Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 醫學檢驗暨生物技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68776
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林淑華(Shu-Wha Lin)
dc.contributor.authorChia-Jui Hungen
dc.contributor.author洪家瑞zh_TW
dc.date.accessioned2021-06-17T02:34:49Z-
dc.date.available2027-08-31
dc.date.copyright2017-09-08
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citationAcke, F.R., I.J. Dhooge, F. Malfait, and E.M. De Leenheer. 2012. Hearing impairment in Stickler syndrome: a systematic review. Orphanet J Rare Dis. 7:84.
Berg, T., C.B. Rountree, L. Lee, J. Estrada, F.G. Sala, A. Choe, J.M. Veltmaat, S. De Langhe, R. Lee, H. Tsukamoto, G.M. Crooks, S. Bellusci, and K.S. Wang. 2007. Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via beta-catenin activation. Hepatology. 46:1187-1197.
Birchmeier, C., W. Birchmeier, E. Gherardi, and G.F. Vande Woude. 2003. Met, metastasis, motility and more. Nat Rev Mol Cell Bio. 4:915-925.
Block, G.D., J. Locker, W.C. Bowen, B.E. Petersen, S. Katyal, S.C. Strom, T. Riley, T.A. Howard, and G.K. Michalopoulos. 1996. Population expansion, clonal growth, and specific differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF alpha in a chemically defined (HGM) medium. J Cell Biol. 132:1133-1149.
Brunati, M., S. Perucca, L. Han, A. Cattaneo, F. Consolato, A. Andolfo, C. Schaeffer, E. Olinger, J. Peng, S. Santambrogio, R. Perrier, S. Li, M. Bokhove, A. Bachi, E. Hummler, O. Devuyst, Q. Wu, L. Jovine, and L. Rampoldi. 2015. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. Elife. 4:e08887.
Bugge, T.H., T.M. Antalis, and Q. Wu. 2009. Type II transmembrane serine proteases. J Biol Chem. 284:23177-23181.
Dhanasekaran, S.M., T.R. Barrette, D. Ghosh, R. Shah, S. Varambally, K. Kurachi, K.J. Pienta, M.A. Rubin, and A.M. Chinnaiyan. 2001. Delineation of prognostic biomarkers in prostate cancer. Nature. 412:822-826.
Dietrich, S., F. Abou-Rebyeh, H. Brohmann, F. Bladt, E. Sonnenberg-Riethmacher, T. Yamaai, A. Lumsden, B. Brand-Saberi, and C. Birchmeier. 1999. The role of SF/HGF and c-Met in the development of skeletal muscle. Development. 126:1621-1629.
Douarin, N.M. 1975. An experimental analysis of liver development. Med Biol. 53:427-455.
Guipponi, M., J. Tan, P.Z. Cannon, L. Donley, P. Crewther, M. Clarke, Q. Wu, R.K. Shepherd, and H.S. Scott. 2007. Mice deficient for the type II transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss. Am J Pathol. 171:608-616.
Harrison, M.R., N.S. Adzick, J.M. Estes, and L.J. Howell. 1994. A prospective study of the outcome for fetuses with diaphragmatic hernia. JAMA. 271:382-384.
Haruyama, N., A. Cho, and A.B. Kulkarni. 2009. Overview: engineering transgenic constructs and mice. Curr Protoc Cell Biol. Chapter 19:Unit 19 10.
Hedstrom, L. 2002. Serine protease mechanism and specificity. Chemical reviews. 102:4501-4524.
Herter, S., D.E. Piper, W. Aaron, T. Gabriele, G. Cutler, P. Cao, A.S. Bhatt, Y. Choe, C.S. Craik, N. Walker, D. Meininger, T. Hoey, and R.J. Austin. 2005. Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J. 390:125-136.
Houssaint, E. 1980. Differentiation of the mouse hepatic primordium. I. An analysis of tissue interactions in hepatocyte differentiation. Cell Differ. 9:269-279.
Jay, P.Y., M. Bielinska, J.M. Erlich, S. Mannisto, W.T. Pu, M. Heikinheimo, and D.B. Wilson. 2007. Impaired mesenchymal cell function in Gata4 mutant mice leads to diaphragmatic hernias and primary lung defects. Dev Biol. 301:602-614.
Kannu, P., J. Bateman, and R. Savarirayan. 2012. Clinical phenotypes associated with type II collagen mutations. J Paediatr Child Health. 48:E38-43.
Kawamura, S., S. Kurachi, Y. Deyashiki, and K. Kurachi. 1999. Complete nucleotide sequence, origin of isoform and functional characterization of the mouse hepsin gene. Eur J Biochem. 262:755-764.
Kazama, Y., T. Hamamoto, D.C. Foster, and W. Kisiel. 1995. Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem. 270:66-72.
Kirchhofer, D., M. Peek, M.T. Lipari, K. Billeci, B. Fan, and P. Moran. 2005. Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett. 579:1945-1950.
Klezovitch, O., J. Chevillet, J. Mirosevich, R.L. Roberts, R.J. Matusik, and V. Vasioukhin. 2004. Hepsin promotes prostate cancer progression and metastasis. Cancer Cell. 6:185-195.
LeMasurier, M., and P.G. Gillespie. 2005. Hair-cell mechanotransduction and cochlear amplification. Neuron. 48:403-415.
Leytus, S.P., K.R. Loeb, F.S. Hagen, K. Kurachi, and E.W. Davie. 1988. A novel trypsin-like serine protease (hepsin) with a putative transmembrane domain expressed by human liver and hepatoma cells. Biochemistry. 27:1067-1074.
Magee, J.A., T. Araki, S. Patil, T. Ehrig, L. True, P.A. Humphrey, W.J. Catalona, M.A. Watson, and J. Milbrandt. 2001. Expression profiling reveals hepsin overexpression in prostate cancer. Cancer Res. 61:5692-5696.
McLin, V.A., S.A. Rankin, and A.M. Zorn. 2007. Repression of Wnt/beta-catenin signaling in the anterior endoderm is essential for liver and pancreas development. Development. 134:2207-2217.
Medlock, E.S., and J.L. Haar. 1983. The liver hemopoietic environment: I. Developing hepatocytes and their role in fetal hemopoiesis. Anat Rec. 207:31-41.
Merrell, A.J., B.J. Ellis, Z.D. Fox, J.A. Lawson, J.A. Weiss, and G. Kardon. 2015. Muscle connective tissue controls development of the diaphragm and is a source of congenital diaphragmatic hernias. Nat Genet. 47:496-504.
Miao, J., D. Mu, B. Ergel, R. Singavarapu, Z. Duan, S. Powers, E. Oliva, and S. Orsulic. 2008. Hepsin colocalizes with desmosomes and induces progression of ovarian cancer in a mouse model. Int J Cancer. 123:2041-2047.
Nakamura, K., Y. Nasu, A. Hongo, T. Matsuo, J. Kodama, S. Ebara, A. Nagai, F. Abrzua, H. Kumon, and Y. Hiramatsu. 2006. Hepsin shows inhibitory effects through apoptotic pathway on ovarian cancer cell lines. Int J Oncol. 28:393-398.
Shia, S., J. Stamos, D. Kirchhofer, B. Fan, J. Wu, R.T. Corpuz, L. Santell, R.A. Lazarus, and C. Eigenbrot. 2005. Conformational lability in serine protease active sites: structures of hepatocyte growth factor activator (HGFA) alone and with the inhibitory domain from HGFA inhibitor-1B. Journal of molecular biology. 346:1335-1349.
Somoza, J.R., J.D. Ho, C. Luong, M. Ghate, P.A. Sprengeler, K. Mortara, W.D. Shrader, D. Sperandio, H. Chan, M.E. McGrath, and B.A. Katz. 2003. The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Structure. 11:1123-1131.
Srikantan, V., M. Valladares, J.S. Rhim, J.W. Moul, and S. Srivastava. 2002. HEPSIN inhibits cell growth/invasion in prostate cancer cells. Cancer Res. 62:6812-6816.
Suzuki, N., K. Asamura, Y. Kikuchi, Y. Takumi, S. Abe, Y. Imamura, T. Hayashi, A. Aszodi, R. Fassler, and S. Usami. 2005. Type IX collagen knock-out mouse shows progressive hearing loss. Neurosci Res. 51:293-298.
Tanimoto, H., Y. Yan, J. Clarke, S. Korourian, K. Shigemasa, T.H. Parmley, G.P. Parham, and T.J. O'Brien. 1997. Hepsin, a cell surface serine protease identified in hepatoma cells, is overexpressed in ovarian cancer. Cancer Res. 57:2884-2887.
Tervonen, T.A., D. Belitskin, S.M. Pant, J.I. Englund, E. Marques, H. Ala-Hongisto, L. Nevalaita, H. Sihto, P. Heikkila, M. Leidenius, K. Hewitson, M. Ramachandra, A. Moilanen, H. Joensuu, P.E. Kovanen, A. Poso, and J. Klefstrom. 2016. Deregulated hepsin protease activity confers oncogenicity by concomitantly augmenting HGF/MET signalling and disrupting epithelial cohesion. Oncogene. 35:1832-1846.
Tsuji, A., A. Torres-Rosado, T. Arai, M.M. Le Beau, R.S. Lemons, S.H. Chou, and K. Kurachi. 1991. Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization. J Biol Chem. 266:16948-16953.
Uehara, Y., C. Mori, T. Noda, K. Shiota, and N. Kitamura. 2000. Rescue of embryonic lethality in hepatocyte growth factor/scatter factor knockout mice. Genesis. 27:99-103.
Ustach, C.V., W. Huang, M.K. Conley-LaComb, C.Y. Lin, M. Che, J. Abrams, and H.R. Kim. 2010. A novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate cancer. Cancer research. 70:9631-9640.
Vu, T.K., R.W. Liu, C.J. Haaksma, J.J. Tomasek, and E.W. Howard. 1997. Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem. 272:31315-31320.
Wang, Z., P. Dolle, W.V. Cardoso, and K. Niederreither. 2006. Retinoic acid regulates morphogenesis and patterning of posterior foregut derivatives. Dev Biol. 297:433-445.
Werb, Z., T.H. Vu, J.L. Rinkenberger, and L.M. Coussens. 1999. Matrix-degrading proteases and angiogenesis during development and tumor formation. APMIS. 107:11-18.
Wu, Q., and G. Parry. 2007. Hepsin and prostate cancer. Front Biosci. 12:5052-5059.
Wu, Q., D. Yu, J. Post, M. Halks-Miller, J.E. Sadler, and J. Morser. 1998. Generation and characterization of mice deficient in hepsin, a hepatic transmembrane serine protease. J Clin Invest. 101:321-326.
Xuan, J.A., D. Schneider, P. Toy, R. Lin, A. Newton, Y. Zhu, S. Finster, D. Vogel, B. Mintzer, H. Dinter, D. Light, R. Parry, M. Polokoff, M. Whitlow, Q. Wu, and G. Parry. 2006. Antibodies neutralizing hepsin protease activity do not impact cell growth but inhibit invasion of prostate and ovarian tumor cells in culture. Cancer Res. 66:3611-3619.
Yanai, M., N. Tatsumi, N. Hasunuma, K. Katsu, F. Endo, and Y. Yokouchi. 2008. FGF signaling segregates biliary cell-lineage from chick hepatoblasts cooperatively with BMP4 and ECM components in vitro. Dev Dyn. 237:1268-1283.
Yu, I.S., H.J. Chen, Y.S. Lee, P.H. Huang, S.R. Lin, T.W. Tsai, and S.W. Lin. 2000. Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability. Thromb Haemost. 84:865-870.
Zacharski, L.R., D.L. Ornstein, V.A. Memoli, S.M. Rousseau, and W. Kisiel. 1998. Expression of the factor VII activating protease, hepsin, in situ in renal cell carcinoma. Thromb Haemost. 79:876-877.
Zdebik, A.A., P. Wangemann, and T.J. Jentsch. 2009. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda). 24:307-316.
Zhang, B., W. Xiao, H. Qiu, F. Zhang, H.A. Moniz, A. Jaworski, E. Condac, G. Gutierrez-Sanchez, C. Heiss, R.D. Clugston, P. Azadi, J.J. Greer, C. Bergmann, K.W. Moremen, D. Li, R.J. Linhardt, J.D. Esko, and L. Wang. 2014. Heparan sulfate deficiency disrupts developmental angiogenesis and causes congenital diaphragmatic hernia. J Clin Invest. 124:209-221.
Zorn, A.M. 2008. Liver development. In StemBook, Cambridge (MA).
Acke, F.R., I.J. Dhooge, F. Malfait, and E.M. De Leenheer. 2012. Hearing impairment in Stickler syndrome: a systematic review. Orphanet J Rare Dis. 7:84.
Andrade, L.R., F.T. Salles, M. Grati, U. Manor, and B. Kachar. 2016. Tectorins crosslink type II collagen fibrils and connect the tectorial membrane to the spiral limbus. J Struct Biol. 194:139-146.
Brunati, M., S. Perucca, L. Han, A. Cattaneo, F. Consolato, A. Andolfo, C. Schaeffer, E. Olinger, J. Peng, S. Santambrogio, R. Perrier, S. Li, M. Bokhove, A. Bachi, E. Hummler, O. Devuyst, Q. Wu, L. Jovine, and L. Rampoldi. 2015. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. Elife. 4:e08887.
Bugge, T.H., T.M. Antalis, and Q. Wu. 2009. Type II transmembrane serine proteases. J Biol Chem. 284:23177-23181.
Chirtes, F., and S. Albu. 2014. Prevention and restoration of hearing loss associated with the use of cisplatin. Biomed Res Int. 2014:925485.
Goodyear, R.J., and G.P. Richardson. 2002. Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: molecular and structural diversity. J Neurobiol. 53:212-227.
Guipponi, M., J. Tan, P.Z. Cannon, L. Donley, P. Crewther, M. Clarke, Q. Wu, R.K. Shepherd, and H.S. Scott. 2007. Mice deficient for the type II transmembrane serine protease, TMPRSS1/hepsin, exhibit profound hearing loss. Am J Pathol. 171:608-616.
Heffner, H.E., and R.S. Heffner. 2007. Hearing ranges of laboratory animals. J Am Assoc Lab Anim Sci. 46:20-22.
Herter, S., D.E. Piper, W. Aaron, T. Gabriele, G. Cutler, P. Cao, A.S. Bhatt, Y. Choe, C.S. Craik, N. Walker, D. Meininger, T. Hoey, and R.J. Austin. 2005. Hepatocyte growth factor is a preferred in vitro substrate for human hepsin, a membrane-anchored serine protease implicated in prostate and ovarian cancers. Biochem J. 390:125-136.
Jovine, L., C.C. Darie, E.S. Litscher, and P.M. Wassarman. 2005. Zona pellucida domain proteins. Annu Rev Biochem. 74:83-114.
Jovine, L., H. Qi, Z. Williams, E. Litscher, and P.M. Wassarman. 2002. The ZP domain is a conserved module for polymerization of extracellular proteins. Nat Cell Biol. 4:457-461.
Kannu, P., J. Bateman, and R. Savarirayan. 2012. Clinical phenotypes associated with type II collagen mutations. J Paediatr Child Health. 48:E38-43.
Kawamura, S., S. Kurachi, Y. Deyashiki, and K. Kurachi. 1999. Complete nucleotide sequence, origin of isoform and functional characterization of the mouse hepsin gene. Eur J Biochem. 262:755-764.
Kazama, Y., T. Hamamoto, D.C. Foster, and W. Kisiel. 1995. Hepsin, a putative membrane-associated serine protease, activates human factor VII and initiates a pathway of blood coagulation on the cell surface leading to thrombin formation. J Biol Chem. 270:66-72.
Kirchhofer, D., M. Peek, M.T. Lipari, K. Billeci, B. Fan, and P. Moran. 2005. Hepsin activates pro-hepatocyte growth factor and is inhibited by hepatocyte growth factor activator inhibitor-1B (HAI-1B) and HAI-2. FEBS Lett. 579:1945-1950.
Lahvis, G.P., E. Alleva, and M.L. Scattoni. 2011. Translating mouse vocalizations: prosody and frequency modulation. Genes Brain Behav. 10:4-16.
Legan, P.K., R.J. Goodyear, M. Morin, A. Mencia, H. Pollard, L. Olavarrieta, J. Korchagina, S. Modamio-Hoybjor, F. Mayo, F. Moreno, M.A. Moreno-Pelayo, and G.P. Richardson. 2014. Three deaf mice: mouse models for TECTA-based human hereditary deafness reveal domain-specific structural phenotypes in the tectorial membrane. Hum Mol Genet. 23:2551-2568.
Legan, P.K., V.A. Lukashkina, R.J. Goodyear, M. Kossi, I.J. Russell, and G.P. Richardson. 2000. A targeted deletion in alpha-tectorin reveals that the tectorial membrane is required for the gain and timing of cochlear feedback. Neuron. 28:273-285.
Legan, P.K., A. Rau, J.N. Keen, and G.P. Richardson. 1997. The mouse tectorins. Modular matrix proteins of the inner ear homologous to components of the sperm-egg adhesion system. J Biol Chem. 272:8791-8801.
LeMasurier, M., and P.G. Gillespie. 2005. Hair-cell mechanotransduction and cochlear amplification. Neuron. 48:403-415.
Mustapha, M., D. Weil, S. Chardenoux, S. Elias, E. El-Zir, J.S. Beckmann, J. Loiselet, and C. Petit. 1999. An alpha-tectorin gene defect causes a newly identified autosomal recessive form of sensorineural pre-lingual non-syndromic deafness, DFNB21. Hum Mol Genet. 8:409-412.
Rau, A., P.K. Legan, and G.P. Richardson. 1999. Tectorin mRNA expression is spatially and temporally restricted during mouse inner ear development. J Comp Neurol. 405:271-280.
Richardson, G.P., A.N. Lukashkin, and I.J. Russell. 2008. The tectorial membrane: one slice of a complex cochlear sandwich. Curr Opin Otolaryngol Head Neck Surg. 16:458-464.
Russell, I.J., P.K. Legan, V.A. Lukashkina, A.N. Lukashkin, R.J. Goodyear, and G.P. Richardson. 2007. Sharpened cochlear tuning in a mouse with a genetically modified tectorial membrane. Nat Neurosci. 10:215-223.
Schraders, M., L. Ruiz-Palmero, E. Kalay, J. Oostrik, F.J. del Castillo, O. Sezgin, A.J. Beynon, T.M. Strom, R.J. Pennings, C. Zazo Seco, A.M. Oonk, H.P. Kunst, M. Dominguez-Ruiz, A.M. Garcia-Arumi, M. del Campo, M. Villamar, L.H. Hoefsloot, F. Moreno, R.J. Admiraal, I. del Castillo, and H. Kremer. 2012. Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am J Hum Genet. 91:883-889.
Shia, S., J. Stamos, D. Kirchhofer, B. Fan, J. Wu, R.T. Corpuz, L. Santell, R.A. Lazarus, and C. Eigenbrot. 2005. Conformational lability in serine protease active sites: structures of hepatocyte growth factor activator (HGFA) alone and with the inhibitory domain from HGFA inhibitor-1B. Journal of molecular biology. 346:1335-1349.
Slepecky, N.B., J.E. Savage, L.K. Cefaratti, and T.J. Yoo. 1992a. Electron-microscopic localization of type II, IX, and V collagen in the organ of Corti of the gerbil. Cell Tissue Res. 267:413-418.
Slepecky, N.B., J.E. Savage, and T.J. Yoo. 1992b. Localization of type II, IX and V collagen in the inner ear. Acta Otolaryngol. 112:611-617.
Somoza, J.R., J.D. Ho, C. Luong, M. Ghate, P.A. Sprengeler, K. Mortara, W.D. Shrader, D. Sperandio, H. Chan, M.E. McGrath, and B.A. Katz. 2003. The structure of the extracellular region of human hepsin reveals a serine protease domain and a novel scavenger receptor cysteine-rich (SRCR) domain. Structure. 11:1123-1131.
Suzuki, N., K. Asamura, Y. Kikuchi, Y. Takumi, S. Abe, Y. Imamura, T. Hayashi, A. Aszodi, R. Fassler, and S. Usami. 2005. Type IX collagen knock-out mouse shows progressive hearing loss. Neurosci Res. 51:293-298.
Tsuji, A., A. Torres-Rosado, T. Arai, M.M. Le Beau, R.S. Lemons, S.H. Chou, and K. Kurachi. 1991. Hepsin, a cell membrane-associated protease. Characterization, tissue distribution, and gene localization. J Biol Chem. 266:16948-16953.
Ustach, C.V., W. Huang, M.K. Conley-LaComb, C.Y. Lin, M. Che, J. Abrams, and H.R. Kim. 2010. A novel signaling axis of matriptase/PDGF-D/ss-PDGFR in human prostate cancer. Cancer research. 70:9631-9640.
Van Camp, G., R.L. Snoeckx, N. Hilgert, J. van den Ende, H. Fukuoka, M. Wagatsuma, H. Suzuki, R.M. Smets, F. Vanhoenacker, F. Declau, P. Van de Heyning, and S. Usami. 2006. A new autosomal recessive form of Stickler syndrome is caused by a mutation in the COL9A1 gene. Am J Hum Genet. 79:449-457.
Verhoeven, K., L. Van Laer, K. Kirschhofer, P.K. Legan, D.C. Hughes, I. Schatteman, M. Verstreken, P. Van Hauwe, P. Coucke, A. Chen, R.J. Smith, T. Somers, F.E. Offeciers, P. Van de Heyning, G.P. Richardson, F. Wachtler, W.J. Kimberling, P.J. Willems, P.J. Govaerts, and G. Van Camp. 1998. Mutations in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment. Nat Genet. 19:60-62.
Vu, T.K., R.W. Liu, C.J. Haaksma, J.J. Tomasek, and E.W. Howard. 1997. Identification and cloning of the membrane-associated serine protease, hepsin, from mouse preimplantation embryos. J Biol Chem. 272:31315-31320.
Werb, Z., T.H. Vu, J.L. Rinkenberger, and L.M. Coussens. 1999. Matrix-degrading proteases and angiogenesis during development and tumor formation. APMIS. 107:11-18.
Wu, Q., and G. Parry. 2007. Hepsin and prostate cancer. Front Biosci. 12:5052-5059.
Wu, Q., D. Yu, J. Post, M. Halks-Miller, J.E. Sadler, and J. Morser. 1998. Generation and characterization of mice deficient in hepsin, a hepatic transmembrane serine protease. J Clin Invest. 101:321-326.
Yu, I.S., H.J. Chen, Y.S. Lee, P.H. Huang, S.R. Lin, T.W. Tsai, and S.W. Lin. 2000. Mice deficient in hepsin, a serine protease, exhibit normal embryogenesis and unchanged hepatocyte regeneration ability. Thromb Haemost. 84:865-870.
Zdebik, A.A., P. Wangemann, and T.J. Jentsch. 2009. Potassium ion movement in the inner ear: insights from genetic disease and mouse models. Physiology (Bethesda). 24:307-316.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68776-
dc.description.abstract先前實驗室建立的 Hepsin 基因剔除小鼠分析後得知其具先天性聽力缺失。為了進一步分析 Hepsin 在聽力扮演的角色,本論文利用先前建立的表達人類野生型 (hHPNWT) 及突變型 Hepsin (hHPNRS) 的基因轉殖鼠,與 Hepsin 基因剔除小鼠配種後所得的子代,作為實驗的研究對象。不同小鼠 Hepsin 背景的轉殖鼠共四種小鼠包括 Tg-hHPNWT68 ; HPN-/- (line68)、Tg-hHPNWT5 ; HPN-/- (line5) 及突變型的 Tg-hHPNRS39 ; HPN-/- (line39)、Tg-hHPNRS54 ; HPN-/- (line54)。首先分析轉基因表現量得知,不論在血漿或肝臟中,皆可測得人類 Hepsin 蛋白質,且 line 68 較 line 5 的表現量高;西方墨點的結果顯示轉基因也表現於小鼠耳蝸中的科蒂氏器 (organ of Corti) 及血管紋 (stria vascularis)。使用腦幹聽性反應 (ABRs) 檢測同窩出生的轉殖基因鼠聽力狀況,結果顯示以野生型小鼠 (HPN+/+) 聽力為對照,Hepsin 基因剔除鼠 (HPN-/-) 聽力最差,Hepsin 表現量較高的基因轉殖小鼠 (Tg-hHPNWT68 ; HPN-/-) 聽力明顯恢復,而表現量較低的小鼠 (Tg-hHPNWT5 ; HPN-/-) 及表現突變型 Hepsin 基因轉殖鼠 (Tg-hHPNRS ; HPN-/-) 則無明顯恢復現象。分析表現人類野生型 Hepsin 小鼠血漿及肝臟中蛋白表現量及聽力的關係,顯示 Hepsin 表現量與聽力呈正相關。
在組織切片中,相對於與 Hepsin 轉殖鼠同窩出生的野生型小鼠頂蓋膜型態緻密且與螺旋緣緊密貼合, Hepsin 基因剔除鼠頂蓋膜異常,與先前文獻發表的一致。表現量較高的轉基因小鼠型態稍有恢復,頂蓋膜空隙較少,然而直接測量頂蓋膜的面積,卻與基因剔除鼠無顯著差異,顯示切片中的頂蓋膜面積大小無法直接反應聽力的狀況。由於耳蝸中轉 (middle turn, MT) 與底轉 (basal turn, BT) 是負責接收高頻 (24k-100k Hz) 聲音的區域,而小鼠是高頻動物,因此分析兩處頂蓋膜的組成分子 type II collagen、type IX collagen、α-tectorin 及 β- tectorin,結果顯示 type IX collagen、α-tectorin 及 β- tectorin 及在基因剔除鼠的頂蓋膜表現量皆明顯下降,包括基因剔除小鼠在中轉及底轉頂蓋膜的 type IX collagen 平均下降為野生型小鼠的 0.6 倍 (n=9) ; α-tectorin平均下降為 0.5 倍, (n=10); β- tectorin 平均下降為 0.75 倍, (n=5),且實驗得知表現量較高的基因轉殖鼠 (line68) 在中轉及底轉頂蓋膜 type IX collagen 有顯著恢復效果,α-tectorin 則在中轉頂蓋膜有恢復的效果。
由於先前文獻推測,Hepsin 可能影響 α- 及 β-tectorin 的成熟和釋放,本論文推論因 α- 及 β-tectorin 為頂蓋膜膠原纖維間的架橋,缺乏此兩種蛋白穩定頂蓋膜纖維結構可能是導致基因剔除鼠 type IX collagen 表現下降的原因。本論文亦使用基因轉殖鼠證明 Hepsin 確實在聽覺功能扮演重要角色,並發現 Hepsin 缺失致聾的可能機轉,未來可持續探討相關機制,並應用於開發相關的治療藥物。
zh_TW
dc.description.abstractTo investigate the role of Hepsin in the development of hearing and inner ear, my study used the human Hepsin transgenic mice (Tg mice) as models. The Tg mice were crossed to produce four lines for use in the study. The ELISA and Western blot results showed that both the wild-type and mutant form of transgenetic human Hepsin were all detected in plasma and liver. The expression of wild-type Hepsin, line 68, was higher than that of line 5. Moreover, Western blot result showed that human Hepsin could be detected in organ of Corti and stria vascularis in the inner ear, indicating that the human transgene was expressed in the inner ear. Phenotype analysis using auditory brainstem evoked response (ABR) test showed that while the Hepsin-/- mice exhibited profound hearing loss as literally reported, the deafness of high expression mouse line (line 68) were alleviated up to 20 dB SPL. However, the low expression mouse line (line 5) remained serious deafness.
The organ of Corti in cochlea middle and the basal turn is responsible for receiving sound frequency above 24k Hz. Because mice are high frequency animals, the histology analysis in my study focused on the middle and basal turn of cochlea. The H&E stain showed that the anomaly of the tectorial membrane in Tg-hHPNWT68 ; HPN-/- mice were slightly less serious than the HPN-/- mice. Although the hearing threshold had positive correlation with the area, the area of the tectorial membrane had no significant difference. To furthure analyze the components in tectorial membrane, we used the immunofluorescence to quntify molecules mainly expressed on tectorial membrane: alpha tectorin, beta tectorin, type IX collagen, type II collagen of HPN+/+ and HPN-/- mice. The result showed that α-、β-tectorin and type IX collagen were less expressed in HPN-/- mice. In Tg-hHPNWT68 ; HPN-/- mice, the type IX collagen was rescued in all of the middle and basal turn, with α-tectorin only in of the middle turn.
According to previous research, α-and β-tectorin may be physiological substrates of Hepsin. As a result, knock out Hepsin might cause the decrease of α-tectorin expression. My study suggested that because α- and β-tectorin are the bridges of collagen in the tectorial membrane, reduced α-tectorin could lead to the unstability of type IX collagen, causing the deformity of tecterial membrane and the deafness. Transgenetic knock-out mice established in our lab was able to study the add-back effect of Hepsin in improving hearing ability. Our results furthure showed that Hepsin indeed plays an important role in hearing, and may help develop therapies on certain patients with congenital hearing loss in the future.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:34:49Z (GMT). No. of bitstreams: 1
ntu-106-R04424014-1.pdf: 8196559 bytes, checksum: c2bd66c9be0ef42cbbff73f80c948733 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 I
英文摘要 III
目錄 V
圖目次 VIII
附錄目次 VIII
第一章、緒論 1
前言 1
1.1 Hepsin蛋白結構 1
1.2 Hepsin 體外及體內生理功能 2
1.3 Hepsin 在聽覺的病理角色 3
1.4 聲音傳遞的概觀介紹 4
1.5 耳蝸的構造與功能 5
1.6 科蒂氏器的構造與功能 6
1.7 毛細胞的構造與功能 6
1.8 頂蓋膜的功能與組成 7
1.8.1 頂蓋膜膠原性醣蛋白組成 7
1.8.2 頂蓋膜非膠原性醣蛋白組成 8
研究動機 10
第二章、材料與方法 11
2.1 實驗動物來源及鑑定 11
2.1.1 實驗動物 11
2.1.2 人類 Hepsin基因轉殖小鼠之基因型鑑定 11
2.2 聽力檢測 12
2.2.1腦幹聽性反應 (Auditory Brainstem Responses,ABRs) 12
2.3 檢體處理 12
2.3.1實驗動物犧牲與樣品保存 12
2.3.2 小鼠柯蒂氏器 (Organ of Corti) 及耳蝸血管紋 (stria vascularis) 蛋白萃取 12
2.3.3 小鼠肝臟蛋白質萃取 13
2.3.4 石蠟包埋與切片製作 14
2.3.5 冷凍包埋與切片製作 14
2.4小鼠柯蒂氏器 (Organ of Corti) 及耳蝸血管紋 (stria vascularis) mRNA 萃取與定量 15
2.5 建立酵素連結免疫吸附分析法 15
2.5.1 Hepsin 抗體融合瘤細胞製備 15
2.5.2 篩選高表現量的 Hepsin 抗體融合瘤細胞株 15
2.5.3 限數稀釋單株化Hepsin 抗體融合瘤細胞 16
2.5.4製備大量抗體 16
2.5.5 單株抗體純化 16
2.5.6 酵素連結免疫吸附分析法 17
2.6 西方墨點法 17
2.7 組織染色 18
2.7.1 H&E組織染色 18
2.7.2 全固定(whole mount) 柯蒂氏器 (Organ of Corti) 免疫組織螢光染色 18
2.7.3 免疫組織螢光染色 19
2.7.4 共軛焦顯微鏡拍攝 19
2.8 數據分析與統計 20
第三章、實驗結果 21
3.1 Hepsin 基因剔除鼠聽力功能明顯較野生小鼠差 21
3.2 基因轉殖小鼠人類 Hepsin mRNA表現於內耳 21
3.3 基因轉殖小鼠人類 Hepsin 蛋白質於內耳、血漿及肝臟有表現 21
3.4 人類 Hepsin基因轉殖鼠聽力功能與野生型人類 Hepsin表現量呈正相關 22
3.5 Hepsin基因剔除鼠在耳蝸中轉 (middle turn, MT) 及底轉 (basal turn, BT) 內外毛細胞 (inner and outer hair cell) 型態功能正常 23
3.6 聽神經傳遞功能 23
3.7 直接測量頂蓋膜面積大小無法完全反應聽力的狀況 23
3.8 HPN-/- 小鼠頂蓋膜缺陷與頂蓋膜纖維異常有關 24
3.9 基因剔除鼠與野生鼠在耳蝸中轉 (middle turn, MT) 及底轉 (basal turn, BT) 頂蓋膜的Type II collagen 表現量無差異 25
3.10 基因剔除鼠在耳蝸中轉 (middle turn, MT) 及底轉 (basal turn, BT) 頂蓋膜的Type IX collagen 蛋白表現量較野生型小鼠低,然而在人類 Hepsin 表現量較高的基因轉殖鼠頂蓋膜可看到Type IX collagen 恢復的效果 25
3.11 基因剔除鼠在耳蝸中轉 (middle turn, MT) 及底轉 (basal turn, BT) 頂蓋膜的 α-tectorin 蛋白表現量較野生型小鼠低,然而在人類 Hepsin 表現量較高的基因轉殖鼠頂蓋膜可看到恢復的效果 27
3.12 β-tectorin在耳蝸中轉 (middle turn, MT) 及底轉 (basal turn, BT) 頂蓋膜Hepsin基因剔除鼠 (HPN-/-) 蛋白表現量亦較野生型低 28
第四章、討論 29
4.1 人類 Hepsin 基因轉殖鼠蛋白在不同組織中皆有表現 29
4.2 Hepsin 基因剔除鼠 (HPN-/-) 聽力缺失而基因轉殖鼠聽力明顯獲得改善 29
4.3 內外毛細胞的型態功能正常 30
4.4 基因剔除鼠 (HPN-/-) 頂蓋膜電子顯微鏡分析顯示異常 30
4.5 兩種螢光染色定量分析方式的意義 31
4.6 基因剔除鼠 (HPN-/-) 頂蓋膜分子表現量異常,而基因轉殖鼠有恢復的效果,及其可能的致病機轉 31
第五章、實驗結果及展望 34
參考文獻 35
dc.language.isozh-TW
dc.subjectα-tectorinzh_TW
dc.subjectβ-tectorinzh_TW
dc.subjecttype IX collagenzh_TW
dc.subjectHepsinzh_TW
dc.subjecttype II collagenzh_TW
dc.subjectHepsin 基因剔除鼠zh_TW
dc.subject人類 Hepsin 基因轉殖鼠zh_TW
dc.subject內耳頂蓋膜zh_TW
dc.subject聽力缺失zh_TW
dc.subjectHepsinen
dc.subjectβ-tectorinen
dc.subjectα-tectorinen
dc.subjecttype IX collagenen
dc.subjecttype II collagenen
dc.subjecttectorial membraneen
dc.subjecthearing lossen
dc.subjectHepsin transgenic miceen
dc.subjectHepsin knock-out miceen
dc.title探討Hepsin 在小鼠內耳構造及功能扮演的角色zh_TW
dc.titleInvestigating the role of Hepsin in mouse inner ear structure and functionen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳瑞菁(Jui-Ching Wu),楊庭華(Ting-Hua Yang),林淑容(Shu-Rung Lin)
dc.subject.keywordHepsin,Hepsin 基因剔除鼠,人類 Hepsin 基因轉殖鼠,聽力缺失,內耳頂蓋膜,type II collagen,type IX collagen,α-tectorin,β-tectorin,zh_TW
dc.subject.keywordHepsin,Hepsin knock-out mice,Hepsin transgenic mice,hearing loss,tectorial membrane,type II collagen,type IX collagen,α-tectorin,β-tectorin,en
dc.relation.page82
dc.identifier.doi10.6342/NTU201703823
dc.rights.note有償授權
dc.date.accepted2017-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept醫學檢驗暨生物技術學研究所zh_TW
顯示於系所單位:醫學檢驗暨生物技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
8 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved