Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68827Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 李雅珍(Ya-Jane Lee) | |
| dc.contributor.author | Po-Yao Huang | en |
| dc.contributor.author | 黃柏堯 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:37:22Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | Hershko, C., et al., Non-specific serum iron in thalassaemia: an abnormal serum iron fraction of potential toxicity. Br J Haematol, 1978. 40(2): p. 255-63. Brissot, P., et al., Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta, 2012. 1820(3): p. 403-10. Winterbourn, C.C., Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology letters, 1995. 82: p. 969-974. Dixon, S.J., et al., Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell, 2012. 149(5): p. 1060-72. Sharma, S., Role of redox iron towards an increase in mortality among patients: a systemic review and meta-analysis. Blood Res, 2019. 54(2): p. 87-101. Leaf, D.E. and D.W. Swinkels, Catalytic iron and acute kidney injury. Am J Physiol Renal Physiol, 2016. 311(5): p. F871-F876. Nakanishi, T., M. Nanami, and T. Kuragano, The pathogenesis of CKD complications; Attack of dysregulated iron and phosphate metabolism. Free Radic Biol Med, 2020. Prakash, M., S. Upadhya, and R. Prabhu, Serum non-transferrin bound iron in hemodialysis patients not receiving intravenous iron. Clin Chim Acta, 2005. 360(1-2): p. 194-8. Geisser, P. and S. Burckhardt, The pharmacokinetics and pharmacodynamics of iron preparations. Pharmaceutics, 2011. 3(1): p. 12-33. Wang, D., et al., Transfusion of older stored blood worsens outcomes in canines depending on the presence and severity of pneumonia. Transfusion, 2014. 54(7): p. 1712-24. Barrouin-Melo, S.M., et al., Evaluating oxidative stress, serological- and haematological status of dogs suffering from osteoarthritis, after supplementing their diet with fish or corn oil. Lipids Health Dis, 2016. 15(1): p. 139. McCown, J.L. and A.J. Specht, Iron homeostasis and disorders in dogs and cats: a review. J Am Anim Hosp Assoc, 2011. 47(3): p. 151-60. Winterbourn, C.C., Toxicity of iron and hydrogen peroxide: the Fenton reaction. Toxicology Letters, 1995. 82-83: p. 969-974. van Swelm, R.P.L., J.F.M. Wetzels, and D.W. Swinkels, The multifaceted role of iron in renal health and disease. Nat Rev Nephrol, 2020. 16(2): p. 77-98. Paoli, M., J. Marles-Wright, and A. Smith, Structure-function relationships in heme-proteins. DNA Cell Biol, 2002. 21(4): p. 271-80. Schuth, N., et al., Effective intermediate-spin iron in O2-transporting heme proteins. Proc Natl Acad Sci U S A, 2017. 114(32): p. 8556-8561. Carter, E.L., Y. Ramirez, and S.W. Ragsdale, The heme-regulatory motif of nuclear receptor Rev-erbbeta is a key mediator of heme and redox signaling in circadian rhythm maintenance and metabolism. J Biol Chem, 2017. 292(27): p. 11280-11299. Braymer, J.J. and R. Lill, Iron-sulfur cluster biogenesis and trafficking in mitochondria. J Biol Chem, 2017. 292(31): p. 12754-12763. Heuer, A., et al., Structure of the 40S-ABCE1 post-splitting complex in ribosome recycling and translation initiation. Nat Struct Mol Biol, 2017. 24(5): p. 453-460. Johnson, N.B., et al., A synergistic role of IRP1 and FBXL5 proteins in coordinating iron metabolism during cell proliferation. J Biol Chem, 2017. 292(38): p. 15976-15989. Liu, Y., et al., A [3Fe-4S] cluster is required for tRNA thiolation in archaea and eukaryotes. Proc Natl Acad Sci U S A, 2016. 113(45): p. 12703-12708. Lushchak, O.V., et al., Aconitase post-translational modification as a key in linkage between Krebs cycle, iron homeostasis, redox signaling, and metabolism of reactive oxygen species. Redox Rep, 2014. 19(1): p. 8-15. Ganz, T., Systemic iron homeostasis. Physiol Rev, 2013. 93(4): p. 1721-41. Fischbach, F.A., et al., On the structure of hemosiderin and its relationship to ferritin. Journal of Ultrastructure Research, 1971. 37(5-6): p. 495-503. Knovich, M.A., et al., Ferritin for the clinician. Blood Rev, 2009. 23(3): p. 95-104. Kell, D.B. and E. Pretorius, Serum ferritin is an important inflammatory disease marker, as it is mainly a leakage product from damaged cells. Metallomics, 2014. 6(4): p. 748-73. Wang, W., et al., Serum ferritin: Past, present and future. Biochim Biophys Acta, 2010. 1800(8): p. 760-9. Torti, F.M. and S.V. Torti, Regulation of ferritin genes and protein. Blood, 2002. 99(10): p. 3505-16. Canonne-Hergaux, F., et al., Characterization of the iron transporter DMT1 (NRAMP2/DCT1) in red blood cells of normal and anemic mk/mk mice. Blood, 2001. 98(13): p. 3823-30. Delaby, C., et al., Subcellular localization of iron and heme metabolism related proteins at early stages of erythrophagocytosis. PLoS One, 2012. 7(7): p. e42199. Duffy, S.P., et al., The Fowler syndrome-associated protein FLVCR2 is an importer of heme. Mol Cell Biol, 2010. 30(22): p. 5318-24. Keel, S.B., et al., A heme export protein is required for red blood cell differentiation and iron homeostasis. Science, 2008. 319(5864): p. 825-8. Canonne-Hergaux, F., et al., Comparative studies of duodenal and macrophage ferroportin proteins. Am J Physiol Gastrointest Liver Physiol, 2006. 290(1): p. G156-63. Ramey, G., et al., Hepcidin targets ferroportin for degradation in hepatocytes. Haematologica, 2010. 95(3): p. 501-4. Mitchell, C.J., et al., Functional properties of human ferroportin, a cellular iron exporter reactive also with cobalt and zinc. Am J Physiol Cell Physiol, 2014. 306(5): p. C450-9. Cherukuri, S., et al., Unexpected role of ceruloplasmin in intestinal iron absorption. Cell Metab, 2005. 2(5): p. 309-19. Hilton, R.J., et al., Phosphate inhibits in vitro Fe3+ loading into transferrin by forming a soluble Fe(III)-phosphate complex: a potential non-transferrin bound iron species. J Inorg Biochem, 2012. 110: p. 1-7. Li, J.Y., et al., Scara5 is a ferritin receptor mediating non-transferrin iron delivery. Dev Cell, 2009. 16(1): p. 35-46. Sibille, J.C., H. Kondo, and P. Aisen, Interactions between isolated hepatocytes and Kupffer cells in iron metabolism: a possible role for ferritin as an iron carrier protein. Hepatology, 1988. 8(2): p. 296-301. van Swelm, R.P., et al., Renal Handling of Circulating and Renal-Synthesized Hepcidin and Its Protective Effects against Hemoglobin-Mediated Kidney Injury. J Am Soc Nephrol, 2016. 27(9): p. 2720-32. Qiao, B., et al., Hepcidin-induced endocytosis of ferroportin is dependent on ferroportin ubiquitination. Cell Metab, 2012. 15(6): p. 918-24. Canali, S., et al., Endothelial cells produce bone morphogenetic protein 6 required for iron homeostasis in mice. Blood, 2017. 129(4): p. 405-414. Coffey, R. and T. Ganz, Erythroferrone: An Erythroid Regulator of Hepcidin and Iron Metabolism. Hemasphere, 2018. 2(2): p. e35. Kautz, L., et al., Iron regulates phosphorylation of Smad1/5/8 and gene expression of Bmp6, Smad7, Id1, and Atoh8 in the mouse liver. Blood, 2008. 112(4): p. 1503-9. Wu, X.G., et al., HFE interacts with the BMP type I receptor ALK3 to regulate hepcidin expression. Blood, 2014. 124(8): p. 1335-43. Latour, C., et al., Differing impact of the deletion of hemochromatosis-associated molecules HFE and transferrin receptor-2 on the iron phenotype of mice lacking bone morphogenetic protein 6 or hemojuvelin. Hepatology, 2016. 63(1): p. 126-37. Gallitz, I., et al., Deficiency of the BMP Type I receptor ALK3 partly protects mice from anemia of inflammation. BMC Physiol, 2018. 18(1): p. 3. Ganz, T. and E. Nemeth, Hepcidin and iron homeostasis. Biochim Biophys Acta, 2012. 1823(9): p. 1434-43. Ganz, T., et al., Immunoassay for human serum hepcidin. Blood, 2008. 112(10): p. 4292-7. Zaritsky, J., et al., Reduction of serum hepcidin by hemodialysis in pediatric and adult patients. Clin J Am Soc Nephrol, 2010. 5(6): p. 1010-4. Pak, M., et al., Suppression of hepcidin during anemia requires erythropoietic activity. Blood, 2006. 108(12): p. 3730-5. Kautz, L., et al., Identification of erythroferrone as an erythroid regulator of iron metabolism. Nat Genet, 2014. 46(7): p. 678-84. Arezes, J., et al., Erythroferrone inhibits the induction of hepcidin by BMP6. Blood, 2018. 132(14): p. 1473-1477. Preza, G.C., et al., Minihepcidins are rationally designed small peptides that mimic hepcidin activity in mice and may be useful for the treatment of iron overload. J Clin Invest, 2011. 121(12): p. 4880-8. Hasegawa, S., T. Tanaka, and M. Nangaku, Hypoxia-inducible factor stabilizers for treating anemia of chronic kidney disease. Curr Opin Nephrol Hypertens, 2018. 27(5): p. 331-338. Koury, M.J. and V.H. Haase, Anaemia in kidney disease: harnessing hypoxia responses for therapy. Nat Rev Nephrol, 2015. 11(7): p. 394-410. Anderson, S.A., et al., The IRP1-HIF-2alpha axis coordinates iron and oxygen sensing with erythropoiesis and iron absorption. Cell Metab, 2013. 17(2): p. 282-90. Wilkinson, N. and K. Pantopoulos, The IRP/IRE system in vivo: insights from mouse models. Front Pharmacol, 2014. 5: p. 176. Pantopoulos, K., Iron metabolism and the IRE/IRP regulatory system: an update. Ann N Y Acad Sci, 2004. 1012: p. 1-13. Dev, S. and J.L. Babitt, Overview of iron metabolism in health and disease. Hemodial Int, 2017. 21 Suppl 1: p. S6-S20. Jameson, J.L., Harrison's principles of internal medicine. 2018: McGraw-Hill Education. Brugnara, C., B. Schiller, and J. Moran, Reticulocyte hemoglobin equivalent (Ret He) and assessment of iron-deficient states. Clin Lab Haematol, 2006. 28(5): p. 303-8. Miwa, N., et al., Usefulness of measuring reticulocyte hemoglobin equivalent in the management of haemodialysis patients with iron deficiency. Int J Lab Hematol, 2010. 32(2): p. 248-55. Fry, M.M. and C.A. Kirk, Reticulocyte indices in a canine model of nutritional iron deficiency. Vet Clin Pathol, 2006. 35(2): p. 172-81. Radakovich, L.B., K.S. Santangelo, and C.S. Olver, Reticulocyte hemoglobin content does not differentiate true from functional iron deficiency in dogs. Vet Clin Pathol, 2015. 44(4): p. 511-8. Cabantchik, Z.I., Labile iron in cells and body fluids: physiology, pathology, and pharmacology. Front Pharmacol, 2014. 5: p. 45. Crichton, R., R.R. Crichton, and J.R. Boelaert, Inorganic biochemistry of iron metabolism: from molecular mechanisms to clinical consequences. 2001: John Wiley Sons. Breuer, W., S. Epsztejn, and Z.I. Cabantchik, Iron acquired from transferrin by K562 cells is delivered into a cytoplasmic pool of chelatable iron(II). J Biol Chem, 1995. 270(41): p. 24209-15. Meyron-Holtz, E.G., et al., Regulation of intracellular iron metabolism in human erythroid precursors by internalized extracellular ferritin. Blood, 1999. 94(9): p. 3205-11. Breuer, W., et al., Transport of iron and other transition metals into cells as revealed by a fluorescent probe. Am J Physiol, 1995. 268(6 Pt 1): p. C1354-61. Suttner, D.M. and P.A. Dennery, Reversal of HO-1 related cytoprotection with increased expression is due to reactive iron. FASEB J, 1999. 13(13): p. 1800-9. Kakhlon, O., Y. Gruenbaum, and Z.I. Cabantchik, Repression of ferritin expression increases the labile iron pool, oxidative stress, and short-term growth of human erythroleukemia cells. Blood, 2001. 97(9): p. 2863-71. Shvartsman, M., et al., Non-transferrin-bound iron reaches mitochondria by a chelator-inaccessible mechanism: biological and clinical implications. Am J Physiol Cell Physiol, 2007. 293(4): p. C1383-94. Shvartsman, M., E. Fibach, and Z.I. Cabantchik, Transferrin-iron routing to the cytosol and mitochondria as studied by live and real-time fluorescence. Biochem J, 2010. 429(1): p. 185-93. Gackowski, D., et al., The level of 8-oxo-7,8-dihydro-2'-deoxyguanosine is positively correlated with the size of the labile iron pool in human lymphocytes. J Biol Inorg Chem, 2002. 7(4-5): p. 548-50. Sochaski, M.A., et al., Lipid peroxidation and protein modification in a mouse model of chronic iron overload. Metabolism, 2002. 51(5): p. 645-51. Kakhlon, O. and Z.I. Cabantchik, The labile iron pool: characterization, measurement, and participation in cellular processes1 1This article is part of a series of reviews on “Iron and Cellular Redox Status.” The full list of papers may be found on the homepage of the journal. Free Radical Biology and Medicine, 2002. 33(8): p. 1037-1046. Kruszewski, M., Labile iron pool: the main determinant of cellular response to oxidative stress. Mutat Res, 2003. 531(1-2): p. 81-92. Wan, J., H. Ren, and J. Wang, Iron toxicity, lipid peroxidation and ferroptosis after intracerebral haemorrhage. Stroke Vasc Neurol, 2019. 4(2): p. 93-95. Xie, Y., et al., Ferroptosis: process and function. Cell Death Differ, 2016. 23(3): p. 369-79. Doll, S. and M. Conrad, Iron and ferroptosis: A still ill-defined liaison. IUBMB Life, 2017. 69(6): p. 423-434. Evans, R.W., et al., Nature of non-transferrin-bound iron: studies on iron citrate complexes and thalassemic sera. J Biol Inorg Chem, 2008. 13(1): p. 57-74. de Swart, L., et al., Second international round robin for the quantification of serum non-transferrin-bound iron and labile plasma iron in patients with iron-overload disorders. Haematologica, 2016. 101(1): p. 38-45. Gutteridge, J.M., et al., Low-molecular-weight iron complexes and oxygen radical reactions in idiopathic haemochromatosis. Clin Sci (Lond), 1985. 68(4): p. 463-7. Aruoma, O.I., et al., Nontransferrin-bound iron in plasma from hemochromatosis patients: effect of phlebotomy therapy. 1988. van der Heul, C., et al., The binding of iron to transferrin and to other serum components at different degrees of saturation with iron. Clinica Chimica Acta, 1972. 38(2): p. 347-353. Loréal, O., et al., Determination of non-transferrin-bound iron in genetic hemochromatosis using a new HPLC-based method. Journal of Hepatology, 2000. 32(5): p. 727-733. Bradbury, M.W., Transport of iron in the blood-brain-cerebrospinal fluid system. J Neurochem, 1997. 69(2): p. 443-54. Matta, M.K., et al., Determination of Non-Transferrin Bound Iron, Transferrin Bound Iron, Drug Bound Iron and Total Iron in Serum in a Rats after IV Administration of Sodium Ferric Gluconate Complex by Simple Ultrafiltration Inductively Coupled Plasma Mass Spectrometric Detection. Nanomaterials (Basel), 2018. 8(2). Slotki, I. and Z.I. Cabantchik, The Labile Side of Iron Supplementation in CKD. J Am Soc Nephrol, 2015. 26(11): p. 2612-9. Knutson, M.D., Non-transferrin-bound iron transporters. Free Radic Biol Med, 2019. 133: p. 101-111. Zhang, P., et al., Ferroptosis was more initial in cell death caused by iron overload and its underlying mechanism in Parkinson's disease. Free Radic Biol Med, 2020. 152: p. 227-234. Leaf, D.E., et al., Plasma catalytic iron, AKI, and death among critically ill patients. Clin J Am Soc Nephrol, 2014. 9(11): p. 1849-56. de Swart, L., et al., Labile plasma iron levels predict survival in patients with lower-risk myelodysplastic syndromes. Haematologica, 2018. 103(1): p. 69-79. Cabantchik, Z.I., et al., The molecular and cellular basis of iron toxicity in Iron Overload (IO) disorders. Diagnostic and therapeutic approaches. Thalassemia Reports, 2013. 3(1s). Steinberg-Shemer, O., et al., Labile plasma iron as an indicator of patient adherence to iron chelation treatment. Blood Cells Mol Dis, 2018. 71: p. 1-4. Li, X., J. Jankovic, and W. Le, Iron chelation and neuroprotection in neurodegenerative diseases. J Neural Transm (Vienna), 2011. 118(3): p. 473-7. Agarwal, R., et al., Oxidative stress and renal injury with intravenous iron in patients with chronic kidney disease. Kidney Int, 2004. 65(6): p. 2279-89. Suffredini, D.A., et al., Parenteral irons versus transfused red blood cells for treatment of anemia during canine experimental bacterial pneumonia. Transfusion, 2017. 57(10): p. 2338-2347. Jacobs, E.M., et al., Results of an international round robin for the quantification of serum non-transferrin-bound iron: Need for defining standardization and a clinically relevant isoform. Anal Biochem, 2005. 341(2): p. 241-50. Sasaki, K., et al., Improved quantification for non-transferrin-bound iron measurement using high-performance liquid chromatography by reducing iron contamination. Mol Med Rep, 2011. 4(5): p. 913-8. Gosriwatana, I., et al., Quantification of non-transferrin-bound iron in the presence of unsaturated transferrin. Anal Biochem, 1999. 273(2): p. 212-20. Esposito, B.P., et al., Labile plasma iron in iron overload: redox activity and susceptibility to chelation. Blood, 2003. 102(7): p. 2670-7. Parkkinen, J., et al., Bleomycin-detectable Iron Assay for Non-Transferrin-bound Iron in Hematologic Malignancies. Clinical Chemistry, 2002. 48(2): p. 307-314. Norden, A.G., et al., Glomerular protein sieving and implications for renal failure in Fanconi syndrome. Kidney Int, 2001. 60(5): p. 1885-92. Garrick, M.D. and L.M. Garrick, Cellular iron transport. Biochim Biophys Acta, 2009. 1790(5): p. 309-25. Smith, C.P. and F. Thevenod, Iron transport and the kidney. Biochim Biophys Acta, 2009. 1790(7): p. 724-30. Zhang, D., E. Meyron-Holtz, and T.A. Rouault, Renal iron metabolism: transferrin iron delivery and the role of iron regulatory proteins. J Am Soc Nephrol, 2007. 18(2): p. 401-6. Christensen, E.I. and H. Birn, Megalin and cubilin: multifunctional endocytic receptors. Nat Rev Mol Cell Biol, 2002. 3(4): p. 256-66. van Raaij, S., et al., Tubular iron deposition and iron handling proteins in human healthy kidney and chronic kidney disease. Sci Rep, 2018. 8(1): p. 9353. Kozyraki, R., et al., Megalin-dependent cubilin-mediated endocytosis is a major pathway for the apical uptake of transferrin in polarized epithelia. Proc Natl Acad Sci U S A, 2001. 98(22): p. 12491-6. Fagoonee, S., et al., Plasma Protein Haptoglobin Modulates Renal Iron Loading. The American Journal of Pathology, 2005. 166(4): p. 973-983. Eshbach, M.L., et al., Hemoglobin inhibits albumin uptake by proximal tubule cells: implications for sickle cell disease. Am J Physiol Cell Physiol, 2017. 312(6): p. C733-C740. Weiss, A., et al., Orchestrated regulation of iron trafficking proteins in the kidney during iron overload facilitates systemic iron retention. PLoS One, 2018. 13(10): p. e0204471. Liu, B.C., et al., Renal tubule injury: a driving force toward chronic kidney disease. Kidney Int, 2018. 93(3): p. 568-579. Malhotra, J.D. and R.J. Kaufman, Endoplasmic reticulum stress and oxidative stress: a vicious cycle or a double-edged sword? Antioxid Redox Signal, 2007. 9(12): p. 2277-93. van Raaij, S.E.G., et al., Inhibition of Nrf2 alters cell stress induced by chronic iron exposure in human proximal tubular epithelial cells. Toxicol Lett, 2018. 295: p. 179-186. Plotnikov, E.Y., et al., Myoglobin causes oxidative stress, increase of NO production and dysfunction of kidney's mitochondria. Biochim Biophys Acta, 2009. 1792(8): p. 796-803. van Swelm, R.P.L., et al., Endogenous hepcidin synthesis protects the distal nephron against hemin and hemoglobin mediated necroptosis. Cell Death Dis, 2018. 9(5): p. 550. Ikeda, Y., et al., Dietary iron restriction alleviates renal tubulointerstitial injury induced by protein overload in mice. Sci Rep, 2017. 7(1): p. 10621. 121. Bochi, G.V., et al., Fenton Reaction-Generated Advanced Oxidation Protein Products Induces Inflammation in Human Embryonic Kidney Cells. Inflammation, 2016. 39(4): p. 1285-90. Wang, L., et al., Selective modulation of TLR4-activated inflammatory responses by altered iron homeostasis in mice. J Clin Invest, 2009. 119(11): p. 3322-8. Bolisetty, S., et al., Macrophage and epithelial cell H-ferritin expression regulates renal inflammation. Kidney Int, 2015. 88(1): p. 95-108. Scindia, Y., et al., Protective Role of Hepcidin in Polymicrobial Sepsis and Acute Kidney Injury. Front Pharmacol, 2019. 10: p. 615. Priante, G., et al., Cell Death in the Kidney. Int J Mol Sci, 2019. 20(14). von Massenhausen, A., W. Tonnus, and A. Linkermann, Cell Death Pathways Drive Necroinflammation during Acute Kidney Injury. Nephron, 2018. 140(2): p. 144-147. Sarhan, M., et al., Immunological consequences of kidney cell death. Cell Death Dis, 2018. 9(2): p. 114. Linkermann, A., et al., Regulated cell death in AKI. J Am Soc Nephrol, 2014. 25(12): p. 2689-701. Sureshbabu, A., et al., RIPK3 promotes sepsis-induced acute kidney injury via mitochondrial dysfunction. JCI Insight, 2018. 3(11). Linkermann, A., et al., Synchronized renal tubular cell death involves ferroptosis. Proc Natl Acad Sci U S A, 2014. 111(47): p. 16836-41. Sioutas, A., et al., Oxidant-induced autophagy and ferritin degradation contribute to epithelial-mesenchymal transition through lysosomal iron. J Inflamm Res, 2017. 10: p. 29-39. Zhou, B., et al., Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res, 2018. 28(12): p. 1171-1185. Zhang, Z., et al., Caspase-11-mediated tubular epithelial pyroptosis underlies contrast-induced acute kidney injury. Cell Death Dis, 2018. 9(10): p. 983. Yang, J.R., et al., Ischemia-reperfusion induces renal tubule pyroptosis via the CHOP-caspase-11 pathway. Am J Physiol Renal Physiol, 2014. 306(1): p. F75-84. van Raaij, S.E.G., et al., Iron handling by the human kidney: glomerular filtration and tubular reabsorption both contribute to urinary iron excretion. Am J Physiol Renal Physiol, 2019. 316(3): p. F606-F614. Prinsen, B.H., et al., Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. Journal of the American Society of Nephrology, 2001. 12(5): p. 1017-1025. Blanchard, A., et al., Observations of a large Dent disease cohort. Kidney Int, 2016. 90(2): p. 430-439. Prinsen, B.H.C.M.T., et al., Transferrin synthesis is increased in nephrotic patients insufficiently to replace urinary losses. Journal of the American Society of Nephrology, 2001. 12(5): p. 1017-1025. Martines, A.M., et al., Iron metabolism in the pathogenesis of iron-induced kidney injury. Nat Rev Nephrol, 2013. 9(7): p. 385-98. Zager, R.A., A.C. Johnson, and K. Becker, Renal cortical hemopexin accumulation in response to acute kidney injury. Am J Physiol Renal Physiol, 2012. 303(10): p. F1460-72. Vaziri, N.D., et al., Plasma concentration and urinary excretion of erythropoietin in adult nephrotic syndrome. The American Journal of Medicine, 1992. 92(1): p. 35-40. Valenti, L., et al., Hepcidin levels in chronic hemodialysis patients: a critical evaluation. Clin Chem Lab Med, 2014. 52(5): p. 613-9. Babitt, J.L. and H.Y. Lin, Mechanisms of anemia in CKD. J Am Soc Nephrol, 2012. 23(10): p. 1631-4. Annayev, A., et al., Glomerular and Tubular Functions in Children and Adults with Transfusion-Dependent Thalassemia. Turk J Haematol, 2018. 35(1): p. 66-70. Fraga, C.M., et al., N-acetylcysteine plus deferoxamine for patients with prolonged hypotension does not decrease acute kidney injury incidence: a double blind, randomized, placebo-controlled trial. Crit Care, 2016. 20(1): p. 331. de Vries, B., et al., Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia-reperfusion injury. Transplantation, 2004. 77(5): p. 669-75. Mori, K., et al., Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J Clin Invest, 2005. 115(3): p. 610-21. 環境分析: 原理與應用. 2012: 環境分析學會. Magnusson, B., The fitness for purpose of analytical methods: a laboratory guide to method validation and related topics (2014). 2014, Eurachem. 行政院環境保護署環境檢驗所, 感應耦合電漿質譜法 (NIEA M105.01B). 2018. Food, U. and D. Administration, Guidelines for the Validation of Chemical Methods for the FDA FVM Program. 2015, Department of health human services. Walczyk, T. and F. von Blanckenburg, Natural iron isotope variations in human blood. Science, 2002. 295(5562): p. 2065-6. Krayenbuehl, P.A., et al., Hereditary hemochromatosis is reflected in the iron isotope composition of blood. Blood, 2005. 105(10): p. 3812-6. Hotz, K., H. Augsburger, and T. Walczyk, Isotopic signatures of iron in body tissues as a potential biomarker for iron metabolism. Journal of Analytical Atomic Spectrometry, 2011. 26(7). Hotz, K. and T. Walczyk, Natural iron isotopic composition of blood is an indicator of dietary iron absorption efficiency in humans. J Biol Inorg Chem, 2013. 18(1): p. 1-7. Segura, M., Y. Madrid, and C. Cámara, Elimination of calcium and argon interferences in iron determination by ICP-MS using desferrioxamine chelating agent immobilized in sol–gel and cold plasma conditions. J. Anal. At. Spectrom., 2003. 18(9): p. 1103-1108. Yang, D., X.Q. Ng, and T. Walczyk, Quantification of non-transferrin bound iron (NTBI) in human serum by isotope dilution mass spectrometry (IDMS). Journal of Analytical Atomic Spectrometry, 2019. 34(10): p. 1988-1997. Control, C.f.D. and Prevention, National report on biochemical indicators of diet and nutrition in the US population 1999–2002. Atlanta (GA): National Center for Environmental Health, 2008. Lukaszyk, E., et al., Iron Status and Inflammation in Early Stages of Chronic Kidney Disease. Kidney Blood Press Res, 2015. 40(4): p. 366-73. Ettinger, S.J., E.C. Feldman, and E. Cote, Textbook of Veterinary Internal Medicine-eBook. 2017: Elsevier health sciences. Sipe, D.M. and R.F. Murphy, Binding to cellular receptors results in increased iron release from transferrin at mildly acidic pH. Journal of Biological Chemistry, 1991. 266(13): p. 8002-8007. Quimby, J.M., M.L. Smith, and K.F. Lunn, Evaluation of the effects of hospital visit stress on physiologic parameters in the cat. J Feline Med Surg, 2011. 13(10): p. 733-7. Cronin, S.J.F., et al., The Role of Iron Regulation in Immunometabolism and Immune-Related Disease. Front Mol Biosci, 2019. 6: p. 116. Bournazou, I., et al., Inhibition of eosinophil migration by lactoferrin. Immunol Cell Biol, 2010. 88(2): p. 220-3. Karlsson, T., Comparative evaluation of the reticulocyte hemoglobin content assay when screening for iron deficiency in elderly anemic patients. Anemia, 2011. 2011: p. 925907. Bendich, A., Calcium supplementation and iron status of females. Nutrition, 2001. 17(1): p. 46-51. Pelizzoni, I., et al., Iron and calcium in the central nervous system: a close relationship in health and sickness. Biochem Soc Trans, 2008. 36(Pt 6): p. 1309-12. Chen, S., Y. Su, and J. Wang, ROS-mediated platelet generation: a microenvironment-dependent manner for megakaryocyte proliferation, differentiation, and maturation. Cell Death Dis, 2013. 4: p. e722. Kabatchnick, E., et al., Hypothermia in Uremic Dogs and Cats. J Vet Intern Med, 2016. 30(5): p. 1648-1654. Lee, Y.J., et al., Prognostic factors and a prognostic index for cats with acute kidney injury. J Vet Intern Med, 2012. 26(3): p. 500-5. Esposito, B.P., et al., Labile iron in parenteral iron formulations and its potential for generating plasma nontransferrin-bound iron in dialysis patients. Eur J Clin Invest, 2002. 32 Suppl 1: p. 42-9. Plumb, D.C., Plumb's Veterinary Drug Handbook: Desk. 2018: John Wiley Sons. Agatemor, C. and D. Beauchemin, Matrix effects in inductively coupled plasma mass spectrometry: a review. Anal Chim Acta, 2011. 706(1): p. 66-83. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68827 | - |
| dc.description.abstract | 研究背景 在人類臨床與實驗動物研究中,發現當腎臟疾病造成體內鐵質代謝失去平衡時,觀察到血清中非運鐵蛋白結合鐵(Non-transferrin-bound iron, NTBI)濃度會上昇。 研究目的 我們假設在有腎臟疾病的犬貓病患的血清中,非運鐵蛋白結合鐵濃度相較於健康組會有上昇的現象。血清非運鐵蛋白結合鐵濃度在急性腎損傷或慢性腎衰竭的犬貓中,可能具有成為新興的預後指標的潛力。 研究對象 39隻健康的犬隻, 19隻患有慢性腎衰竭的犬隻,5隻患有急性腎損傷的犬隻;11隻健康的貓,29隻患有慢性腎衰竭的貓,2隻患有急性腎損傷的貓。 實驗方法 將血清經過超過濾去除運鐵蛋白以及其他大分子蛋白後,再使用感應耦合電漿質譜儀(inductively coupled plasma mass spectrometry, ICP-MS)測量其中的血清非運鐵蛋白結合鐵,實驗中同時偵測兩種鐵同位素: 鐵56以及鐵57 實驗結果 血清非運鐵蛋白結合鐵在犬貓的各組中(控制組,慢性腎臟病組,急性腎衰竭組)並無法發現顯著差異。在患有腎臟病的犬隻中,惡化組與無惡化組的血清非運鐵蛋白結合鐵具有差異(血清非運鐵蛋白結合鐵56: Median 319.3 ng/ml vs. 211.3 ng/ml; 血清非運鐵蛋白結合鐵57: Median 682.9 ng/ml vs. 528.5 ng/ml)。血清非運鐵蛋白結合鐵-56在犬隻中與較快的呼吸速率、較多的分葉中性球、較少的嗜酸性球、較低的平均紅血球血紅素、較低的網狀紅血球血紅蛋白當量(reticulocyte hemoglobin equivalent),以及較低的血清游離鈣具有顯著相關性;清非運鐵蛋白結合鐵-57在犬隻中則與較多的分節中性球以及較低的嗜酸性球有顯著相關性。血清非運鐵蛋白結合鐵-56/57在貓中皆與較多的血小板以及較低的體溫顯著相關。 實驗結果與重要發現 血清非運鐵蛋白結合鐵56以及57在患有腎臟病的犬隻具有做為預後指標的潛力。而犬隻與貓血清非運鐵蛋白在腎臟病所扮演的角色以及代謝的途徑可能不同。 | zh_TW |
| dc.description.abstract | Background Non-transferrin-bound iron (NTBI) increases after the disrupted homeostasis of iron was reported in humans and laboratory animals with renal diseases. Objectives We hypothesized that serum NTBI concentration could increase in canine and feline with kidney diseases. It can be a novel prognostic factor of chronic kidney disease and acute kidney injury in small animal medicine. Samples Thirty-nine healthy dogs, 19 dogs with CKD, five dogs with AKI, 11 healthy cats, 29 cats with CKD, two cats with AKI were enrolled. Methods The serum non-transferrin-bound iron concentration was measured using simple ultrafiltration inductively coupled plasma mass spectrometry. Both 56Fe 57Fe (termed as NTBI-56, NTBI-57) were monitored. Results No significant difference was found among groups in dogs and cats (control, AKI, CKD). There was a difference of NTBI-56/57 between dogs with progression and without progression (NTBI-56: Median 319.3 ng/ml vs. 211.3 ng/ml; NTBI-57: Median 682.9 ng/ml vs. 528.5 ng/ml). In dogs, NTBI-56 was significantly correlated with high respiratory rate and segmented cell count, and with low eosinophil count, MCH, reticulocyte hemoglobin equivalent, and serum ionized calcium; NTBI-57 was significantly correlated with high segmented cell count and with low eosinophil count. In cats, both NTBI-56/57 were significantly correlated with high platelet count and with low body temperature.. Conclusions and Clinical Importance NTBI-56/57 may be a prognostic markers in dogs with kidney diseases, and the roles of NTBI may be different between in canine and feline. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:37:22Z (GMT). No. of bitstreams: 1 U0001-1708202004370100.pdf: 3435874 bytes, checksum: 24589dd031678556a1f5dc21b6d5194b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 ………………………………………………………I 摘要 …………………………………………………………………...II ABSTRACT IV LIST OF FIGURES IX LIST OF TABLES XI CHAPTER 1. INTRODUCTION 1 CHAPTER 2. LITERATURE REVIEW 3 2.1. IRON HOMEOSTASIS IN HEALTHY ANIMALS 3 2.1.1. The chemical characteristic of iron 3 2.1.2. The function of iron 3 2.1.3. Iron storage 4 2.1.4. Iron transport: the import, export, and transport of iron 5 2.1.5. Introduction of iron regulation 7 2.1.6. Clinical iron parameters 10 2.2. DEFINITION AND SOURCES OF NON-TRANSFERRIN-BOUND IRON(NTBI) 11 2.2.1. Introduction of labile cell iron(LCI) 11 2.2.2. The measurement of LCI 12 2.2.3. Introduction of non-transferrin-bound iron (NTBI) 13 2.2.4. The measurement of NTBI 17 2.3. IRON IN THE KIDNEY DISEASE 18 2.3.1. Kidney and iron in healthy animals 18 2.3.2. Mechanisms of iron- mediated kidney injury 19 2.3.3. Iron and Oxidative stress in kidney disease 19 2.3.4. Iron and inflammation in kidney disease 20 2.3.5. Iron and regulated cell death in kidney disease 21 2.3.6. Effects of kidney diseases on systemic iron homeostasis 22 2.3.7. The role of iron in the progression of kidney diseases 23 2.3.8. Future treatment strategies 24 CHAPTER 3. MATERIAL AND METHOD 26 3.1. PATIENTS AND SAMPLE COLLECTION 26 3.1.1. Sample collection and storage 26 3.1.2. Control group 26 3.1.3. Case enrollment and exclusion criteria 27 3.1.4. Acute kidney injury (AKI) group 27 3.1.5. Chronic kidney disease (CKD) group 28 3.2. CLINICAL IRON STATUS PARAMETERS MEASUREMENT 30 3.3. MEASUREMENT OF NTBI BY SIMPLE ULTRAFILTRATION INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRIC (ICP-MS) DETECTION METHOD-METHOD DEVELOPMENT AND VALIDATION 30 3.3.1. Chemicals and reagents 30 3.3.2. Instrumentation 30 3.3.3. Stock solution and calibration standards 31 3.3.4. Proposed Bioanalytical Method 31 3.3.5. Analytical method validation and quality control 35 3.3.6. Measurement of NTBI by Simple Ultrafiltration Inductively Coupled Plasma Mass Spectrometric Detection method 36 3.4. STATISTICAL ANALYSIS 37 CHAPTER 4. RESULTS 38 4.1. VALIDATION OF NTBI-56/57 ANALYSIS THROUGH ICP-MS METHOD 38 4.2. PATIENTS AND SAMPLES COLLECTION 42 4.3. STATISTICAL ANALYSIS: CANINE GROUP 42 4.3.1. Comparisons between control group and azotemia group in canine 42 4.3.2. Comparisons among all groups 43 4.3.3. Correlations between serum NTBI-56/57, NTBI-56/57 ratio and other biochemical parameters 43 4.3.4. Comparison between progression and non-progression cases in azotemia group 44 4.3.5. Comparison of NTBI-56/57 and isotope’s ratio between male and female 44 4.4. STATISTICAL ANALYSIS-FELINE GROUP 55 4.4.1. Comparisons between control group and azotemia group 55 4.4.2. Comparisons among all groups 55 4.4.3. Correlations between serum NTBI and other biochemical parameters 56 4.4.4. Comparison between progression and non-progression cases in azotemia group 56 4.4.5. Comparison of NTBI-56/57 and isotope’s ratio between male and female 57 CHAPTER 5. DISCUSSION 67 5.1. THE ISOTOPES OF SERUM NTBI 67 5.2. SERUM NTBI-56/57 CONCENTRATIONS IN DIFFERENT SPECIES AND FROM DIFFERENT METHODS 68 5.3. SERUM NTBI-56/57 CONCENTRATION IN CANINE AND FELINE WITH AZOTEMIA 69 5.4. CORRELATIONS OF SERUM NTBI-56/57 AND CLINICOPATHOLOGY PARAMETERS 71 5.5. CORRELATIONS OF SERUM NTBI-56/57 AND IRON SUPPLEMENTS 72 5.6. SERUM NTBI AND RENAL DISEASE PROGRESSION 73 5.7. LIMITATIONS 74 CHAPTER 6. CONCLUSIONS 75 REFERENCES 76 | |
| dc.language.iso | en | |
| dc.subject | 血清非運鐵蛋白結合鐵 | zh_TW |
| dc.subject | 游離鐵 | zh_TW |
| dc.subject | 犬腎臟疾病 | zh_TW |
| dc.subject | 貓腎臟疾病 | zh_TW |
| dc.subject | 血清非運鐵蛋白結合鐵 | zh_TW |
| dc.subject | 游離鐵 | zh_TW |
| dc.subject | 犬腎臟疾病 | zh_TW |
| dc.subject | 貓腎臟疾病 | zh_TW |
| dc.subject | feline kidney disease | en |
| dc.subject | feline kidney disease | en |
| dc.subject | canine kidney disease | en |
| dc.subject | Non-transferrin-bound iron | en |
| dc.subject | catalytic iron | en |
| dc.subject | labile iron | en |
| dc.subject | canine kidney disease | en |
| dc.subject | labile iron | en |
| dc.subject | catalytic iron | en |
| dc.subject | Non-transferrin-bound iron | en |
| dc.title | 犬貓血清中非運鐵蛋白結合鐵的定量和腎臟病惡化的相關性 | zh_TW |
| dc.title | Quantification of non-transferrin bound iron in serum and its association to the progression of canine and feline kidney disease | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周濟眾(Chi-Chung Chou),吳允升(VIN-CENT WU),黃耀輝(Yao-Hui Huang),許正一(Zeng-Yei Hseu) | |
| dc.subject.keyword | 血清非運鐵蛋白結合鐵,游離鐵,犬腎臟疾病,貓腎臟疾病, | zh_TW |
| dc.subject.keyword | Non-transferrin-bound iron,catalytic iron,labile iron,canine kidney disease,feline kidney disease, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU202003668 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 獸醫專業學院 | zh_TW |
| dc.contributor.author-dept | 臨床動物醫學研究所 | zh_TW |
| Appears in Collections: | 臨床動物醫學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| U0001-1708202004370100.pdf Restricted Access | 3.36 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
