdouble-line frequencyen
dc.title三相併網太陽能換流器之直流匯流排電壓漣波消除方法zh_TW
dc.titleThe DC-Link Voltage Ripple Cancellation Method for Three-Phase Grid-Tied PV Invertersen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳德玉(Dan Chen),陳景然(Ching-Jan Chen),邱煌仁(Huang-Jen Chiu)
dc.subject.keyword三相併網太陽能換流器,不平衡電力系統,直流匯流排電壓漣波,兩倍市電頻率,zh_TW
dc.subject.keywordthree-phase grid-tied PV inverter,unbalanced power system,dc-link voltage ripple,double-line frequency,en
dc.relation.page78
dc.identifier.doi10.6342/NTU201703639
dc.rights.note有償授權
dc.date.accepted2017-08-17
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.32 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved