請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68783完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林正芳(Cheng-Fang Lin) | |
| dc.contributor.author | Yu-Ling Huang | en |
| dc.contributor.author | 黃鈺玲 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:35:09Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | Ahmad, R. (2009). Studies on adsorption of crystal violet dye from aqueous solution onto coniferous pinus bark powder (CPBP). Journal of Hazardous Materials, 171(1-3), 767-773. Ali, I., Gupta, V. (2006). Advances in water treatment by adsorption technology. Nature Protocols, 1(6), 2661. Andreozzi, R., Caprio, V., Insola, A., Marotta, R. (1999). Advanced oxidation processes (AOP) for water purification and recovery. Catalysis Today, 53(1), 51-59. Aziz, H. A., Mojiri, A. (2014). Wastewater Engineering: Advanced Wastewater Treatment Systems: IJSR Publications. Barrera-Díaz, C., Cañizares, P., Fernández, F., Natividad, R., Rodrigo, M. (2014). Electrochemical advanced oxidation processes: an overview of the current applications to actual industrial effluents. Journal of the Mexican Chemical Society, 58(3), 256-275. Behnajady, M. A., Vahid, B., Modirshahla, N., Shokri, M. (2009). Evaluation of electrical energy per order (EEO) with kinetic modeling on the removal of Malachite Green by US/UV/H2O2 process. Desalination, 249(1), 99-103. Bessarabov, D., Wang, H., Li, H., Zhao, N. (2016). PEM electrolysis for hydrogen production: principles and applications: CRC press. Cao, J., Zhao, H., Cao, F., Zhang, J., Cao, C. (2009). Electrocatalytic degradation of 4-chlorophenol on F-doped PbO2 anodes. Electrochimica Acta, 54(9), 2595-2602. Chaplin, B. P. (2019). The prospect of electrochemical technologies advancing worldwide water treatment. Accounts of Chemical Research, 52(3), 596-604. Chen, A., Holt-Hindle, P. (2010). Platinum-based nanostructured materials: synthesis, properties, and applications. Chemical Reviews, 110(6), 3767-3804. Comninellis, C. (1994). Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochimica Acta, 39(11-12), 1857-1862. Crini, G. (2005). Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Progress in Polymer Science, 30(1), 38-70. Crini, G., Lichtfouse, E. (2019). Advantages and disadvantages of techniques used for wastewater treatment. Environmental Chemistry Letters, 17(1), 145-155. Cui, Y.-h., Li, X.-y., Chen, G. (2009). Electrochemical degradation of bisphenol A on different anodes. Water Research, 43(7), 1968-1976. Daneshvar, N., Aleboyeh, A., Khataee, A. (2005). The evaluation of electrical energy per order (EEo) for photooxidative decolorization of four textile dye solutions by the kinetic model. Chemosphere, 59(6), 761-767. Devi, P., Das, U., Dalai, A. K. (2016). In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571, 643-657. Dignac, M.-F., Ginestet, P., Rybacki, D., Bruchet, A., Urbain, V., Scribe, P. (2000). Fate of wastewater organic pollution during activated sludge treatment: nature of residual organic matter. Water Research, 34(17), 4185-4194. Dong, Z.-Q., Ma, X.-h., Xu, Z.-L., You, W.-T., Li, F.-b. (2014). Superhydrophobic PVDF–PTFE electrospun nanofibrous membranes for desalination by vacuum membrane distillation. Desalination, 347, 175-183. Doshi, J., Reneker, D. H. (1993). Electrospinning process and applications of electrospun fibers. Paper presented at the Conference Record of the 1993 IEEE Industry Applications Conference Twenty-Eighth IAS Annual Meeting. Esmaeilifar, A., Yazdanpour, M., Rowshanzamir, S., Eikani, M. H. (2011). Hydrothermal synthesis of Pt/MWCNTs nanocomposite electrocatalysts for proton exchange membrane fuel cell systems. International Journal of Hydrogen Energy, 36(9), 5500-5511. Fóti, G., Gandini, D., Comninellis, C., Perret, A., Haenni, W. (1999). Oxidation of organics by intermediates of water discharge on IrO2 and synthetic diamond anodes. Electrochemical and solid State letters, 2(5), 228. Gupta, C., Maheshwari, P. H., Sasikala, S., Mathur, R. (2014). Processing of pristine carbon nanotube supported platinum as catalyst for PEM fuel cell. Materials for Renewable and Sustainable Energy, 3(4), 36. Hamza, M., Abdelhedi, R., Brillas, E., Sirés, I. (2009). Comparative electrochemical degradation of the triphenylmethane dye Methyl Violet with boron-doped diamond and Pt anodes. Journal of Electroanalytical Chemistry, 627(1-2), 41-50. Hayashi, H., Akamine, S., Ichiki, R., Kanazawa, S. (2016). Comparison of OH radical concentration generated by underwater discharge using two methods. Int. J. Plasma Environ. Sci. Technol., 10(1), 24-28. Hirano, S., Kim, J., Srinivasan, S. (1997). High performance proton exchange membrane fuel cells with sputter-deposited Pt layer electrodes. Electrochimica Acta, 42(10), 1587-1593. Hsieh, C.-T., Chang, Y.-S., Yin, K.-M. (2013). Pt–Sn nanoparticles decorated carbon nanotubes as electrocatalysts with enhanced catalytic activity. The Journal of Physical Chemistry C, 117(30), 15478-15486. Ingale, S., Wagh, P., Bandyopadhyay, D., Singh, I., Tewari, R., Gupta, S. (2015). Synthesis of nanosized platinum based catalyst using sol-gel process. Paper presented at the IOP Conference Series: Materials Science and Engineering. Ivanova, S., Martínez Tejada, M. (2020). Special Issue Catalysis by Precious Metals, Past and Future. In: Multidisciplinary Digital Publishing Institute. Jiao, F., Zhang, F., Zang, Y., Zou, Y., Xu, W., Zhu, D. (2014). An easily accessible carbon material derived from carbonization of polyacrylonitrile ultrathin films: ambipolar transport properties and application in a CMOS-like inverter. Chemical Communications, 50(18), 2374-2376. Kanazawa, S., Furuki, T., Nakaji, T., Akamine, S., Ichiki, R. (2013). Application of chemical dosimetry to hydroxyl radical measurement during underwater discharge. Paper presented at the Journal of Physics: Conference Series. Kanazawa, S., Kawano, H., Watanabe, S., Furuki, T., Akamine, S., Ichiki, R., Mizeraczyk, J. (2011). Observation of OH radicals produced by pulsed discharges on the surface of a liquid. Plasma Sources Science and Technology, 20(3), 034010. Karatutlu, A., Barhoum, A., Sapelkin, A. (2018). Liquid-phase synthesis of nanoparticles and nanostructured materials. In Emerging Applications of Nanoparticles and Architecture Nanostructures (pp. 1-28): Elsevier. Kissinger, P. T., Heineman, W. R. (1983). Cyclic voltammetry. Journal of Chemical Education, 60(9), 702. Kost, K. M., Bartak, D. E., Kazee, B., Kuwana, T. (1988). Electrodeposition of platinum microparticles into polyaniline films with electrocatalytic applications. Analytical Chemistry, 60(21), 2379-2384. Kundu, S., Nagaiah, T. C., Chen, X., Xia, W., Bron, M., Schuhmann, W., Muhler, M. (2012). Synthesis of an improved hierarchical carbon-fiber composite as a catalyst support for platinum and its application in electrocatalysis. Carbon, 50(12), 4534-4542. Lellis, B., Fávaro-Polonio, C. Z., Pamphile, J. A., Polonio, J. C. (2019). Effects of textile dyes on health and the environment and bioremediation potential of living organisms. Biotechnology Research and Innovation, 3(2), 275-290. Li, F., Chen, L., Knowles, G. P., MacFarlane, D. R., Zhang, J. (2017). Hierarchical mesoporous SnO2 nanosheets on carbon cloth: a robust and flexible electrocatalyst for CO2 reduction with high efficiency and selectivity. Angewandte Chemie International Edition, 56(2), 505-509. Liu, Y.-J., Hu, C.-Y., Lo, S.-L. (2019). Direct and indirect electrochemical oxidation of amine-containing pharmaceuticals using graphite electrodes. Journal of Hazardous Materials, 366, 592-605. Liu, Y., Wang, D., Xu, L., Hou, H., You, T. (2011). A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosensors and Bioelectronics, 26(11), 4585-4590. Martinez-Huitle, C. A., Ferro, S. (2006). Electrochemical oxidation of organic pollutants for the wastewater treatment: direct and indirect processes. Chemical Society Reviews, 35(12), 1324-1340. Martínez-Huitle, C. A., Andrade, L. S. (2011). Electrocatalysis in wastewater treatment: recent mechanism advances. Quimica Nova, 34(5), 850-858. Martínez-Huitle, C. A., Rodrigo, M. A., Sirés, I., Scialdone, O. (2015). Single and coupled electrochemical processes and reactors for the abatement of organic water pollutants: a critical review. Chemical Reviews, 115(24), 13362-13407. Mintz, E., Bartram, J., Lochery, P., Wegelin, M. (2001). Not just a drop in the bucket: expanding access to point-of-use water treatment systems. American journal of public health, 91(10), 1565-1570. Mojsov, K. D., Andronikov, D., Janevski, A., Kuzelov, A., Gaber, S. (2016). The application of enzymes for the removal of dyes from textile effluents. Advanced technologies, 5(1), 81-86. Mukerjee, S., McBreen, J. (1998). Effect of particle size on the electrocatalysis by carbon-supported Pt electrocatalysts: an in situ XAS investigation. Journal of Electroanalytical Chemistry, 448(2), 163-171. Mulkerrins, D., Dobson, A., Colleran, E. (2004). Parameters affecting biological phosphate removal from wastewaters. Environment International, 30(2), 249-259. Norris, I. D., Shaker, M. M., Ko, F. K., MacDiarmid, A. G. (2000). Electrostatic fabrication of ultrafine conducting fibers: polyaniline/polyethylene oxide blends. Synthetic metals, 114(2), 109-114. Patel, P. S., Bandre, N., Saraf, A., Ruparelia, J. P. (2013). Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment. Procedia Engineering, 51, 430-435. Pulkka, S., Martikainen, M., Bhatnagar, A., Sillanpää, M. (2014). Electrochemical methods for the removal of anionic contaminants from water–a review. Separation and Purification Technology, 132, 252-271. Ren, X., Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., Wu, G. (2020). Current progress of Pt and Pt-based electrocatalysts used for fuel cells. Sustainable Energy Fuels, 4(1), 15-30. Rocha, J. B., Gomes, M. S., dos Santos, E. V., de Moura, E. M., da Silva, D. R., Quiroz, M., Martínez-Huitle, C. (2014). Electrochemical degradation of Novacron Yellow C-RG using boron-doped diamond and platinum anodes: Direct and Indirect oxidation. Electrochimica Acta, 140, 419-426. Rodrigo, M., Cañizares, P., Sánchez-Carretero, A., Sáez, C. (2010). Use of conductive-diamond electrochemical oxidation for wastewater treatment. Catalysis today, 151(1-2), 173-177. Sahoo, C., Gupta, A., Pal, A. (2005). Photocatalytic degradation of Crystal Violet (CI Basic Violet 3) on silver ion doped TiO2. Dyes and Pigments, 66(3), 189-196. Sahu, O., Singh, N. (2019). Significance of bioadsorption process on textile industry wastewater. In The Impact and Prospects of Green Chemistry for Textile Technology (pp. 367-416): Elsevier. Shakoorioskooie, M., Menceloglu, Y. Z., Unal, S., Hayat Soytas, S. (2018). Rapid microwave-assisted synthesis of platinum nanoparticles immobilized in electrospun carbon nanofibers for electrochemical catalysis. ACS Applied Nano Materials, 1(11), 6236-6246. Sharma, S. K., Verma, D. S., Khan, L. U., Kumar, S., Khan, S. B. (2018). Handbook of Materials Characterization: Springer. Sill, T. J., von Recum, H. A. (2008). Electrospinning: applications in drug delivery and tissue engineering. Biomaterials, 29(13), 1989-2006. Singh, N., Song, Y., Gutiérrez, O. Y., Camaioni, D. M., Campbell, C. T., Lercher, J. A. (2016). Electrocatalytic hydrogenation of phenol over platinum and rhodium: unexpected temperature effects resolved. ACS Catalysis, 6(11), 7466-7470. Sirés, I., Brillas, E., Oturan, M. A., Rodrigo, M. A., Panizza, M. (2014). Electrochemical advanced oxidation processes: today and tomorrow. A review. Environmental Science and Pollution Research, 21(14), 8336-8367. Spector, M. L. (1993). Biological process for enhanced removal of ammonia, nitrite, nitrate, and phosphate from wastewater. In: Google Patents. Sun, S.-G., Christensen, P. A., Wieckowski, A. (2011). In-situ spectroscopic studies of adsorption at the electrode and electrocatalysis: Elsevier. Wang, Y., Jin, J., Yang, S., Li, G., Qiao, J. (2015). Highly active and stable platinum catalyst supported on porous carbon nanofibers for improved performance of PEMFC. Electrochimica Acta, 177, 181-189. Wenk, J., Aeschbacher, M., Salhi, E., Canonica, S., Von Gunten, U., Sander, M. (2013). Chemical oxidation of dissolved organic matter by chlorine dioxide, chlorine, and ozone: effects on its optical and antioxidant properties. Environmental Science Technology, 47(19), 11147-11156. Yao, Y., Zhao, C., Zhao, M., Wang, X. (2013). Electrocatalytic degradation of methylene blue on PbO2-ZrO2 nanocomposite electrodes prepared by pulse electrodeposition. Journal of Hazardous Materials, 263, 726-734. Yi, F., Chen, S. (2008). Effect of activated carbon fiber anode structure and electrolysis conditions on electrochemical degradation of dye wastewater. Journal of Hazardous Materials, 157(1), 79-87. Yoon, K., Kim, K., Wang, X., Fang, D., Hsiao, B. S., Chu, B. (2006). High flux ultrafiltration membranes based on electrospun nanofibrous PAN scaffolds and chitosan coating. Polymer, 47(7), 2434-2441. You, S., Hsu, C., Chuang, S., Ouyang, C. (2003). Nitrification efficiency and nitrifying bacteria abundance in combined AS-RBC and A2O systems. Water Research, 37(10), 2281-2290. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68783 | - |
| dc.description.abstract | 隨著全球氣候變遷、人口量上升及工業發展日益顯著,面對嚴峻的水能源危機,廢污水相關新興水處理技術的開發愈發重要。其中,電催化作為一新興電化學水處理技術,由於其高去除效率、高能效、環境相容性高且化學藥品添加量少之優勢,備受現今研究圈關注。在眾多電催化劑中,鉑 (Platinum,Pt) 具備優秀的化學抗性和電催化效率,惟價格較高。因此本篇研究選用鉑作為電催化劑,並與靜電紡絲碳纖維複合製備奈米複合式之三維Pt/CF電極,降低Pt負載量同時保有優良的電催化活性。在材料製程中,透過鉑前驅溶液的還原時間有效控制Pt顆粒之粒徑與分佈,確保Pt催化劑得到最佳利用。根據本研究結果可推論,Pt /CF電極的電催化性能高度取決於Pt催化劑之粒徑大小。於兩小時還原時間下製備之Pt/CF-r2hr電極由於具備最小的平均粒徑 (24.17 nm) 且Pt顆粒均勻分佈,因此展現出良好的電化學活性面積 (18.98 m2 g-1-Pt) ,並在1 V的低電壓操作及低能耗 (0.26 kW m-3 order-1) 條件下,達到94.96%的結晶紫去除效率。機制探討部分,在添加新丁醇 (tert-Butanol, BuOH) 做為羥基自由基清除劑後發現,Pt/CF電極在沒有羥基自由基的參與仍可降解60%以上的結晶紫,因此推斷Pt/CF電極的電催化降解機制可能同時涵蓋直接氧化及間接氧化兩種途徑。 由本研究結果可知,Pt/CF作為一個具發展潛力的奈米複合式電催化電極,可在低能量輸入下有效降解環境有機污染物。同時奈米催化劑顆粒之粒徑分布,為貴重金屬催化電極之關鍵特性條件,有效控制催化劑顆粒將可使材料之電催化效能達到顯著提升。 | zh_TW |
| dc.description.abstract | Owing to the enhancement of climate change, population growth, and industrial evolution, the development of novel treatments to reduce energy associated with wastewater treatment is an urgent issue to reduce the water-energy crisis. Electrocatalysis with engineered nanomaterials is an emerging electrochemical water treatment technology which attracts great attention due to its high removal efficiency, high energy efficiency, environmental compatibility, and few chemicals requirement. In this study, platinum was chosen as the electrocatalyst due to its great demonstration in chemical resistance and electrocatalytic efficiency, compositing electrospun carbon fiber as a binder-free supporter to fabricate three-dimensional Pt/CF electrodes. To ensure the optimum utilization of Pt catalyst, the particle size and distribution of Pt are well controlled by the precursor reduction time during the impregnation process. The present work shows that the electrocatalytic performance of Pt/CF is highly determined by the particle size of Pt catalyst. The Pt/CF electrode, which was reduced for 2 hours during impregnation, behaves the smallest mean particle size with uniform distribution, leading to a good electrochemical catalyst surface activity (18.98 m2 g-1-Pt) and removal efficiency of crystal violet (94.96%) at a low voltage of 1 V with low EEO value (0.26 kW m-3 order-1). By the addition of hydroxyl radical scavenger, it is discovered that more than 60% of crystal violet still could be degraded without the participation of the hydroxyl radical, indicates that the mechanism of electrocatalysis via Pt/CF may have two pathways, including direct and indirect oxidation. The results suggest that Pt/CF is a desirable electrocatalytic electrode for the degradation of organic pollutants with low energy input. Controlling the nanoparticle size could be a key parameter for electrocatalysis of environmental organic pollutants by the noble metal catalytic electrode. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:35:09Z (GMT). No. of bitstreams: 1 U0001-1708202009103900.pdf: 5815198 bytes, checksum: b5e7ac94ce238811827d4000ea55d8f3 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 I 中文摘要 II Abstract III Contents IV List of Tables VIII List of Figures IX Chapter 1 Introduction 1 1.1 Background 1 1.2 Objective 1 Chapter 2 Literature Review 3 2.1 Traditional remediation of wastewater with organic pollutant 3 2.1.1 Biological treatment 4 2.1.2 Adsorption treatment 5 2.1.3 Chemical oxidation treatment 6 2.2 Electrocatalysis in water treatment 7 2.3 Electrode materials 10 2.4 Electrospinning 14 2.5 Fabrication methods of platinum-based materials 16 2.6 Crystal violet 18 Chapter 3 Experimental and Methods 20 3.1 Material and chemicals 20 3.2 Equipment and Instruments 22 3.3 Research design 24 3.4 Fabrication of Pt-nanoparticle modified carbon fibers (Pt/CF) 25 3.4.1 Preparation of electrospun carbon fibers 25 3.4.2 Preparation of Pt/CF by impregnation-reduction method 27 3.5 Material characterization 28 3.5.1 Field emission scanning electron microscopy (FE-SEM) 28 3.5.2 X-ray diffraction (XRD) 29 3.5.3 X-ray photoelectron spectroscopy (XPS) 30 3.5.4 ICP optical emission spectrometry (ICP-OES) 30 3.6 Electrochemical characterization 31 3.6.1 Cyclic voltammetry (CV) 32 3.6.2 Linear sweep voltammetry (LSV) 32 3.6.3 Inductance-capacitance-resistance measurement (LCR) 33 3.7 Electrocatalytic experiment 34 3.7.1 The setup of electrocatalytic experiment 34 3.7.2 The index of electrocatalytic experiment 36 3.8 Analysis of hydroxyl-radical 38 Chapter 4 Results and Discussion 39 4.1 Material characterizations 39 4.1.1 Surface morphology and properties 39 4.1.2 Crystal structure of crystalline material 42 4.1.3 Surface chemical composition 44 4.2 Electrochemical characterization 47 4.2.1 Electrochemically active surface area (ECSA) of Pt/CF 47 4.2.2 Oxygen evolution potential of Pt/CF 50 4.2.3 Electric conductivity of Pt/CF 52 4.3 Electrocatalytic degradation performance 53 4.3.1 Effect of reduction time during impregnation 53 4.3.2 Effect of applied voltage 57 4.4 Generation performance of hydroxyl radicals 60 4.5 Possible mechanism of electrocatalysis via Pt/CF 62 Chapter 5 Conclusion and suggestion 65 5.1 Conclusion 65 5.2 Suggestion 66 References 67 | |
| dc.language.iso | en | |
| dc.subject | 靜電紡絲 | zh_TW |
| dc.subject | 鉑 | zh_TW |
| dc.subject | 電催化 | zh_TW |
| dc.subject | 粒徑 | zh_TW |
| dc.subject | 結晶紫 | zh_TW |
| dc.subject | platinum | en |
| dc.subject | electrospinning | en |
| dc.subject | electrocatalysis | en |
| dc.subject | particle size | en |
| dc.subject | crystal violet | en |
| dc.title | 製備鉑/靜電紡絲碳纖維奈米複合電極應用於電催化水相結晶紫之降解 | zh_TW |
| dc.title | Assembly of Pt nanoparticles on electrospun carbon fibers for electrocatalytic degradation of crystal violet | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 侯嘉洪(Chia-Hung Hou) | |
| dc.contributor.oralexamcommittee | 蕭大智(Ta-Chih Hsiao),劉雅瑄(Sofia Ya-Hsuan Liou),周佩欣(Pei-Hsin Chou) | |
| dc.subject.keyword | 鉑,靜電紡絲,電催化,粒徑,結晶紫, | zh_TW |
| dc.subject.keyword | platinum,electrospinning,electrocatalysis,particle size,crystal violet, | en |
| dc.relation.page | 80 | |
| dc.identifier.doi | 10.6342/NTU202003677 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 環境工程學研究所 | zh_TW |
| 顯示於系所單位: | 環境工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202009103900.pdf 未授權公開取用 | 5.68 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
