請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68800
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 邱智賢(Chih-Hsien Chiu) | |
dc.contributor.author | Hao-Yi Wang | en |
dc.contributor.author | 王皓儀 | zh_TW |
dc.date.accessioned | 2021-06-17T02:36:00Z | - |
dc.date.available | 2020-08-25 | |
dc.date.copyright | 2017-08-25 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-17 | |
dc.identifier.citation | Reference
Aronoff, S. L., Berkowitz, K., Shreiner, B., and Want, L. (2004). Glucose Metabolism and Regulation: Beyond Insulin and Glucagon. Diabetes Spectrum 17(3), 183-190. Azzout, B., Bois-Joyeux, B., Chanez, M., and Peret, J. (1987). Development of gluconeogenesis from various precursors in isolated rat hepatocytes during starvation or after feeding a high protein, carbohydrate-free diet. The Journal of Nutrition 117(1), 164-169. Bachar-Wikstrom, E., Wikstrom, J. D., Ariav, Y., Tirosh, B., Kaiser, N., Cerasi, E., and Leibowitz, G. (2013). Stimulation of autophagy improves endoplasmic reticulum stress-induced diabetes. Diabetes 62(4), 1227-1237. Baggio, L. L., and Drucker, D. J. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology 132(6), 2131-2157. Bartolome, A., Guillen, C., and Benito, M. (2012). Autophagy plays a protective role in endoplasmic reticulum stress-mediated pancreatic β cell death. Autophagy 8(12), 1757-1768. Boucher, A., Lu, D., Burgess, S. C., Telemaque-Potts, S., Jensen, M. V., Mulder, H., Wang, M. Y., Unger, R. H., Sherry, A. D., and Newgard, C. B. (2004). Biochemical mechanism of lipid-induced impairment of glucose-stimulated insulin secretion and reversal with a malate analogue. The Journal of Biological Chemistry 279(26), 27263-27271. Bowe, J. E., King, A. J., Kinsey-Jones, J. S., Foot, V. L., Li, X. F., O'Byrne, K. T., Persaud, S. J., and Jones, P. M. (2009). Kisspeptin stimulation of insulin secretion: mechanisms of action in mouse islets and rats. Diabetologia 52(5), 855-862. Burns, S. M., Vetere, A., Walpita, D., Dancik, V., Khodier, C., Perez, J., Clemons, P. A., Wagner, B. K., and Altshuler, D. (2015). High-throughput luminescent reporter of insulin secretion for discovering regulators of pancreatic Beta-cell function. Cell Metabolism 21(1), 126-137. Cardenas, C., and Foskett, J. K. (2012). Mitochondrial Ca(2+) signals in autophagy. Cell Calcium 52(1), 44-51. Castellano, J. M., Gaytan, M., Roa, J., Vigo, E., Navarro, V. M., Bellido, C., Dieguez, C., Aguilar, E., Sanchez-Criado, J. E., Pellicer, A., Pinilla, L., Gaytan, F., and Tena-Sempere, M. (2006). Expression of KiSS-1 in rat ovary: putative local regulator of ovulation? Endocrinology 147(10), 4852-4862. Chandran, M., Phillips, S. A., Ciaraldi, T., and Henry, R. R. (2003). Adiponectin: more than just another fat cell hormone? Diabetes Care 26(8), 2442-2450. Ciudad, C. J., Carabaza, A., and Guinovart, J. J. (1986). Glucose 6-phosphate plays a central role in the activation of glycogen synthase by glucose in hepatocytes. Biochemical and Biophysical Research Communications 141(3), 1195-1200. Clarkson, J., and Herbison, A. E. (2006). Postnatal development of kisspeptin neurons in mouse hypothalamus; sexual dimorphism and projections to gonadotropin-releasing hormone neurons. Endocrinology 147(12), 5817-5825. d'Anglemont de Tassigny, X., Fagg, L. A., Dixon J. P., Day, K., Leitch, H. G., Hendrick, A. G., Zahn, D., Franceschini, I., Caraty, A., Carlton, M. B., Aparicio, S. A., and Colledge, W. H. (2007). Hypogonadotropic hypogonadism in mice lacking a functional Kiss1 gene. Proceedings of the National Academy of Sciences of the United States of America 104(25), 10714-10719. Davies, J. L., Kawaguchi, Y., Bennett, S. T., Copeman, J. B., Cordell, H. J., Pritchard, L. E., Reed, P. W., Gough, S. C., Jenkins, S. C., Palmer, S. M., et al. (1994). A genome-wide search for human type 1 diabetes susceptibility genes. Nature 371(6493), 130-136. Deter, R. L., Baudhuin, P., and de Duve, C. (1967). Participation of lysosomes in cellular autophagy induced in rar liver by glucagon. Journal of Cell Biology 35(2), C11-16. Ebato, C., Uchida T., Arakawa, M., Komatsu, M., Ueno, T., Komiya, K., Azuma, K., Hirose, T., Tanaka, K., Kominami, E., et al. (2008). Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metabolism 8(4), 325-332. Eriksson, K. F., and Lindgarde, F. (1991). Prevention of type 2 (non-insulin-dependent) diabetes mellitus by diet and physical exercise. The 6-year Malmo feasibility study. Diabetologia 34(12), 891-898. Eskelinen, E. L., Reggiori, F., Baba, M., Kovacs, A. L., and Seglen, P. O. (2011). Seeing is believing: the impact of electron microscopy on autophagy research. Autophagy 7(9), 935-956. Forbes, J. M., and Cooper, M. E. (2013). Mechanisms of Diabetic Complications. Physiological Reviews 93(1), 137-188. Fourlanos, S., Narendran, P., Byrnes, G. B., Colman, P. G., and Harrison, L. C. (2004). Insulin resistance is a risk factor for progression to type 1 diabetes. Diabetologia 47(10), 1661-1667. Fu, Z., Gilbert, E. R., and Liu, D. (2013). Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current Diabetes Reviews 9(1), 25-53. Gill, J. C., Wang, O., Kakar, S., Martinelli, E., Carroll, R. S., and Kaiser, U. B. (2010). Reproductive hormone-dependent and -independent contributions to developmental changes in kisspeptin in GnRH-deficient hypogonadal mice. PLOS ONE 5(7), e11911. Hamaguchi, K., Gaskins, H. R., and Leiter, E. H. (1991). NIT-1, a pancreatic beta-cell line established from a transgenic NOD/Lt mouse. Diabetes 40(7), 842-849. Harding, T. M., Morano, K. A., Scott, S. V., and Klionsky, D. J. (1995). Isolation and characterization of yeast mutants in the cytoplasm to vacuole protein targeting pathway. Journal of Cell Biology 131(3), 591-602. Hauge-Evans, A. C., Richardson, C. C., Milne, H. M., Christie, M. R., Persaud, S. J., and Jones, P. M. (2006). A role for kisspeptin in islet function. Diabetologia 49(9), 2131-2135. Herder, C. and M. Roden (2011). 'Genetics of type 2 diabetes: pathophysiologic and clinical relevance.' Eur J Clin Invest 41(6): 679-692. Herder, C., and Roden, M. (2011). Genetics of type 2 diabetes: pathophysiologic and clinical relevance. European Journal of Clinical Investigation 41(6), 679-692. International Diabetes Federation. IDF Diabetes Atlas, 7 ed. Brussels, Belgium: International Diabetes Federation, 2015. Hotamisligil, G. (2008). Inflammation and endoplasmic reticulum stress in obesity and diabetes. International Journal of Obesity 32(Suppl 7), S52-54. Hsu, M. C., Wang, J. Y., Lee, Y. J., Jong, D. S., Tsui, K. H., and Chiu, C. H. (2014). Kisspeptin modulates fertilization capacity of mouse spermatozoa. Reproduction 147(6), 835-845. Irwig, M. S., Fraley, G. S., Smith, J. T., Acohido, B. V., Popa, S. M., Cunningham, M. J., Gottsch, M. L., Clifton, D. K., and Steiner, R. A. (2004). Kisspeptin activation of gonadotropin releasing hormone neurons and regulation of KiSS-1 mRNA in the male rat. Neuroendocrinology 80(4), 264-272. Jung, H. S., Chung, K. W., Won Kim, J., Kim, J., Komatsu, M., Tanaka, K., Nguyen, Y. H., Kang, T. M., Yoon, K. H., Kim, J. W., et al. (2008). Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metabolism 8(4), 318-324. Kauffman, A. S., Park, J. H., McPhie-Lalmansingh, A. A., Gottsch, M. L., Bodo, ,C., Hohmann J. G., Pavlova, M. N., Rohde, A. D., Clifton, D. K., Steiner, R. A., and Rissman, E. F. (2007). The kisspeptin receptor GPR54 is required for sexual differentiation of the brain and behavior. J Neurosci 27(33): 8826-8835. Kauffman, A. S., and Smith, J. T. (2013). Kisspeptin Signaling in Reproductive Biology. New York: Springer Science & Business Media Kieffer, T. J., and Habener, J. F. (2000). The adipoinsular axis: effects of leptin on pancreatic beta-cells. American Journal Of Physiology-Endocrinology And Metabolism 278(1), E1-e14. Kim, J., Kundu, M., Viollet, B., and Guan, K. L. (2011). AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nature Cell Biology 13(2), 132-141. Kinoshita, M., Tsukamura, H., Adachi, S., Matsui, H., Uenoyama, Y., Iwata, K., Yamada, S., Inoue, K., Ohtaki, T., Matsumoto, H., and Maeda, K. (2005). Involvement of central metastin in the regulation of preovulatory luteinizing hormone surge and estrous cyclicity in female rats. Endocrinology 146(10), 4431-4436. Klionsky, D. J., Abdalla, F. C., Abeliovich, H., Abraham, R. T., Acevedo-Arozena, A., Adeli, K., Agholme, L., Agnello, M., Agostinis, P., A. Aguirre-Ghiso, J., et al. (2012). Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8(4), 445-544. Klionsky, D. J., Cregg, J. M., Dunn, W. A., Jr., Emr, S. D., Sakai, Y., Sandoval, I. V., Sibirny, A., Subramani, S., Thumm, M., Veenhuis, M. and Ohsumi, Y. (2003). A unified nomenclature for yeast autophagy-related genes. Developmental Cell 5(4), 539-545. Klionsky, D. J., and Emr, S. D. (2000). Autophagy as a regulated pathway of cellular degradation. Science 290(5497), 1717-1721. Kotani, M., Detheux, M., Vandenbogaerde, A., Communi, D., Vanderwinden, J. M., Le Poul, E., Brezillon, S., Tyldesley, R., Suarez-Huerta, N., Vandeput, F., et al. (2001). The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. The Journal of Biological Chemistry 276(37), 34631-34636. Lapatto, R., Pallais, J. C., Zhang, D., Chan, Y. M., Mahan, A., Cerrato, F., Le, W. W., Hoffman, G. E., and Seminara, S. B. (2007). Kiss1-/- mice exhibit more variable hypogonadism than Gpr54-/- mice. Endocrinology 148(10), 4927-4936. Larsson, A., and Sjoquist, J. (1990). Chicken IgY: utilizing the evolutionary difference. Comparative Immunology, Microbiology & Infectious Diseases 13(4), 199-201. Lee, D. K., Nguyen, T., O'Neill, G. P., Cheng, R., Liu, Y., Howard, A. D., Coulombe, N., Tan, C. P., Tang-Nguyen, A. T., George, S. R., and O'Dowd, B. F. (1999). Discovery of a receptor related to the galanin receptors. FEBS Letters 446(1), 103-107. Lee, J. H., Miele, M. E., Hicks, D. J., Phillips, K. K., Trent, J. M., Weissman, B. E., and Welch, D. R. (1996). KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. Journal of the National Cancer Institute 88(23), 1731-1737. Lee, Y. J. (2014). The role of Kisspeptin/KISS1R system in mice testicular development. Unpublished master’s dissertation, National Taiwan University, Taiwan. Leslie, G. A., and Martin, L. N. (1973). Studies on the secretory immunologic system of fowl. 3. Serum and secretory IgA of the chicken. The Journal of Immunology 110(1), 1-9. Li, X., Zhang, L., Meshinchi, S., Dias-Leme, C., Raffin, D., Johnson, J. D., Treutelaar, M. K., and Burant, C. F. (2006). Islet microvasculature in islet hyperplasia and failure in a model of type 2 diabetes. Diabetes 55(11), 2965-2973. Malik, V. S., Popkin, B. M., Bray, G. A., Després, J. P., Willett, W. C., and Hu, F. B. (2010). Sugar-Sweetened Beverages and Risk of Metabolic Syndrome and Type 2 Diabetes: A meta-analysis. Diabetes Care 33(11), 2477-2483. Matsuyama, T., Komatsu, R., Namba, M., Watanabe, N., Itoh, H., and Tarui, S. (1988). Glucagon-like peptide-1 (7-36 amide): a potent glucagonostatic and insulinotropic hormone. Diabetes Research and Clinical Practice 5(4), 281-284. Matveyenko, A. V., and Butler, P. C. (2006). Beta-cell deficit due to increased apoptosis in the human islet amyloid polypeptide transgenic (HIP) rat recapitulates the metabolic defects present in type 2 diabetes. Diabetes 55(7), 2106-2114. Mei, H., Walters, C., Carter, R., and Colledge, W. H. (2011). Gpr54-/- mice show more pronounced defects in spermatogenesis than Kiss1-/- mice and improved spermatogenesis with age when exposed to dietary phytoestrogens. Reproduction 141(3), 357-366. Mergenthaler, P., Lindauer, U., Dienel, G. A., and Meisel, A. (2013). Sugar for the brain: the role of glucose in physiological and pathological brain function. Trends in Neurosciences, 36(10), 587–597. Morgan, A., Burgoyne, R. D., Barclay, J. W., Craig, T. J., Prescott, G. R., Ciufo, L. F., Evans, G. J., and Graham, M. E. (2005). Regulation of exocytosis by protein kinase C. Biochemical Society Transactions 33(Pt 6), 1341-1344. Muir, A. I., Chamberlain, L., Elshourbagy, N. A., Michalovich, D., Moore, D. J., Calamari, A., Szekeres, P. G., Sarau, H. M., Chambers, J. K., Murdock, P., et al. (2001). AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. The Journal of Biological Chemistry 276(31), 28969-28975. Muoio, D. M., and Newgard, C. B. (2008). Mechanisms of disease:Molecular and metabolic mechanisms of insulin resistance and beta-cell failure in type 2 diabetes. Nature Reviews Molecular Cell Biology 9(3), 193-205. Narat, M. (2003). Production of Antibodies in Chickens. Food Technology and Biotechnology 41, 259-267. Ohtaki, T., Shintani, Y., Honda, S., Matsumoto, H., Hori, A., Kanehashi, K., Terao, Y., Kumano, S., Takatsu, Y., Masuda, Y., et al. (2001). Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature 411(6837), 613-617. Perley, M. J. and Kipnis, D. M. (1967). Plasma insulin responses to oral and intravenous glucose: studies in normal and diabetic sujbjects. The Journal of Clinical Investigation 46(12), 1954-1962. Pinilla, L., Aguilar, E., Dieguez, C., Millar, R. P., and Tena-Sempere, M. (2012). Kisspeptins and reproduction: physiological roles and regulatory mechanisms. Physiological Reviews 92(3), 1235-1316. Quan, W., Hur, K. Y., Lim, Y., Oh, S. H., Lee, J. C., Kim, K. H., Kim, G. H., Kim, S. W., Kim, H. L., Lee, M. K., et al. (2012). Autophagy deficiency in beta cells leads to compromised unfolded protein response and progression from obesity to diabetes in mice. Diabetologia 55(2), 392-403. Riahi, Y., Wikstrom, J. D., Bachar-Wikstrom, E., Polin, N., Zucker, H., Lee, M. S., Quan, W., Haataja, L., Liu, M., Arvan, P., Cerasi, E., et al. (2016). Autophagy is a major regulator of beta cell insulin homeostasis. Diabetologia 59(7), 1480-1491. Risérus, U., Willett, W. C., and Hu, F. B. (2009). Dietary fats and prevention of type 2 diabetes. Progress in Lipid Research 48(1), 44-51. Rizza, R. A. (2010). Pathogenesis of fasting and postprandial hyperglycemia in type 2 diabetes: implications for therapy. Diabetes 59(11), 2697-2707. Roach, P. J., Depaoli-Roach, A. A., Hurley, T. D., and Tagliabracci, V. S. (2012). Glycogen and its metabolism: some new developments and old themes. Biochemical Journal 441(3), 763-787. Roder, P. V., Wong, X., Hong, W., and Han, W. (2016). Molecular regulation of insulin granule biogenesis and exocytosis. Biochemical Journal 473(18), 2737-2756. Rosen, E. D., and Spiegelman, B. M. (2006). Adipocytes as regulators of energy balance and glucose homeostasis. Nature 444(7121), 847-853. Roseweir, A. K., Kauffman, A. S., Smith, J. T., Guerriero, K. A., Morgan, K., Pielecka-Fortuna, J., Pineda, R., Gottsch, M. L., Tena-Sempere, M., Moenter, S. M., et al. (2009). Discovery of potent kisspeptin antagonists delineate physiological mechanisms of gonadotropin regulation. Journal of Neuroscience 29(12), 3920-3929. Sakaki, K., and Kaufman, R. J. (2008). Regulation of ER stress-induced macroautophagy by protein kinase C. Autophagy 4(6), 841-843. Saltiel, A. R., and Kahn, C. R. (2001). Insulin signaling and the regulation of glucose and lipid metabolism. Nature 414(6865), 799-806. Samuel, V. T., and Shulman, G. I. (2012). Mechanisms for insulin resistance: common threads and missing links. Cell 148(5), 852-871. Schmid, H., Kettelhut, I. C., and Migliorini, R. H. (1984). Reduced lipogenesis in rats fed a high-protein carbohydrate-free diet. Metabolism: clinical and experimental 33(3), 219-223. Schwetz, T. A., Reissaus, C. A., and Piston, D. W. (2014). Differential Stimulation of Insulin Secretion by GLP-1 and Kisspeptin-10. PLOS ONE 9(11), e113020. Seminara, S. B., Messager, S., Chatzidaki, E. E., Thresher, R. R., Acierno, J. S., Jr., Shagoury, J. K., Bo-Abbas, Y., Kuohung, W., Schwinof, K. M., Hendrick, A. G., et al. (2003). The GPR54 gene as a regulator of puberty. The New England Journal of Medicine 349(17), 1614-1627. Sharma, P., Yan, F., Doronina, V. A., Escuin-Ordinas, H., Ryan, M. D., and Brown, J. D. (2012). 2A peptides provide distinct solutions to driving stop-carry on translational recoding. Nucleic Acids Research, 40(7), 3143–3151. Shoji, I., Hirose, T., Mori, N., Hiraishi, K., Kato, I., Shibasaki, A., Yamamoto, H., Ohba, K., Kaneko, K., Morimoto, R., et al. (2010). Expression of kisspeptins and kisspeptin receptor in the kidney of chronic renal failure rats. Peptides 31(10), 1920-1925. Silvestre, R. A., Egido, E. M., Hernandez R., and Marco, J. (2008). Kisspeptin-13 inhibits insulin secretion without affecting glucagon or somatostatin release: study in the perfused rat pancreas. Journal of Endocrinology 196(2), 283-290. Sinha, R. A., Singh, B. K., and Yen, P. M. (2017). Reciprocal Crosstalk Between Autophagic and Endocrine Signaling in Metabolic Homeostasis. Endocrine Reviews 38(1), 69-102. Snyder, D. A., Kelly M. L., and Woodbury, D. J. (2006). SNARE complex regulation by phosphorylation. Cell Biochemistry and Biophysics 45(1), 111-123. Song, W. J., Mondal, P., Wolfe, A., Alonso, L. C., Stamateris, R., Ong, B. W., Lim, O. C., Yang, K. S., Radovick, S., Novaira, H. J., et al.(2014). Glucagon regulates hepatic kisspeptin to impair insulin secretion. Cell Metabolism 19(4), 667-681. Terao, Y., Kumano, S., Takatsu, Y., Hattori, M., Nishimura, A., Ohtaki, T., and Shintani, Y. (2004). Expression of KiSS-1, a metastasis suppressor gene, in trophoblast giant cells of the rat placenta. Biochimica et Biophysica Acta 1678(2-3), 102-110. Tolson, K. P., Garcia, C., Yen, S., Simonds, S., Stefanidis, A., Lawrence, A., Smith, J. T., and Kauffman, A. S. (2014). Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. Journal of Clinical Investigation 124(7), 3075-3079. Tooze, S. A., and Yoshimori, T. (2010). The origin of the autophagosomal membrane. Nature Cell Biology 12(9), 831-835. Tsukada, M., and Ohsumi, Y. (1993). Isolation and characterization of autophagy-defective mutants of Saccharomyces cerevisiae. FEBS Letters 333(1-2), 169-174. Ugland, H., Naderi, S., Brech, A., Collas, P., and Blomhoff, H. K. (2011). cAMP induces autophagy via a novel pathway involving ERK, cyclin E and Beclin 1. Autophagy 7(10), 1199-1211. Vikman, J., and Ahren, B. (2009). Inhibitory effect of kisspeptins on insulin secretion from isolated mouse islets. Diabetes, Obesity and Metabolism 11 Suppl 4, 197-201. Wang, Z., and Thurmond, D. C. (2009). Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. Journal of Cell Science 122(Pt 7), 893-903. Yan, C., Wang, H., and Boyd, D. D. (2001). KiSS-1 represses 92-kDa type IV collagenase expression by down-regulating NF-kappa B binding to the promoter as a consequence of Ikappa Balpha -induced block of p65/p50 nuclear translocation. The Journal of Biological Chemistry 276(2), 1164-1172. Yin, J. J., Li, Y. B., Wang, Y., Liu, G. D., Wang, J., Zhu, X. O., and Pan, S. H. (2012). The role of autophagy in endoplasmic reticulum stress-induced pancreatic beta cell death. Autophagy 8(2), 158-164. Yip, R. G. and Wolfe, M. M. (2000). GIP biology and fat metabolism. Life Sciences 66(2), 91-103. Yoshioka, K., Ohno, Y., Horiguchi, Y., Ozu, C., Namiki, K., and Tachibana, M. (2008). Effects of a KiSS-1 peptide, a metastasis suppressor gene, on the invasive ability of renal cell carcinoma cells through a modulation of a matrix metalloproteinase 2 expression. Life Sciences 83(9-10), 332-338. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68800 | - |
dc.description.abstract | 已知kisspeptins及其受體Kiss1r在生殖系統中扮演了重要的角色。然而,對於他們在其他周邊組織中的功能及角色了解的仍然不多。文獻中指出升糖素 (Glucagon) 會刺激肝臟分泌kisspeptin而進一步影響葡萄糖刺激的胰島素分泌功能 (Glucose-stimulated insulin secretion, GSIS)。而值得注意的是,在二型糖尿病的患者血液中,會有較高的kisspeptin濃度,且葡萄糖刺激的胰島素分泌功能也會隨著病程的發展而有受損的情形。再加上細胞自噬 (Autophagy) 被認為參與了胰島素的分解作用而能調控β細胞的胰島素分泌功能。因此,我們提出假設,kisspeptin可能會藉由調控β細胞中的細胞自噬而直接影響胰島素的分泌,而這樣的現象可能在二型糖尿的的病程中扮演了重要的角色。
首先,在經由專一性的測試後,利用自製的抗體組織免疫染色法中證實Kiss1r表現於β細胞中,因而直接傳遞kisspeptin的下游訊息。接著,利用小鼠β細胞的細胞株,NIT-1,建立體外試驗模式以了解長期給予kisspeptin對β細胞胰島素分泌的影響及其可能的機制。從結果可以看到,在利用過度表達kisspeptin於細胞中而模擬長期影響的模式下,NIT-1細胞中葡萄糖刺激的胰島素分泌會受到抑制,且同時會促進細胞自噬的發生進而影響胰島素在細胞中的含量。除此之外,阻檔細胞自噬能夠有效回復過度表達kisspeptin對胰島素含量的影響。 綜合以上結果,說明了受到kisspeptin影響而受損的胰島素分泌功能可能是藉由調控細胞自噬而改變胰島素在細胞中的含量所致。由於長期處於高濃度kisspeptin對胰島素分泌的影響可能在二型糖尿病的病程中扮演了重要的角色,透過我們的實驗更加了解其機制則有助於提供未來可能的治療方向。 | zh_TW |
dc.description.abstract | Kisspeptin and its receptor Kiss1r are known to play important roles in regulating animal reproduction. However, their functions in other peripheral tissues are poorly understood. Couple with the proved fact that hepatic kisspeptin stimulated by glucagon would inhibit GSIS, the report also showed that type 2 diabetes patients and obese mice model exhibited not only an increase in liver kisspeptin mRNA and protein level but also impaired GSIS function (Song et al., 2014). It gave us a hint that kisspeptin/Kiss1r system might plays a role in the development of type 2 diabetes. In addition, previous studies have shown that the capacity of GSIS in β cell is negatively regulated by autophagic degradation of insulin. Based on these studies, we hypothesized that kisspeptin may activate autophagy to suppress GSIS in β cells.
To validate our hypothesis, we first conducted IHC staining experiments using our previously developed anti-Kiss1r polyclonal IgY antibody to confirm the expression of Kiss1r in mouse β cell. Our IHC staining results showed that Kiss1r is positively stained in insulin expressing β cells. Then, we chose mouse pancreatic β cell line, NIT-1, that positively respond to kisspeptin as in vitro model to study the effects of kisspeptin in β cells. In our study, we established Kiss1 over-expression model that we used to mimic long-term kisspeptin exposure to study the posible roles of kisspeptin in type 2 diabetes. It was shown that long-term treatment of kisspeptin resulted in potently suppressed GSIS and decreased insulin protein level in NIT-1 cells. Importantly, our Western Blot results proved the fact that long-term treatment of kisspeptin impaired GSIS through induced autophagy and thus decreased insulin content in NIT-1 cells. Taken together, our data suggested that long-term kisspeptin exposure could suppress GSIS in β cell by inducing autophagic degradation of insulin, which might play an important role in type 2 diabetes development. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:36:00Z (GMT). No. of bitstreams: 1 ntu-106-R04626008-1.pdf: 10523898 bytes, checksum: 107c9c4a2208e6251513d53bdb156aa0 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | Contents
致謝……………………………………………………………………….……………i 中文摘要………………………………………………………………….………...…ii 英文摘要………………………………………………………………….…….…….iv Contents………………………………………………………………….………....vi List of Figures………………………………………………………….…………..vii 1. Introduction…………………………………………………………………....1 2. Literature Review………………………………………...……………………3 2.1 Glucose metabolism and regulation………….………………..………......3 2.2 Diabetes………………………..…………………………………………........9 2.3 Kisspeptin/Kiss1r system…….……………..………………………….…..17 2.4 Autophagy……………………………………………………………………..25 3. Materials and Methods………………………………………………………33 4. Results……………………………………………….………………………...44 4.1 Kiss1r was localized in pancreatic β cell by chicken-anti Kiss1r IgY antibody……………………………………………….…………………….....44 4.2 The effects of kisspeptin over-expression on GSIS……….………........47 4.3 The possible mechanism of impaired GSIS caused by long-term treatment of kisspeptin ……………………………….………………….....51 5 Discussion…………………………………………………………………......55 5.1 Kiss1r was localized in pancreatic β cell by chicken-anti Kiss1r IgY antibody……………………………………………….……………………......55 5.2 The effects of long-term treatment of kisspeptin on GSIS…......………59 5.3 The possible mechanism of impaired GSIS caused by long-term treatment of kisspeptin ………………………………………………….....65 6 Conclusion………………………………………………………………….....71 7 Figures………………………………………………………………….……...72 8 Reference…………………………………………………………....………..87 Appendix List of Abbreviations………………………………………………....105 Appendix List of Primer…....…………………………………………………….106 | |
dc.language.iso | en | |
dc.title | Kisspeptin藉由細胞自噬調控 β 細胞在葡萄糖刺激下的胰島素分泌 | zh_TW |
dc.title | Kisspeptin Regulates Glucose-Stimulated Insulin Secretion through Autophagy in Pancreatic β cell | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 鍾德憲(De-Shien Jong) | |
dc.contributor.oralexamcommittee | 陳億乘(Yi-Chen Chen),張元衍(Yuan-Yen Chang),徐慶琳(Chin-Lin Hsu) | |
dc.subject.keyword | kisspeptin,Kiss1r,胰島素,二型糖尿病,細胞自噬, | zh_TW |
dc.subject.keyword | kisspeptin,Kiss1r,insulin,type 2 diabetes,autophagy, | en |
dc.relation.page | 106 | |
dc.identifier.doi | 10.6342/NTU201703305 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-17 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
顯示於系所單位: | 動物科學技術學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 10.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。