Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 心理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68807
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁庚辰(Keng-Chen Liang)
dc.contributor.authorKe-Hsin Chenen
dc.contributor.author陳可欣zh_TW
dc.date.accessioned2021-06-17T02:36:22Z-
dc.date.available2019-07-31
dc.date.copyright2017-09-04
dc.date.issued2017
dc.date.submitted2017-08-16
dc.identifier.citationAcquas, E., Wilson, C., & Fibiger, H. C. (1998). Pharmacology of sensory stimulation-evoked increases in frontal cortical acetylcholine release. Neuroscience, 85, 73–83. doi:10.1016/S0306-4522(97)00546-0
Andrade, J. (1995). Learning during anaesthesia: A review. British Journal of Psychology, 86, 479–506. doi:10.1111/j.2044-8295.1995.tb02566.x
Araki, T., Ito, K., Kurosawa, M., & Sato, A. (1984). Responses of adrenal sympathetic nerve activity and catecholamine secretion to cutaneous stimulation in anesthetized rats. Neuroscience, 12, 289–299. doi:10.1016/0306-4522(84)90154-4
Bakin, J. S., & Weinberger, N. M. (1996). Induction of a physiological memory in the cerebral cortex by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences, 93, 11219–11224.
Bauer, E. P., Ledoux, J. E., & Nader, K. (2001). Fear conditioning and LTP in the lateral amygdala are sensitive to the same stimulus contingencies. Nature Neuroscience, 4, 687–688. doi:10.1038/89465
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537–541. doi:10.1002/mrm.1910340409
Brown, E. N., Purdon, P. L., & VanDort, C. J. (2011). General anesthesia and altered states of arousal: A systems neuroscience analysis. Annual Review of Neuroscience, 34, 601–628. doi:10.1146/annurev-neuro-060909-153200
Brown, J. S., Kalish, H. I., & Farber, I. E. (1951). Conditioned fear as revealed by magnitude of startle response to an auditory stimulus. Journal of Experimental Psychology, 41, 317–328. doi:10.1037/h0060166
Brydges, N. M., Whalley, H. C., Jansen, M. A., Merrifield, G. D., Wood, E. R., Lawrie, S. M., …Holmes, M. C. (2013). Imaging Conditioned Fear Circuitry Using Awake Rodent fMRI. PLoS ONE, 8, e54197. doi:10.1371/journal.pone.0054197
Buckner, R. L., & Vincent, J. L. (2007). Unrest at rest: Default activity and spontaneous network correlations. Neuroimage, 37, 1091–1096. doi:10.1016/j.neuroimage.2007.01.010
Campeau, S., & Davis, M. (1995). Involvement of the central nucleus and basolateral complex of the amygdala in fear conditioning measured with fear-potentiated startle in rats trained concurrently with auditory and visual conditioned-stimuli. Journal of Neuroscience, 15, 2301–2311.
Carey, R. G., & Rieck, R. W. (1987). Topographic projections to the visual cortex from the basal forebrain in the rat. Brain Research, 424, 205–215. doi:10.1016/0006-8993(87)91463-6
Chang, S.-D., Chao, S.-T., Chen, D.-Y., & Liang, K. C. (2007). A systemic injection of epinephrine enhanced retention under anesthesia in a conditioned fear potentiation task. The 36th Annual Meeting of Society for Neuroscience. San Diego, CA.
Chang, S.-D., Chen, D.-Y., & Liang, K. C. (2008). Infusion of lidocaine into the dorsal hippocampus before or after the shock training phase impaired conditioned freezing in a two-phase training task of contextual fear conditioning. Neurobiology of Learning and Memory, 89, 95–105. doi:10.1016/j.nlm.2007.07.012
Chang, S.-D., & Liang, K. C. (2012). Roles of hippocampal GABAa and muscarinic receptors in consolidation of context memory and context–shock association in contextual fear conditioning: A double dissociation study. Neurobiology of Learning and Memory, 98, 17-24. doi:10.1016/j.nlm.2012.04.004
Chang, S. D., & Liang, K. C. (2017). The hippocampus integrates context and shock into a configural memory in contextual fear conditioning. Hippocampus, 27, 145–155. doi:10.1002/hipo.22679
Chao, S.-T. (2006). Epinephrine modulation of fear conditioning under awake and anesthetic states (master's thesis, National Taiwan University, Taipei, Taiwan). Available from Airiti Library (http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0001-2607200610201800)
Chao, T. H. H., Chen, J. H., & Yen, C. T. (2014). Repeated BOLD-fMRI imaging of deep brain stimulation responses in rats. PLoS ONE, 9, e97305. doi:10.1371/journal.pone.0097305
Chen, D. Y., Dodd, S. J., Silva, A. C., & Koretsky, A. P. (2011). BOLD fMRI of the visual system in awake and anesthetized rats. The 19th Scientific Meeting of International Society for Magnetic Resonance in Medicine. Montreal, Canada. Retrieved from http://cds.ismrm.org/protected/11MProceedings/files/3672.pdf
Chen, D. Y., Ho, S. H., & Liang, K. C. (2000). Startle responses to electric shocks: Measurement of shock sensitivity and effects of morphine, buspirone and brain lesions. Chinese Journal of Physiology, 43, 35–47.
Chen, G., Saad, Z. S., Britton, J. C., Pine, D. S., & Cox, R. W. (2013). Linear mixed-effects modeling approach to fMRI group analysis. NeuroImage, 73, 176–190. doi:10.1016/j.neuroimage.2013.01.047
Chen, G., Taylor, P. A., & Cox, R. W. (2017). Is the statistic value all we should care about in neuroimaging? NeuroImage, 147, 952-959. doi:10.1016/j.neuroimage.2016.09.066
Chen, K.-H., Chen, D.-Y., & Liang, K. C. (2015). Resting state functional connectivity reveals the interaction between dorsal hippocampus and medial prefrontal cortex in memory consolidation of inhibitory avoidance task. The 45th Annual Meeting of Society for Neuroscience. Chicago, IL
Chen, K.-H., Chen, D.-Y., & Liang, K. C. (2013). Functional connectivity changes during consolidation of inhibitory avoidance memory in rats: A manganese-enhanced MRI study. The Chinese Journal of Physiology, 56, 269–281. doi:10.4077/CJP.2013.BAB144
Chen, W.-F. (2005). Effect of alpha-chloralose dosage on anesthesia depth, cortical evoked potential and fMRI in the rat (master's thesis, National Taiwan University, Taipei, Taiwan). Retrievaed from Airiti Library (http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0001-2007200513420800)
Cruikshank, S. J., Edeline, J. M., & Weinberger, N. M. (1992). Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behavioral Neuroscience, 106, 471–483. doi:10.1037/0735-7044.106.3.471
Davis, M., & Astrachan, D. I. (1978). Conditioned fear and startle magnitude: Effects of different footshock or backshock intensities used in training. Journal of Experimental Psychology, 4, 95–103. doi:10.1037/0097-7403.4.2.95
Donegan, N. H., Gluck, M. A., & Thompson, R. F. (1989). Integrating behavioral and biological models of classical conditioning. Psychology of Learning and Motivation - Advances in Research and Theory, 23, 109–156. doi:10.1016/S0079-7421(08)60110-3
Dringenberg, H. C., Hamze, B., Wilson, A., Speechley, W., & Kuo, M. C. (2007). Heterosynaptic facilitation of in vivo thalamocortical long-term potentiation in the adult rat visual cortex by acetylcholine. Cerebral Cortex, 17, 839–848. doi:10.1093/cercor/bhk038
Edeline, J. M., & Weinberger, N. M. (1991). Subcortical adaptive filtering in the auditory system: Associative receptive field plasticity in the dorsal medial geniculate body. Behavioral Neuroscience, 105, 154–175. doi:10.1037/0735-7044.105.1.154
Edelman, G. M. (1987). Neural Darwinism : The theory of neuronal group selection. New York: Basic Books.
Fanselow, M. S., &Lester, L. S. (1988). A functional behavioristic approach to aversively motivated behavior: Predatory imminence as a determinant of the topography of defensive behavior. In R.C. Bolles & M.D. Beecher (Eds.), Evolution and Learning (pp. 185–212). Hillsdale, N. J: Erlbaum.
Fuster, J. M. (2004). Upper processing stages of the perception-action cycle. Trends in Cognitive Sciences, 8, 143-145. doi:10.1016/j.tics.2004.02.004
Gandhi, N. J., & Katnani, H. A. (2011). Motor functions of the superior colliculus. Annual Review of Neuroscience, 34, 205–231. doi:10.1146/annurev-neuro-061010-113728
Gauriau, C., & Bernard, J. (2002). Pain pathways and parabrachial circuits in the rat. Experimental Physiology, 87, 251–258. doi:10.1113/eph8702357
Gibbs, C. M., Cohen, D. H., Broyles, J. L., Gibbs, M., Cohen, D. H., & Broyles, J. L. (1986). Modification of the discharge of lateral geniculate neurons during visual learning. Journal of Neuroscience, 6, 627–636.
Goense, J., Merkle, H., & Logothetis, N. K. (2012). High-resolution fMRI reveals laminar differences in neurovascular coupling between positive and negative BOLD responses. Neuron, 76, 629–639. doi:10.1016/j.neuron.2012.09.019
Gold, P. E., Weinberger, N. M., & Sternberg, D. B. (1985). Epinephrine-induced learning under anesthesia: Retention performance at several training-testing intervals. Behavioral Neuroscience, 99, 1019–1022. doi:10.1037//0735-7044.99.5.1019
Harris, A. P., Lennen, R. J., Marshall, I., Jansen, M. A., Pernet, C. R., Brydges, N. M., …Holmes, M. C. (2015). Imaging learned fear circuitry in awake mice using fMRI. European Journal of Neuroscience, 42, 2125–2134. doi:10.1111/ejn.12939
Hebb, D. O. (1949). The organization of behavior: A neuropsychological theory. New York: John Wiley and Sons.
Hubel, D. H., & Wiesel, T. N. (1959). Receptive fields of single neurones in the cat’s striate cortex. Journal of Physiology, 148, 574–591. doi:10.1113/jphysiol.2009.174151
Karuza, E. A., Emberson, L. L., & Aslin, R. N. (2014). Combining fMRI and behavioral measures to examine the process of human learning. Neurobiology of Learning and Memory. doi:10.1016/j.nlm.2013.09.012
Klingner, C. M., Ebenau, K., Hasler, C., Brodoehl, S., Görlich, Y., & Witte, O. W. (2011). Influences of negative BOLD responses on positive BOLD responses. NeuroImage, 55, 1709–1715. doi:10.1016/j.neuroimage.2011.01.028
Konorski, J. (1967). Integrative activity of the brain: An interdisciplinary approach. Chicago: University of Chicago Press.
Krout, K. E., Belzer, R. E., & Loewy, A. D. (2002). Brainstem projections to midline and intralaminar thalamic nuclei of the rat. Journal of Comparative Neurology, 448, 53–101. doi:10.1002/cne.10236
Kurosawa, M., Sato, A., & Sato, Y. (1992). Cutaneous mechanical sensory stimulation increases extracellular acetylcholine release in cerebral cortex in anesthetized rats. Neurochemistry International, 21, 423–427. doi:10.1016/0197-0186(92)90194-V
LeDoux, J. E. (1992). Brain mechanisms of emotion and emotional learning. Current Opinion in Neurobiology, 2, 191–197. doi:10.1016/0959-4388(92)90011-9
LeDoux, J. E. (1993). Emotional memory systems in the brain. Behavioural Brain Research, 58, 69–79. doi:10.1016/0166-4328(93)90091-4
Leech, R., Kamourieh, S., Beckmann, C. F., & Sharp, D. J. (2011). Fractionating the default mode network: distinct contributions of the ventral and dorsal posterior cingulate cortex to cognitive control. Journal of Neuroscience, 31, 3217–3224. doi:10.1523/JNEUROSCI.5626-10.2011
Lewis, C. M., Baldassarre, A., Committeri, G., Romani, G. L., & Corbetta, M. (2009). Learning sculpts the spontaneous activity of the resting human brain. Proceedings of the National Academy of Sciences, 106, 17558–17563. doi:10.1073/pnas.0902455106
Lu, H., Zou, Q., Gu, H., Raichle, M. E., Stein, E. A., & Yang, Y. (2012). Rat brains also have a default mode network. Proceedings of the National Academy of Sciences, 109, 3979–3984. doi:10.1073/pnas.1200506109
Mackintosh, N. J. (1975). A theory of attention: Variations in the associability of stimuli with reinforcement. Psychological Review, 82, 276–298. doi:10.1037/h0076778
McLin, D. E., Miasnikov, A. A., & Weinberger, N. M. (2002). Induction of behavioral associative memory by stimulation of the nucleus basalis. Proceedings of the National Academy of Sciences, 99, 4002–4007. doi:10.1073/pnas.062057099
Miguez, G., Laborda, M. A., & Miller, R. R. (2014). Classical conditioning and pain: Conditioned analgesia and hyperalgesia. Acta Psychologica, 145, 10-20. doi:10.1016/j.actpsy.2013.10.009
Mize, R. R., Butler, G. D., May, P. J., Endo, T., Yanagawa, Y., Obata, K., …Basso, M. A. (2014). The mammalian superior colliculus: Laminar structure and connections. Progress in Brain Research, 151, 321–378. doi:10.1016/S0079-6123(05)51011-2
Nasrallah, F. A., Lew, S. K., Low, A. S.-M., & Chuang, K.-H. (2014). Neural correlate of resting-state functional connectivity under α2 adrenergic receptor agonist, medetomidine. NeuroImage, 84, 27–34. doi:10.1016/j.neuroimage.2013.08.004
Nasrallah, F. A., Tan, J., & Chuang, K. H. (2012). Pharmacological modulation of functional connectivity: Alpha2-adrenergic receptor agonist alters synchrony but not neural activation. NeuroImage, 60, 436–446. doi:10.1016/j.neuroimage.2011.12.026
Nelson, L. E., Lu, J., Ph, D., Guo, T., Saper, C. B., Ph, D., …Medsci, F. R. C. A. F. (2003). The alpha2 -adrenoceptor agonist dexmedetomidine converges on an endogenous sleep-promoting pathway to exert its sedative effects. Anesthesiology, 98, 428–436. doi:10.1097/00000542-200302000-00024
Niranjan, A., Christie, I. N., Solomon, S. G., Wells, J. A., & Lythgoe, M. F. (2016). fMRI mapping of the visual system in the mouse brain with interleaved snapshot GE-EPI. NeuroImage, 139, 337–345. doi:10.1016/j.neuroimage.2016.06.015
Ogawa, S., Lee, T. M., Kay, A. R., &Tank, D. W. (1990). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Science, 87, 9868–9872.
Passetti, F., Dalley, J. W., O’Connell, M. T., Everitt, B. J., & Robbins, T. W. (2000). Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. The European Journal of Neuroscience, 12, 3051–3058. doi:10.1046/j.1460-9568.2000.00183.x
Pautler, R. G., & Koretsky, A. P. (2002). Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging. NeuroImage, 16, 441–448. doi:10.1006/nimg.2002.1075
Pautler, R. G., Silva, A. C., & Koretsky, A. P. (1998). In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magnetic Resonance in Medicine, 40, 740–748. doi: 10.1002/mrm.1910400515
Pawela, C. P., Biswal, B. B., Hudetz, A. G., Schulte, M. L., Li, R., Jones, S. R., …Hyde, J. S. (2009). A protocol for use of medetomidine anesthesia in rats for extended studies using task-induced BOLD contrast and resting-state functional connectivity. NeuroImage, 46, 1137–1147. doi:10.1016/j.neuroimage.2009.03.004
Paxinos, G., & Watson, C. (2005). The rat brain in stereotaxic coordinates (5th ed.). Boston: Elsevier Academic Press.
Payne, J. D., & Kensinger, E. A. (2011). Sleep leads to changes in the emotional memory trace: Evidence from FMRI. Journal of Cognitive Neuroscience, 23, 1285–1297. doi:10.1162/jocn.2010.21526
Pearce, J. M., & Hall, G. (1980). A model for Pavlovian learning: Variations in the effectiveness of conditioned but not of unconditioned stimuli. Psychological Review, 87, 532–552. doi:10.1037/0033-295X.87.6.532
Picciotto, M. R., Higley, M. J., & Mineur, Y. S. (2012). Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron, 76, 116-129. doi:10.1016/j.neuron.2012.08.036
Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447. doi:10.1196/annals.1440.011
Rescorla, R. A., & Wagner, A. R. (1972). A theory of Pavlovian conditioning: Variations in the effectiveness of reinforcement and nonreinforcement. Classical Conditioning II Current Research and Theory, 21, 64–99. doi:10.1101/gr.110528.110
Roediger, H. L. (1990). Implicit memory: Retention without remembering. American Psychologist, 45, 1043–1056. doi:10.1037/0003-066x.45.9.1043
Romanski, L. M., & LeDoux, J. E. (1992). Equipotentiality of thalamo-amygdala and thalamo-cortico-amygdala circuits in auditory fear conditioning. The Journal of Neuroscience, 12, 4501–4509.
Sears, L. L., & Steinmetz, J. E. (1991). Dorsal accessory inferior olive activity diminishes during acquisition of the rabbit classically conditioned eyelid response. Brain Research, 545, 114–122. doi:10.1016/0006-8993(91)91276-7
Sehlmeyer, C., Schöning, S., Zwitserlood, P., Pfleiderer, B., Kircher, T., Arolt, V., & Konrad, C. (2009). Human fear conditioning and extinction in neuroimaging: A systematic review. PLoS ONE, 4, e5865. doi:10.1371/journal.pone.0005865
Shi, C., & Davis, M. (1999). Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. The Journal of Neuroscience, 19, 420–430.
Shi, C., & Davis, M. (2001). Visual pathways involved in fear conditioning measured with fear- potentiated startle: Behavioral and anatomic studies. Journal of Neuroscience, 21, 9844–9855.
Sigurdsson, T., Doyère, V., Cain, C. K., & LeDoux, J. E. (2007). Long-term potentiation in the amygdala: A cellular mechanism of fear learning and memory. Neuropharmacology, 52, 215–227. doi:10.1016/j.neuropharm.2006.06.022
Smith, A. T., Williams, A. L., & Singh, K. D. (2004). Negative BOLD in the visual cortex: evidence against blood stealing. Human Brain Mapping, 21, 213–220. doi:10.1002/hbm.20017
Sonner, J. M., Xing, Y., Zhang, Y., Maurer, A., Fanselow, M. S., Dutton, R. C., & Eger, E. I. (2005). Administration of epinephrine does not increase learning of fear to tone in rats anesthetized with isoflurane or desflurane. Anesthesia and Analgesia, 100, 1333–1337. doi:10.1213/01.ANE.0000148619.77117.C7
Spreng, R. N., & Grady, C. L. (2009). Patterns of brain activity supporting autobiographical memory, prospection, and theory-of-mind and their relationship to the default mode network. Journal of Cognitive Neuroscience, 22, 1112–1123. doi:10.1162/jocn.2009.21282
Tambini, A., Ketz, N., & Davachi, L. (2010). Enhanced brain correlations during rest are related to memory for recent experiences. Neuron, 65, 280–290. doi:10.1016/j.neuron.2010.01.001
Treede, R. D., Kenshalo, D. R., Gracely, R. H., & Jones, A. K. P. (1999). The cortical representation of pain. Pain, 79, 105–111. doi:10.1016/S0304-3959(98)00184-5
Tulving, E., & Thomson, D. M. (1973). Encoding specificity and retrieval processes in episodic memory. Psychological Review, 80, 352–373. doi:10.1037/h0020071
Turk-Browne, N. B., Scholl, B. J., Chun, M. M., & Johnson, M. K. (2009). Neural evidence of statistical learning: efficient detection of visual regularities without awareness. Journal of Cognitive Neuroscience, 21, 1934–1945. doi:10.1162/jocn.2009.21131
Vertes, R. P., Linley, S. B., & Hoover, W. B. (2015). Limbic circuitry of the midline thalamus. Neuroscience and Biobehavioral Reviews, 54, 89-107. doi:10.1016/j.neubiorev.2015.01.014
Walker, D. L., Cassella, J.V., Lee, Y., DeLima, T. C. M., & Davis, M. (1997). Opposing roles of the amygdala and dorsolateral periaqueductal gray in fear-potentiated startle. Neuroscience and Biobehavioral Reviews, 21, 743–753. doi:10.1016/S0149-7634(96)00061-9
Wall, J. T., Gibbs, C. M., Broyles, J. L., & Cohen, D. H. (1985). Modification of neuronal discharge along the ascending tectofugal pathway during visual conditioning. Brain Research, 342, 67–76. doi:10.1016/0006-8993(85)91353-8
Wang, Z., Bradesi, S., Charles, J. R., Pang, R. D., Maarek, J.-M. I., Mayer, E. A, & Holschneider, D. P. (2011). Functional brain activation during retrieval of visceral pain-conditioned passive avoidance in the rat. Pain, 152, 2746–2756. doi:10.1016/j.pain.2011.08.022
Weinberger, N. M. (2004). Specific long-term memory traces in primary auditory cortex. Nature Reviews Neuroscience, 5, 279–290. doi:10.1038/nrn1366
Weinberger, N. M. (2011). The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hearing Research, 274, 61–74. doi:10.1016/j.heares.2010.03.093
Weinberger, N. M., Gold, P. E., & Sternberg, D. B. (1984). Epinephrine enables Pavlovian fear conditioning under anesthesia. Science, 223, 605–607. doi:10.1126/science.6695173
Yang, F.-C., & Liang, K. C. (2013). Interactions of the dorsal hippocampus, medial prefrontal cortex and nucleus accumbens in formation of fear memory: Difference in inhibitory avoidance learning and contextual fear conditioning. Neurobiology of Learning and Memory, 112, 186-194. doi:10.1016/j.nlm.2013.07.017
Yang, P.-F., Chen, Y.-Y., Chen, D.-Y., Hu, J. W., Chen, J.-H., & Yen, C.-T. (2013). Comparison of fMRI BOLD response patterns by electrical stimulation of the ventroposterior complex and medial thalamus of the rat. PloS One, 8, e66821. doi:10.1371/journal.pone.0066821
Yerkes, R. M., & Dodson, J. D. (1908). The relation of strength of stimulus to rapidity of habit-formation. Journal of Comparative Neurology and Psychology, 18, 459–482. doi:10.1037/h0073415
Zhao, F., Zhao, T., Zhou, L., Wu, Q., & Hu, X. (2008). BOLD study of stimulation-induced neural activity and resting-state connectivity in medetomidine-sedated rat. NeuroImage, 39, 248–260. doi:10.1016/j.neuroimage.2007.07.063
Zimmerman, J. M., Rabinak, C. A., McLachlan, I. G., & Maren, S. (2007). The central nucleus of the amygdala is essential for acquiring and expressing conditional fear after overtraining. Learning and Memory, 14, 634–644. doi:10.1101/lm.607207
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68807-
dc.description.abstract在古典恐懼條件學習過程中,條件刺激(conditioned stimulus, CS)與非條件刺激(unconditioned stimulus, US)配對出現使得一個原先微弱、無法引發恐懼反應的CS逐漸獲得預測US即將來臨之能力,並控制恐懼行為之展現。杏仁核被認為是恐懼條件記憶生成之樞紐,因其接受來自CS與US訊息之投射,此兩訊息在杏仁核內部交會使得突觸前後產生耦合興奮性,透過海伯法則(Hebbian rule)留下連結學習之記憶痕跡。許多研究證據指出CS與US在感覺徑路上有許多匯聚之處,甚至在初級感覺訊息徑路上所產生的神經可塑性(neural plasticity)會進一步影響下游腦區之記憶痕跡生成。本論文企圖透過大鼠功能性核磁共振顯影來定位CS與US可能匯聚之處,透過一連串實驗分別建立行為典範、選擇刺激參數與尋找感覺通路,最後讓大鼠接受MRI掃描同時進行CS-US連結學習。行為層次上,大鼠在得麻效(dexmedetomidine, 0.1 mg/kg/hr)引發之鎮靜狀態下進行古典條件學習,在訓練後隔日接受恐懼增強驚跳反應作業(fear potentiated startle task)來測試記憶,行為結果顯示學習前給予周邊腎上腺素注射(epinephrine, 0.1 mg/kg)可增強一個微弱電擊 (0.63 mA)引發之學習,然直接使用強電擊作為US (1.25 mA)可使得大鼠在記憶測試中展現強烈的恐懼反應。在感覺刺激層面上,中等亮度的閃爍燈光(5 Hz, 2.13 cd/m2)可在視覺徑路上引發強烈的血氧濃度信號(blood oxygenation level-dependent signal),但不會影響學習或處理嫌惡刺激相關之腦區,故被選為CS。最後大鼠在得麻效鎮靜狀態下進行古典條件學習,並同時執行功能性影像掃描,透過血氧濃度信號的改變來探測學習當下CS與US匯聚之腦區。影像結果顯示視覺徑路從皮質下結構到高等聯結區域都有學習引發之信號改變,且學習事件結束後視覺徑路與觸覺/痛覺徑路之間的功能性連結上升,甚至次級視覺皮質(secondary visual cortex, V2)與次級觸覺皮質(secondary somatosensory cortex, S2)之功能性連結可預測隔日記憶表現之好壞。本論文之研究結果顯示CS與US在腦中之匯聚場所不只一處,這些腦區形成一個表徵恐懼記憶的細胞集團,學習事件後CS與US徑路間神經活動震盪上升有助於後續的記憶穩固。zh_TW
dc.description.abstractIn Pavlovain fear conditioning, a neutral event noted as the conditioned stimulus (CS) acquires the ability to predict a forthcoming aversive event noted as the unconditioned stimulus (US), if the presence of US is frequently preceded by CS. The amygdala is the key substrate for fear memory as it receives the convergent inputs from the CS and US pathways to induce learning-related plasticity via a cellular mechanism based on the Hebbian rule. Several thalamic nuclei and cortical areas have also been proposed to be substrates of fear memory rather than serving as purely sensory analyzers. Even the early stage of sensory process may receive the CS-US convergent input and exerts its influence on the downstream circuit to enable the formation of engram. To delineate the cell assembly subserving learning and unveil the locus of CS-US convergence and/or interaction throughout the brain, rats treated with dexmedetomidine (0.1 mg/kg/hr) were trained to acquire CS-US association and functional images sensitive to blood oxygenation level-dependent (BOLD) contrast were obtained simultaneously. A series of experiments were designed to build a behavioral paradigm to train rats to associate the CS with US under dexmedetomidine treatment, set stimulus parameters to probe the brain pathways for the CS and US, and obtain functional images during CS-US association. First, behavioral results showed that an intense foot shock (1.25 mA) yielded a significant fear potentiated startle response, while a weak shock (0.63 mA) yielded minimal learning that can be enhanced by pre-training injection of 0.1 mg/kg epinephrine. Second, the 5 Hz flash with a median level of luminance (2.13 cd/m2) can serve as a good CS as it evoked robust visual activity without causing much impact on regions involved in aversion or learning. Finally, the imaging results reveal fear conditioning altered the BOLD activity in the visual pathway and the foci of CS-US convergence were found in both the subcortical and cortical levels. Functional connectivity change revealed that the interaction between the CS and US pathways was enhanced after the termination of the training trials, and this learning-induced functional coupling was detected at each level of the sensory process. The functional connectivity change of the V2 and the secondary somatosensory cortex (S2) bear positive correlation with the memory performance. In conclusion, the CS and US interact in multiple sites along the sensory pathways and the increment of the functional connectivity after learning may promote subsequent memory consolidation process.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:36:22Z (GMT). No. of bitstreams: 1
ntu-106-D99227107-1.pdf: 3156259 bytes, checksum: 2c68fe0e750c2488a34e9377291cb8f8 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要................................................................................................................................. i
Abstract ......................................................................................................................... iii
Table of Contents ........................................................................................................... v
Index of Tables ............................................................................................................. vii
Index of Figures ........................................................................................................... vii
Chapter 1. Introduction .................................................................................................. 1
The Locus of CS-US Convergence in Pavlovian Fear Learning ........................... 2
Probing the CS-US Convergence throughout the Whole Brain ............................. 4
Learning Under an Anesthesia or Sedation State ................................................... 7
Purpose of This Dissertation .................................................................................. 9
Chapter 2. General Methods and Materials ................................................................. 11
2-1. Subjects ......................................................................................................... 11
2-2. Drugs and Administration ............................................................................. 11
2-3. Acoustic Startle Tasks ................................................................................... 12
2-4. Functional Magnetic Resonance Imaging .................................................... 17
Chapter 3. Fear Conditioning in Dexmedetomidine-treated Rats ................................ 23
3-1. Strong Shock or Epinephrine Yielded Significant Conditioning Effects under
DEX Treatment .................................................................................................... 25
3.2. Evaluation of Potential Drug Effects on Shock Startle ................................. 31
3-3. Summary and Discussion ............................................................................. 33
Chapter 4. Probing Brain Pathways for CS and US with fMRI ................................... 37
4-1. Forepaw Stimulation Evokes BOLD Activity in the Somatosensory Pathway
.............................................................................................................................. 38
4-2. 5 Hz Flash Light Evokes Robust BOLD Signal Change in the Visual
Pathway ................................................................................................................ 42
4-3. Summary and Discussion ............................................................................. 47
Chapter 5. Searching for the Convergence of CS and US ........................................... 51
5-1. Fear Conditioning Alters BOLD Response on Sedated Rats ....................... 53
5-2. Functional Connectivity Change .................................................................. 66
5-2-1. Sensory Stimulation Enhanced the Within-Modality Functional
Connectivity but Decreases that of Between-Modalities ..................................... 66
5-2-2. Fear Conditioning Changed the Functional Connectivity between
Somatosensory and Visual Pathways in Subcortical and Cortical Levels ........... 70
5-3. Summary and Discussion ............................................................................. 75
5-3-1. The Loci of CS-US Convergence: the SC, LGN, and V2/PCC ................ 77
5-3-2. The Activity of HDB is Related to Memory Modulation .......................... 81
5-3-3. The Enhanced Functional Connectivity between the Visual and
Somatosensory Pathways Leads to Stronger Memory Trace ............................... 82
Chapter 6. General Discussion ..................................................................................... 85
6-1. The conceptual framework for associative learning ..................................... 86
6-2. The functional connectivity change during consolidation phase .................. 90
Reference ..................................................................................................................... 99
Curriculum Vitae ........................................................................................................ 109
Appendix .................................................................................................................... 113
dc.language.isoen
dc.subject恐懼增強驚跳反應zh_TW
dc.subject大鼠功能性核磁共振照影zh_TW
dc.subjectfear potentiated startleen
dc.subjectrodent fMRIen
dc.title恐懼條件學習改變得麻效鎮靜狀態大鼠之血氧濃度信號與功能性連結zh_TW
dc.titleFear Conditioning Altered BOLD Responses and Functional Connectivity in Dexmedetomidine-Sedated Ratsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee郭柏呈(Bo-Cheng Kuo),陳德祐(Der-Yow Chen),游一龍(Lung Yu),葉俊毅(Chun-I Yeh),廖瑞銘(Ruey-Ming Liao)
dc.subject.keyword恐懼增強驚跳反應,大鼠功能性核磁共振照影,zh_TW
dc.subject.keywordfear potentiated startle,rodent fMRI,en
dc.relation.page127
dc.identifier.doi10.6342/NTU201703753
dc.rights.note有償授權
dc.date.accepted2017-08-17
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept心理學研究所zh_TW
顯示於系所單位:心理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved