Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 公共衛生學院
  3. 環境衛生研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68826
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳章甫(Chang-Fu Wu)
dc.contributor.authorJung-Chi Changen
dc.contributor.author張容綺zh_TW
dc.date.accessioned2021-06-17T02:37:19Z-
dc.date.available2022-08-23
dc.date.copyright2017-08-23
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citationAnttila P, Paatero P, Tapper U, Jarvinen O. 1995. Source identification of bulk wet deposition in finland by positive matrix factorization. Atmos Environ 29:1705-1718.
Begum BA, Biswas SK, Kim E, Hopke PK, Khaliquzzaman M. 2005. Investigation of sources of atmospheric aerosol at a hot spot area in dhaka, bangladesh. J Air Waste Manage Assoc 55:227-240.
Brown SG, Eberly S, Paatero P, Norris GA. 2015. Methods for estimating uncertainty in pmf solutions: Examples with ambient air and water quality data and guidance on reporting pmf results. Sci Total Environ 518:626-635.
Brunekreef B, Janssen N, de Hartog JJ, Oldenwening M, Meliefste K, Hoek G, et al. 2005. Personal, indoor, and outdoor exposures to pm2. 5 and its components for groups of cardiovascular patients in amsterdam and helsinki. Research report (Health Effects Institute):1-70; discussion 71-79.
Cadle SH, Groblicki PJ. 1982. An evaluation of methods for the determination of organic and elemental carbon in particulate samples. In: Particulate carbon:Springer, 89-109.
Cantanho ADA, Artaxo P. 2001. Wintertime and summertime sao paulo aerosol source apportionment study. Atmos Environ 35:4889-4902.
Cao JJ, Shen ZX, Chow JC, Watson JG, Lee SC, Tie XX, et al. 2012. Winter and summer pm2.5 chemical compositions in fourteen chinese cities. J Air Waste Manage Assoc 62:1214-1226.
Chang SC, Chou CCK, Chan CC, Lee CT. 2010. Temporal characteristics from continuous measurements of pm2.5 and speciation at the taipei aerosol supersite from 2002 to 2008. Atmos Environ 44:1088-1096.
Chou CCK, Huang SH, Chen TK, Lin CY, Wang LC. 2005. Size-segregated characterization of atmospheric aerosols in taipei during asian outflow episodes. Atmos Res 75:89-109.
Chuang MT, Chen YC, Lee CT, Cheng CH, Tsai YJ, Chang SY, et al. 2016. Apportionment of the sources of high fine particulate matter concentration events in a developing aerotropolis in taoyuan, taiwan. Environ Pollut 214:273-281.
Ciriminna R, Bright FV, Pagliaro M. 2015. Ecofriendly antifouling marine coatings. ACS Sustain Chem Eng 3:559-565.
Cooper JA, Watson JG. 1980. Receptor oriented methods of air particulate source apportionment. Journal of the Air Pollution Control Association 30:1116-1125.
Cyrys J, Heinrich J, Hoek G, Meliefste K, Lewne M, Gehring U, et al. 2003. Comparison between different traffic-related particle indicators: Elemental. Carbon (ec), pm2.5 mass, and absorbance. J Expo Anal Environ Epidemiol 13:134-143.
Delumyea RG, Chu LC, Macias ES. 1980. Determination of elemental carbon component of soot in ambient aerosol samples. Atmos Environ 14:647-652.
Du W, Zhao J, Wang YY, Zhang YJ, Wang QQ, Xu WQ, et al. 2017. Simultaneous measurements of particle number size distributions at ground level and 260m on a meteorological tower in urban beijing, china. Atmospheric Chemistry and Physics 17:6797-6811.
Eeftens M, Beelen R, de Hoogh K, Bellander T, Cesaroni G, Cirach M, et al. 2012a. Development of land use regression models for pm2.5, pm2.5 absorbance, pm10 and pmcoarse in 20 european study areas; results of the escape project. Environ Sci Technol 46:11195-11205.
Eeftens M, Tsai MY, Ampe C, Anwander B, Beelen R, Bellander T, et al. 2012b. Spatial variation of pm2.5, pm10, pm2.5 absorbance and pmcoarse concentrations between and within 20 european study areas and the relationship with no2 - results of the escape project. Atmos Environ 62:303-317.
Eeftens M, Hoek G, Gruzieva O, Molter A, Agius R, Beelen R, et al. 2014. Elemental composition of particulate matter and the association with lung function. Epidemiology 25:648-657.
Gao Y, Wang ZY, Lu QC, Liu C, Peng ZR, Yu Y. 2017. Prediction of vertical pm2.5 concentrations alongside an elevated expressway by using the neural network hybrid model and generalized additive model. Front Earth Sci 11:347-360.
Gary N, Rachelle D. 2004. Epa positive matrix factorization (pmf) 5.0 fundamentals and user guide.
Gramsch E, Ormeno I, Palma G, Cereceda-Balic F, Oyola P. 2004. Use of the light absorption coefficient to monitor elemental carbon and pm2.5 - example of santiago de chile. J Air Waste Manage Assoc 54:799-808.
Gugamsetty B, Wei H, Liu CN, Awasthi A, Hsu SC, Tsai CJ, et al. 2012. Source characterization and apportionment of pm10, pm2.5 and pm0.1 by using positive matrix factorization. Aerosol Air Qual Res 12:476-491.
Hang J, Luo ZW, Wang XM, He LJ, Wang BM, Zhu W. 2017. The influence of street layouts and viaduct settings on daily carbon monoxide exposure and intake fraction in idealized urban canyons. Environ Pollut 220:72-86.
He KB, Yang FM, Ma YL, Zhang Q, Yao XH, Chan CK, et al. 2001. The characteristics of pm2.5 in beijing, china. Atmos Environ 35:4959-4970.
Heo J, Schauer JJ, Yi O, Paek D, Kim H, Yi SM. 2014. Fine particle air pollution and mortality importance of specific sources and chemical species. Epidemiology 25:379-388.
Ho CC, Chan CC, Cho CW, Lin HI, Lee JH, Wu CF. 2015. Land use regression modeling with vertical distribution measurements for fine particulate matter and elements in an urban area. Atmos Environ 104:256-263.
Hoek G, Meliefste K, Cyrys J, Lewne M, Bellander T, Brauer M, et al. 2002. Spatial variability of fine particle concentrations in three european areas. Atmos Environ 36:4077-4088.
Hopke PK. 2016. Review of receptor modeling methods for source apportionment. J Air Waste Manage Assoc 66:237-259.
Hsu CY, Chiang HC, Chen MJ, Chuang CY, Tsen CM, Fang GC, et al. 2017. Ambient pm2.5 in the residential area near industrial complexes: Spatiotemporal variation, source apportionment, and health impact. Sci Total Environ 590:204-214.
Hsu SC, Liu SC, Lin CY, Hsu RT, Huang YT, Chen YW. 2004. Metal compositions of pm10 and pm2.5 aerosols in taipei during spring, 2002. Terr Atmos Ocean Sci 15:925-948.
Hsu SC, Liu SC, Jeng WL, Lin FJ, Huang YT, Lung SCC, et al. 2005. Variations of cd/pb and zn/pb ratios in taipei aerosols reflecting long-range transport or local pollution emissions. Sci Total Environ 347:111-121.
Hsu SC, Liu SC, Jeng WL, Chou CCK, Hsu RT, Huang YT, et al. 2006. Lead isotope ratios in ambient aerosols from taipei, taiwan: Identifying long-range transport of airborne pb from the yangtze delta. Atmos Environ 40:5393-5404.
Hsu SC, Liu SC, Huang YT, Chou CCK, Lung SCC, Liu TH, et al. 2009. Long-range southeastward transport of asian biosmoke pollution: Signature detected by aerosol potassium in northern taiwan. J Geophys Res-Atmos 114:17.
Jain S, Sharma SK, Choudhary N, Masiwal R, Saxena M, Sharma A, et al. 2017. Chemical characteristics and source apportionment of pm2.5 using pca/apcs, unmix, and pmf at an urban site of delhi, india. Environ Sci Pollut Res 24:14637-14656.
Janhall S, Molnar P, Hallquist M. 2003. Vertical distribution of air pollutants at the gustavii cathedral in goteborg, sweden. Atmos Environ 37:209-217.
Jin XC, Xiao CJ, Li J, Huang DH, Yuan GJ, Yao YG, et al. 2016. Source apportionment of pm2.5 in beijing using positive matrix factorization. J Radioanal Nucl Chem 307:2147-2154.
Kalaiarasan M, Balasubramanian R, Cheong KWD, Tham KW. 2009. Traffic-generated airborne particles in naturally ventilated multi-storey residential buildings of singapore: Vertical distribution and potential health risks. Building and Environment 44:1493-1500.
Kampa M, Castanas E. 2008. Human health effects of air pollution. Environ Pollut 151:362-367.
Keeler GJ, Japar SM, Brachaczek WW, Gorse RA, Norbeck JM, Pierson WR. 1990. The sources of aerosol elemental carbon at allegheny mountain. Atmospheric Environment Part a-General Topics 24:2795-2805.
Kim E, Hopke PK, Edgerton ES. 2003. Source identification of atlanta aerosol by positive matrix factorization. J Air Waste Manage Assoc 53:731-739.
Kim E, Hopke PK, Edgerton ES. 2004. Improving source identification of atlanta aerosol using temperature resolved carbon fractions in positive matrix factorization. Atmos Environ 38:3349-3362.
Kim E, Hopke PK, Pinto JP, Wilson WE. 2005. Spatial variability of fine particle mass, components, and source contributions during the regional air pollution study in st. Louis. Environ Sci Technol 39:4172-4179.
Kim KH, Jahan SA, Kabir E. 2013. A review on human health perspective of air pollution with respect to allergies and asthma. Environ Int 59:41-52.
Lee E, Chan CK, Paatero P. 1999. Application of positive matrix factorization in source apportionment of particulate pollutants in hong kong. Atmos Environ 33:3201-3212.
Lee JH, Yoshida Y, Turpin BJ, Hopke PK, Poirot RL, Lioy PJ, et al. 2002. Identification of sources contributing to mid-atlantic regional aerosol. J Air Waste Manage Assoc 52:1186-1205.
Li YY, Chang MA, Ding SS, Wang SW, Ni D, Hu HT. 2017. Monitoring and source apportionment of trace elements in pm2.5: Implications for local air quality management. J Environ Manage 196:16-25.
Liao HT, Chou CCK, Huang SH, Lu CJ, Chen CC, Hopke PK, et al. 2017a. Source apportionment of pm2.5 size distribution and composition data from multiple stationary sites using a mobile platform. Atmos Res 190:21-28.
Liao HT, Yau YC, Huang CS, Chen N, Chow JC, Watson JG, et al. 2017b. Source apportionment of urban air pollutants using constrained receptor models with a priori profile information. Environ Pollut 227:323-333.
Lin CY, Liu SC, Chou CCK, Liu TH, Lee CT, Yuan CS, et al. 2004. Long-range transport of asian dust and air pollutants to taiwan. Terr Atmos Ocean Sci 15:759-784.
Lin CY, Liu SC, Chou CCK, Huang SJ, Liu CM, Kuo CH, et al. 2005. Long-range transport of aerosols and their impact on the air quality of taiwan. Atmos Environ 39:6066-6076.
Mao T, Wang YS, Jiang J, Wu FK, Wang MX. 2008. The vertical distributions of vocs in the atmosphere of beijing in autumn. Sci Total Environ 390:97-108.
Marcazzan GM, Vaccaro S, Valli G, Vecchi R. 2001. Characterisation of pm10 and pm2.5 particulate matter in the ambient air of milan (italy). Atmos Environ 35:4639-4650.
Miller SL, Anderson MJ, Daly EP, Milford JB. 2002. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmos Environ 36:3629-3641.
Ming LL, Jin L, Li J, Fu PQ, Yang WY, Liu D, et al. 2017. Pm2.5 in the yangtze river delta, china: Chemical compositions, seasonal variations, and regional pollution events. Environ Pollut 223:200-212.
Paatero P, Tapper U. 1994. Positive matrix factorization - a nonnegative factor model with optimal utilization of error-estimates of data values. Environmetrics 5:111-126.
Pakkanen TA, Kerminen VM, Loukkola K, Hillamo RE, Aarnio P, Koskentalo T, et al. 2003. Size distributions of mass and chemical components in street-level and rooftop pm1 particles in helsinki. Atmos Environ 37:1673-1690.
Polissar AV, Hopke PK, Poirot RL. 2001. Atmospheric aerosol over vermont: Chemical composition and sources. Environ Sci Technol 35:4604-4621.
Pope CA, Burnett RT, Thun MJ, Calle EE, Krewski D, Ito K, et al. 2002. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA-J Am Med Assoc 287:1132-1141.
Qi L, Chen MD, Ge XL, Zhang YF, Guo BF. 2016. Seasonal variations and sources of 17 aerosol metal elements in suburban nanjing, china. Atmosphere 7:21.
Quang TN, He C, Morawska L, Knibbs LD, Falk M. 2012. Vertical particle concentration profiles around urban office buildings. Atmospheric Chemistry and Physics 12:5017-5030.
Sasaki K, Sakamoto K. 2005. Vertical differences in the composition of pm10 and pm2.5 in the urban atmosphere of osaka, japan. Atmos Environ 39:7240-7250.
Seagrave J, McDonald JD, Bedrick E, Edgerton ES, Gigliotti AP, Jansen JJ, et al. 2006. Lung toxicity of ambient particulate matter from southeastern us sites with different contributing sources: Relationships between composition and effects. Environ Health Perspect 114:1387-1393.
Sultana CM, Collins DB, Prather KA. 2017. Effect of structural heterogeneity in chemical composition on online single-particle mass spectrometry analysis of sea spray aerosol particles. Environ Sci Technol 51:3660-3668.
Sun YL, Zhuang GS, Ying W, Han LH, Guo JH, Mo D, et al. 2004. The air-borne particulate pollution in beijing - concentration, composition, distribution and sources. Atmos Environ 38:5991-6004.
Swietlicki E, Krejci R. 1996. Source characterisation of the central european atmospheric aerosol using multivariate statistical methods. Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions with Materials and Atoms 109:519-525.
Tian HZ, Cheng K, Wang Y, Zhao D, Lu L, Jia WX, et al. 2012. Temporal and spatial variation characteristics of atmospheric emissions of cd, cr, and pb from coal in china. Atmos Environ 50:157-163.
Tsapakis M, Stephanou EG. 2005. Occurrence of gaseous and particulate polycyclic aromatic hydrocarbons in the urban atmosphere: Study of sources and ambient temperature effect on the gas/particle concentration and distribution. Environ Pollut 133:147-156.
Viana M, Querol X, Alastuey A, Gil JI, Menendez M. 2006. Identification of pm sources by principal component analysis (pca) coupled with wind direction data. Chemosphere 65:2411-2418.
Wang J, Zhou M, Liu BS, Wu JH, Peng X, Zhang YF, et al. 2016. Characterization and source apportionment of size-segregated atmospheric particulate matter collected at ground level and from the urban canopy in tianjin. Environ Pollut 219:982-992.
Watson JG, Chow JC, Fujita EM. 2001. Review of volatile organic compound source apportionment by chemical mass balance. Atmos Environ 35:1567-1584.
Wei F, Teng E, Wu G, Hu W, Wilson WE, Chapman RS, et al. 1999. Ambient concentrations and elemental compositions of pm10 and pm2.5 in four chinese cities. Environ Sci Technol 33:4188-4193.
Wu C-F, Lin H-I, Ho C-C, Yang T-H, Chen C-C, Chan C-C. 2014. Modeling horizontal and vertical variation in intraurban exposure to pm 2.5 concentrations and compositions. Environmental research 133:96-102.
Wu CD, Lung SCC. 2012. Applying gis and fine-resolution digital terrain models to assess three-dimensional population distribution under traffic impacts. J Expo Sci Environ Epidemiol 22:126-134.
Wu CF, Larson TV, Wu SY, Williamson J, Westberg HH, Liu LJS. 2007. Source apportionment of pm2.5 and selected hazardous air pollutants in seattle. Sci Total Environ 386:42-52.
Wu H, Zhang YF, Han SQ, Wu JH, Bi XH, Shi GL, et al. 2015. Vertical characteristics of pm2.5 during the heating season in tianjin, china. Sci Total Environ 523:152-160.
Xiao ZM, Wu JH, Han SQ, Zhang YF, Xu H, Zhang XY, et al. 2012. Vertical characteristics and source identification of pm10 in tianjin. J Environ Sci 24:112-115.
Ytreberg E, Lagerstrom M, Holmqvist A, Eklund B, Elwing H, Dahlstrom M, et al. 2017. A novel xrf method to measure environmental release of copper and zinc from antifouling paints. Environ Pollut 225:490-496.
Yu CH, Huang LH, Shin JY, Artigas F, Fan ZH. 2014. Characterization of concentration, particle size distribution, and contributing factors to ambient hexavalent chromium in an area with multiple emission sources. Atmos Environ 94:701-708.
Yu LD, Wang GF, Zhang RJ, Zhang LM, Song Y, Wu BB, et al. 2013. Characterization and source apportionment of pm2.5 in an urban environment in beijing. Aerosol Air Qual Res 13:574-583.
Zeng X, Xu XJ, Zheng XB, Reponen T, Chen AM, Huo X. 2016. Heavy metals in pm2.5 and in blood, and children's respiratory symptoms and asthma from an e-waste recycling area. Environ Pollut 210:346-353.
Zhang HL, Wang YG, Hu JL, Ying Q, Hu XM. 2015. Relationships between meteorological parameters and criteria air pollutants in three megacities in china. Environmental Research 140:242-254.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68826-
dc.description.abstract暴露到細懸浮微粒 (fine particulate matter, PM2.5)可能會導致急性或慢性的健康危害。空間變異時常被應用在許多研究中去瞭解不同環境狀況對PM2.5的影響。然而,大部分有關空間變異的研究只有考量到水平變異的部分,關於垂直變異還沒有被全面性的了解。
本研究透過觀察細懸浮微粒在同一棟建築物但不同高度的變化來探討台北都會區之垂直變異。研究中根據不同的環境特色和建築物類型對五棟具有代表性的建築物進行空氣樣本的採集,建築物的樓層高度被分為三類:低樓層(一到三樓)、中樓層(六或七樓)和高樓層(十或十一樓),採樣時間包含夏、秋、冬三季。樣本分析項目有PM2.5濃度、十六種元素個別濃度和吸收係數。本研究也透過正矩陣因子法 (positive matrix factorization model, PMF) 來觀察不同汙染源對垂直變異的影響。
透過秤重後所得之PM2.5濃度來觀察樓層變化可以發現,在低樓層有最高的數值其次為高樓層及中樓層。濃度分別為 15.59 μg/m3、15.25 μg/m3和15.04 μg/m3。以PMF模式解析之汙染源圖譜(source profile)結果可推估主要受到的汙染源影響有:衍生性氣膠/長程傳輸、交通相關排放源、油漆工程、油類燃燒、塵土逸散源、鉻相關工業以及一個混合汙染源。其中最主要的貢獻來源為衍生性氣膠/長程傳輸 (48.71%)。利用模式結果來觀察不同汙染源對樓層的影響,結果發現大部分的來源都在低和高樓層都有較高的貢獻,其中大部分汙染源樓層貢獻之百分比相對誤差皆大於10%。本研究採集樣本時間跨越夏、秋、冬三季,因此也利用模式解析之數據探討季節性汙染源的貢獻變化。由解出的七個汙染源可以發現大部分的來源都在冬天有較高的貢獻量,其中以衍生性氣膠/長程傳輸 和 塵土逸散源最為明顯,分別在冬天貢獻了59% 和58%。最後,本篇研究提供有關汙染源在樓層上的貢獻以及好發季節之相關資訊,可以提供給政府作為日後擬定空氣汙染策略或污染源管制措施的參考。
zh_TW
dc.description.abstractExposure to air pollutants such as fine particle matter (PM2.5) has high association with acute or chronic adverse health effects. Spatial variations have been examined and applied to evaluate air pollutant exposure in residential area widely. However, most of the past studies which examined spatial variation only considered about horizontal aspect. The vertical variations have not been studied extensively.
Examining the vertical variations in urban areas is essential to realize the source influences from different height. This study measured the vertical variations by sampling three categories of floors at typical buildings in Taipei metropolis. Five sampling buildings were selected by its environmental features, including different volume of traffic or the various surrounding objects such as viaduct or parking lots. The categorized floor-levels included low-level sampling site set from first to third floors, mid-level sampling sites set between the sixth and seventh floors, and high-level sampling sites set between the tenth and eleventh floors. PM2.5 samples were collected to analyze the mass concentrations, absorption coefficient and 16 elements concentrations in three seasons (summer, autumn and winter). Moreover, positive matrix factorization (PMF) model was utilized to estimate the sources influences of different floors.
The PM2.5 mass concentration was obtained by weighing before and after the sample collection. The highest value was at low-level floor (15.59 μg/m3), followed by high-level floor (15.25 μg/m3) and mid-level floor (15.04 μg/m3). On the other hand, based on the resolved source profiles and source contribution, seven characterized sources were identified: Secondary aerosol/ long-range transport, Traffic related, Paint project, Oil combustion, Dust source, Cr-rich industry and one mixed source. The largest contributor was secondary aerosol/ long-range transport (48.71%) in this study. Most of the vertical trends had higher value at low- and high- level floor, but lowest value at mid-level floor with 10% relative error. The seasonal variations of source contributions were analyzed in this study which showed that the highest value occurred in winter mostly. The source of secondary aerosol/long-range transport contributed 21%, 20% and 59% and dust source contributed 12%, 30% and 58%, respectively, in summer, autumn and winter.
Finally, the effect of sources emission at different floors and seasonal variations could be utilized as information for developing prevention strategies of air pollution.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:37:19Z (GMT). No. of bitstreams: 1
ntu-106-R04844013-1.pdf: 6301103 bytes, checksum: 05da3480c0253f9ff06a286a0b159b3f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsChapter 1. Introduction 1
Chapter 2. Methods 6
2.1 Introduction of sampling area 6
2.2 Sampling Strategies 6
2.3 Data Collection and Chemical Analysis 8
2.4 Model Description 12
2.4.1 Receptor Model 12
2.4.2 Quality Assurance and Control 13
2.4.3 Determination of Sources Numbers 14
2.4.4 Profile Interpretation 16
Chapter 3. Results and Discussion 18
3.1 Descriptive Analysis 18
3.2 Temporal Variation 18
3.3 Vertical Characteristics of PM2.5 Mass Concentration 19
3.4 Model Run result 20
3.4.1 Input data 20
3.4.2 Determination of Source Numbers 21
3.4.3 Source Identification 22
3.4.4 Source Contribution and Seasonal Variation 25
3.4.5 Vertical Variation in this study 28
3.5 Study Strengths and Limitations 31
Chapter 4. Conclusion and Recommendations 33
Chapter 5. Reference 53
Chapter 6. Appendix 60
6.1 Appendix A: QA/QC results of ED-XRF 60
6.2 Appendix B: Pearson correlation coefficients between examined items and PM2.5 mass data from Gu-Ting AQMS . 62
6.3 Appendix C: Summary of average PM2.5 concentrations from Gu-Ting AQMS 63
6.4 Appendix D: Mapping of bootstrap factors 64
6.5 Appendix E: Frequency distribution of the scaled residuals. 65
dc.language.isoen
dc.title應用正矩陣因子模式探討台北都會區細懸浮微粒元素成分來源之垂直空間變異zh_TW
dc.titleApplication of Positive Matrix Factorization Model for Examining Spatial Variations of Exposure to PM2.5 with Different Height in Taipei Metropolisen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡詩偉(Shih-Wei Tsai),陳志傑(Chih-Chieh Chen)
dc.subject.keyword細懸浮微粒,空間變異,正矩陣因子解析,元素成分,zh_TW
dc.subject.keywordfine particulate matter,vertical variability,positive matrix factorization (PMF),elemental composition,en
dc.relation.page66
dc.identifier.doi10.6342/NTU201703688
dc.rights.note有償授權
dc.date.accepted2017-08-17
dc.contributor.author-college公共衛生學院zh_TW
dc.contributor.author-dept環境衛生研究所zh_TW
顯示於系所單位:環境衛生研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
6.15 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved