Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 生物環境系統工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68773
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭克聲
dc.contributor.authorGuang-Ying Shihen
dc.contributor.author石廣英zh_TW
dc.date.accessioned2021-06-17T02:34:40Z-
dc.date.available2017-08-24
dc.date.copyright2017-08-24
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation1. 王如意、易任(2005),「應用水文學(上冊)」,台北:國立編譯館。
2. 連以婷(2010),「水文模式之參數不確定性分析」,國立台灣大學生物環境系統工程研究所研究論文。
3. 葉小蓁(2006),「時間序列分析與應用」,台北:台大法律學院圖書文具部。
4. Andrews, D.W.K., Chen, H.Y. (1994) Approximately median-unbiased estimation of autoregressive models. J Bus Econ Stat, Vol. 12, No. 2, pp. 187–204.
5. Bergström, S., Forsman, A. (1973) Development of a conceptual deterministic rainfall–runoff model. Nord Hydrology, Vol. 4, pp. 147–170.
6. Bergström, S. (1976) Development and application of a conceptual runoff model for Scandinavian catchments. Report RHO 7, Swedish Meteorological and Hydrological Institute, Norrkoping, Sweden
7. Chen, P.A., Chang, L.C., Chang, F.J. (2013) Reinforced recurrent neural networks for multi-step-ahead flood forecasts, Journal of Hydrology, Vol. 497, pp. 71–79
8. Cheng, K.S., Lien, Y.T., Wu, Y.C., Su, Y.F. (2016). On the criteria of model performance evaluation for real-time flood forecasting. Stochastic Environmental Research and Risk Assessment, doi: 10.1007/s00477-016-1322-7
9. Chiang, Y.M., Hsu, K.L., Chang, F.J., Hong, Y., Sorooshian, S. (2007) Merging multiple precipitation sources for flash flood forecasting. Journal of Hydrology, Vol. 340, pp. 183–196.
10. Chiew, F.H.S, Potter, N.J., Vaze, J., Petheram, C., Zhang, L., Teng, J., Post, D.A. (2014) Observed hydrologic non-stationarity in far south-eastern Australia: implications for modelling and prediction. Stochastic Environmental Research and Risk Assessment, Vol. 28, pp. 3–15.
11. Corzo, G., Solomatine, D. (2007) Baseflow separation techniques for modular artificial neural network modelling in flow forecasting. Hydrological Sciences Journal, Vol. 52, No. 3, pp. 491–507.
12. Du, J., Xie, H., Hu, Y., Xu, Y., Xu, C.Y. (2009) Development and testing of a new storm runoff routing approach based on time variant spatially distributed travel time method. Journal of Hydrology, Vol. 369, pp. 44–54.
13. Lindström, G., Johansson, B., Persson, M., Gardelin, M., Bergström, S. (1997) Development and test of the distributed HBV-96 hydrological model. Journal of Hydrology, Vol. 201, pp. 272–288.
14. Moriasi, D.N., Arnold, J.G., Liew, M.W.V., Bingner, R.L., Harmel, R.D., Veith, T.L. (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the American Society of Agricultural and Biological Engineers, Vol. 50, No. 3, pp.885–900.
15. Moore, R.J., Bell, V.A., Jones, D.A. (2005) Forecasting for flood warning. Comptes Rendus Geoscience, Vol. 337, pp.203–217
16. Nash, J.E., Sutcliffe, J.V. (1970) River flow forecasting through conceptual models. Part I. A discussion of principles. Journal of Hydrology, Vol. 10, pp. 282–290
17. Rodŕiguez-Iturbe, I., Valdés, J.B. (1979) The geomorphology structure of hydrologic response. Water Resources Research, Vol. 15, No. 6, pp. 1409–1420.
18. Rodriguez-Iturbe, I., González-Sanabria, M., Bras, R.L. (1982) A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resources Research, Vol. 18, No. 4, pp. 877–886.
19. Schreider, S.Y., Jakeman, A.J., Dyer, B.G., Francis, R.I. (1997) A combined deterministic and self-adaptive stochastic algorithm for streamflow forecasting with application to catchments of the Upper Murray Basin, Australia, Environmental Modelling Software, Vol. 12, No. 1, pp. 93–104.
20. Seibert, J. (2001) On the need for benchmarks in hydrological modelling, Hydrology Process, Vol. 15, pp. 1063–1064
21. Seibert, J., McDonnell J.J. (2002) On the dialog between experimentalist and modeler in catchment hydrology: use of soft data for multicriteria model calibration. Water Resources Research, Vol. 38,pp. 23-1–23-14
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68773-
dc.description.abstract在水文研究中,洪水流量預報是個常探討的議題。在過去文獻中,洪水流量的預測模式建立與評估此模式之下,其評估結果大多呈現良好。影響評估結果主要因素為河川流量的持續性。水文過程為時間序列資料,在本研究中,藉由偏自我相關係數(partial autocorrelation coefficient function, PACF)做模式鑑定並建立自回歸模式(Autoregressive processes, AR)來當預測模式,可得量化持續性的指標CIR(Cumulative impulse response)與評估模式指標效率係數(Coefficient of efficiency, CE)、持續係數(Coefficient of persistence, CP)和流量峰值誤差百分比(Error in peak flow in percentages, )。然河川流量的持續性也受集流時間影響,根據流量與雨量逐時資料之相關性可估算集流時間。
本研究區域為宜蘭河流域,其流量站為中山橋、員山大橋和新城橋。各測站之觀測資料做模式建定並建立ㄧAR模式。在每測站中有一AR模式,並套配於其本身測站之各水文事件中,得出這些水文事件之CIR值、CE值、CP值和 值。並由結果顯示各測站之預測模式良好。在各測站的CIR指標皆高於7,表示流量持續性高。在集流時間上新城橋比員山大橋快,故員山大橋的CIR指標比新城橋的CIR指標大。
zh_TW
dc.description.abstractFlood forecasting is an essential issue in hydrological studies. In the literature, many flood forecasting models were shown to perform well. However, it has also been recognized that, due to flood flow persistence, even simple models could also achieve good performance. In this study, two model performance criteria, namely the coefficient of efficiency (CE) and coefficient of persistence (CP) were used to evaluate performance of flood forecasting models. Flood flow data at three stations in the Yilan River Basin were represented by autoregressive (AR) models. An asymptotic theoretical relationship between CE and CP, which is dependent on the lag-k autocorrelation coefficient, was derived and used to demonstrate why the simple naïve forecasting model could achieve good performance, in certain cases, even outperform more complicated models.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:34:40Z (GMT). No. of bitstreams: 1
ntu-106-R04622037-1.pdf: 2812843 bytes, checksum: 3773278a862fd58dbdce33e402f776b0 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
中文摘要 II
ABSTRACT III
目錄 IV
圖目錄 VI
表目錄 VII
壹 序論 1
一 前言和目的 1
二 研究架構 2
貳 文獻回顧 5
一 時間序列 6
二 如何評估持續性 8
三 評估模式好壞的指標 : CE、CP 9
參 研究理論與方法 11
一 流量資料模式的流程建立 11
二 模式檢測方法 11
三 解釋 CE、CP之間的關係 13
四 R軟體應用 15
五 以流量和雨量得集流時間 15
肆 研究地區與資料說明 20
一 流量資料處理 20
二 雨量資料處理 20
伍 結果與討論 26
一 模式檢測與CE、CP值 26
二 流量雨量關係 26
陸 結論 41
參考文獻 42
dc.language.isozh-TW
dc.subject洪水預報zh_TW
dc.subject流量持續性zh_TW
dc.subject時間序列zh_TW
dc.subject模式評估zh_TW
dc.subject宜蘭河流域zh_TW
dc.subjectFlood forecastingen
dc.subjectFlow persistenceen
dc.subjectTime seriesen
dc.subjectModel performance evaluationen
dc.subjectYilan River Basinen
dc.title宜蘭河洪水流量持續性分析zh_TW
dc.titleYilan River Flood Flow Persistent Analysisen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee黃文政,陳莉,葉惠中
dc.subject.keyword洪水預報,流量持續性,時間序列,模式評估,宜蘭河流域,zh_TW
dc.subject.keywordFlood forecasting,Flow persistence,Time series,Model performance evaluation,Yilan River Basin,en
dc.relation.page44
dc.identifier.doi10.6342/NTU201703280
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept生物環境系統工程學研究所zh_TW
顯示於系所單位:生物環境系統工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved