Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 園藝暨景觀學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68760
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor林寶秀(Bau-Show Lin)
dc.contributor.authorTing-Wen Chenen
dc.contributor.author陳亭彣zh_TW
dc.date.accessioned2021-06-17T02:34:03Z-
dc.date.available2022-07-02
dc.date.copyright2020-08-24
dc.date.issued2020
dc.date.submitted2020-08-18
dc.identifier.citation1. 王鴻楷、楊沛儒。(2001)。地景生態城市規劃方法之初探-以台北市主要通盤檢討:綠色生態城市規劃案為例。2001地景生態學與永續城鄉發展學術會議論文集,63–82。
2. 林憲德。(2005)。城鄉生態。詹氏書局。
3. 林曜松、趙榮台。(1998)。維護生物多樣性與促進資源永續利用。生物多樣性前瞻研討會論文集,14–23。
4. 趙蓮菊、邱春火、王怡婷、謝宗震、馬光輝。(2013)。仰觀宇宙之大,俯察品類之盛:如何量化生物多樣性。中國統計學報,51(1),8–53。
5. 鄭蕙燕。(2000)。生物多樣性之經濟價值分析與政策評估研究。中國農村經濟學會研討會論文集。
6. Anderson, P. M. L., Avlonitis, G., Ernstson, H. (2014). Ecological outcomes of civic and expert-led urban greening projects using indigenous plant species in Cape Town, South Africa. Landscape and Urban Planning, 127, 104–113.
7. Blair, R. B., Launer, A. E. (1997). Butterfly diversity and human land use: Species assemblages along an urban grandient. Biological Conservation, 80(1), 113–125.
8. Blank, L., Vasl, A., Schindler, B., Kadas, G., Blaustein, L. (2017). Horizontal and vertical island biogeography of arthropods on green roofs: A review. Urban Ecosystems, 20.
9. Braaker, S., Ghazoul, J., Obrist, M. K., Moretti, M. (2014). Habitat connectivity shapes urban arthropod communities: The key role of green roofs. Ecology, 95(4), 1010–1021.
10. Brachet, A., Schiopu, N., Clergeau, P. (2019). Biodiversity impact assessment of building’s roofs based on Life Cycle Assessment methods. Building and Environment, 158, 133–144.
11. Chan, A. L. S., Chow, T. T. (2013). Evaluation of Overall Thermal Transfer Value (OTTV) for commercial buildings constructed with green roof. Applied Energy, 107, 10–24.
12. Clausen, I. H. S. (1986). The use of spiders (Araneae) as ecological indicators. Bulletin of the British Arachnological Society. 7(3), 83–86.
13. Collinge, S. K. (1996). Ecological consequences of habitat fragmentation: implications for landscape architecture and planning. Landscape and Urban Planning. 36, 59–77.
14. Connelly, M., Hodgson, M. (2013). Experimental investigation of the sound transmission of vegetated roofs. Applied Acoustics, 74(10), 1136–1143.
15. Crooks, K.R., Suarez, A.V., and Bolger, D.T. (2004). Avian assemblages along a gradient of urbanization in a highly fragmented landscape. Biological Conservation 115, 451–462.
16. Currie, B., Bass, B. (2008). Estimates of air pollution mitigation with green plants and green roofs using the UFORE model. Urban Ecosystems, 11, 409–422.
17. Czech, B., Krausman, P., Devers, P. (2000). Economic Associations Among Causes of Species Endangerment in the United States. Bioscience, 50.
18. Dallimer, M., Irvine, K. N., Skinner, A. M. J., Davies, Z. G., Rouquette, J. R., Maltby, L. L., Warren, P. H., Armsworth, P. R., Gaston, K. J. (2012). Biodiversity and the Feel-Good Factor: Understanding Associations between Self-Reported Human Well-being and Species Richness. BioScience, 62(1), 47–55.
19. De Leo, G., Levin, S. (1997). The Multifaceted Aspects of Ecosystem Integrity. Conservation Ecology, 1(1).
20. Debinski, D. M., Holt, R. D. (2000). A Survey and Overview of Habitat Fragmentation Experiments. Conservation Biology, 14(2), 342–355.
21. Dramstad, W., Olson, J.D., and Forman, R.T.T. (1996). Landscape Ecology Principles in Landscape Architecture and Land-Use Planning. Island Press.
22. Fahrig, L. (2003). Effects of Habitat Fragmentation on Biodiversity. Annual Review of Ecology, Evolution, and Systematics, 34(1), 487–515.
23. Fisher, R. A., Corbet, A. S., Williams, C. B. (1943). The Relation Between the Number of Species and the Number of Individuals in a Random Sample of an Animal Population. Journal of Animal Ecology, 12(1), 42–58. .
24. Forman, R.T.T. (1995). Some general principles of landscape and regional ecology. Landscape Ecol 10, 133–142.
25. Fuller, R. A., Irvine, K. N., Devine-Wright, P., Warren, P. H., Gaston, K. J. (2007). Psychological benefits of greenspace increase with biodiversity. Biology Letters, 3(4), 390–394.
26. Garvin, E. C., Cannuscio, C. C., Branas, C. C. (2013). Greening vacant lots to reduce violent crime: A randomised controlled trial. Injury Prevention, 19(3), 198–203.
27. Gibbs, J. P. (1998). Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecology, 13(4), 263–268.
28. Gilbert, F., Gonzalez, A., Evans-Freke, I. (1998). Corridors maintain species richness in the fragmented landscapes of a microecosystem. Proceedings of the Royal Society B: Biological Sciences, 265(1396), 577–582.
29. Goddard, M. A., Dougill, A. J., Benton, T. G. (2010). Scaling up from gardens: Biodiversity conservation in urban environments. Trends in Ecology Evolution, 25(2), 90–98.
30. Hamilton, A. (2005). Species diversity or biodiversity? Journal of Environmental Management, 75, 89–92.
31. Helden, A. J., Morley, G. J., Davidson, G. L., Turner, E. C. (2018). What can WE do for urban insect biodiversity? Applying lessons from ecological research. Zoosymposia, 12(1), 51.
32. Hill, D., Fasham, M., Tucker, G., Shewry, M., Shaw, P. (Eds.). (2005). Handbook of Biodiversity Methods: Survey, Evaluation and Monitoring.
33. Hunter, R. F., Cleary, A., Braubach, M. (2019). Environmental, Health and Equity Effects of Urban Green Space Interventions. In M. R. Marselle, J. Stadler, H. Korn, K. N. Irvine, A. Bonn (Eds.), Biodiversity and Health in the Face of Climate Change (pp. 381–409). Springer International Publishing.
34. Jackson, H. B., Fahrig, L. (2013). Habitat Loss and Fragmentation. In S. A. Levin (Ed.), Encyclopedia of Biodiversity (Second Edition) (pp. 50–58). Academic Press.
35. Jin, S., Guo, J., Wheeler, S., Kan, L., Che, S. (2014). Evaluation of impacts of trees on PM2.5 dispersion in urban streets. Atmospheric Environment, 99, 277–287.
36. Kadas, G. (2006). Rare invertebrates colonizing green roofs in London. Urban Habitats, 4(1), 66–86.
37. Kaufmann, R. (2001). Invertebrate Succession on an Alpine Glacier Foreland. Ecology, 82(8), 2261–2278.
38. Kim, K. G. (2004). The application of the biosphere reserve concept to urban areas: The case of green rooftops for habitat network in Seoul. Annals of the New York Academy of Sciences, 1023, 187–214.
39. Kimmins, J. P. (1997). Forest Ecology: A Foundation for Sustainable Management. Prentice Hall.
40. Klein, B. C. (1989). Effects of Forest Fragmentation on Dung and Carrion Beetle Communities in Central Amazonia. Ecology, 70(6), 1715–1725.
41. Leather, S. R. (Ed.). (2005). Insect Sampling in Forest Ecosystems. John Wiley Sons.
42. Lee, L. H., Lin, J. C. (2015). Green Roof Performance Towards Good Habitat for Butterflies in the Compact City. International Journal of Biology, 7(2), 103.
43. Lin, B. S., Yu, C. C., Su, A. T., Lin, Y. J. (2013). Impact of climatic conditions on the thermal effectiveness of an extensive green roof. Building and Environment, 67, 26–33.
44. MacIvor, J. S. (2015). Building height matters: Nesting activity of bees and wasps on vegetated roofs. Israel Journal of Ecology Evolution, 62(1–2), 88–96.
45. MacIvor, J. S., Lundholm, J. (2011). Insect species composition and diversity on intensive green roofs and adjacent level-ground habitats. Urban Ecosystems, 14(2), 225–241.
46. Madre, F., Vergnes, A., Machon, N., Clergeau, P. (2013). A comparison of 3 types of green roof as habitats for arthropods. Ecological Engineering, 57, 109–117.
47. Maeto, K., Sato, S., Miyata, H. (2002). Species diversity of longicorn beetles in humid warm-temperate forests: The impact of forest management practices on old-growth forest species in southwestern Japan. Biodiversity Conservation, 11(11), 1919–1937.
48. Magura, T. (2002). Carabids and forest edge: Spatial pattern and edge effect. Forest Ecology and Management, 157(1), 23–37.
49. Magura, T., Tóthmérész, B., Molnár, T. (2001). Forest edge and diversity: Carabids along forest-grassland transects. Biodiversity Conservation, 10(2), 287–300.
50. Magurran, A. E. (1988). Ecological Diversity and Its Measurement. Princeton University Press.
51. Magurran, A., McGill, B. J. (Eds.). (2010). Biological diversity: Frontiers in measurement and assessment. Oxford University Press.
52. Marselle, M. R., Irvine, K. N., Lorenzo-Arribas, A., Warber, S. L. (2016). Does perceived restorativeness mediate the effects of perceived biodiversity and perceived naturalness on emotional well-being following group walks in nature? Journal of Environmental Psychology, 46, 217–232.
53. McArthur, R. H. Wilson, E. O. (1967). The Theory of Island Biogeography. Princeton University Press.
54. McKinney, M. L. (2002). Urbanization, Biodiversity, and ConservationThe impacts of urbanization on native species are poorly studied, but educating a highly urbanized human population about these impacts can greatly improve species conservation in all ecosystems. BioScience, 52(10), 883–890.
55. Odum, E. P. (1989). Ecology and our endangered life-support systems (2nd ed.). Sinauer Associates.
56. Ohta, I., Ebisawa, A. (2015). Reproductive biology and spawning aggregation fishing of the white-streaked grouper, Epinephelus ongus, associated with seasonal and lunar cycles. Environmental Biology of Fishes, 98(6), 1555–1570.
57. Oksanen, J. (1997). Plant neighbor diversity. Journal of Vegetation Science - J VEG SCI, 8, 255–258.
58. Oliver, T., Heard, M., Isaac, N., Roy, D. B., Procter, D., Eigenbrod, F., Freckleton, R., Hector, A., Orme, D., Petchey, O., Proença, V., Raffaelli, D., Suttle, B., Martín-López, B., Woodcock, B., Bullock, J. (2015). Biodiversity and Resilience of Ecosystem Functions. Trends in Ecology Evolution, 30, 673–684.
59. Partridge, D. R., Clark, J. A. (2018). Urban green roofs provide habitat for migrating and breeding birds and their arthropod prey. PLOS ONE, 13(8), e0202298.
60. Pechenik, J. A. (2000). Biology of the Invertebrates. McGraw-Hill Education.
61. Peng, L. L. H., Jim, C. Y. (2015). Seasonal and Diurnal Thermal Performance of a Subtropical Extensive Green Roof: The Impacts of Background Weather Parameters. Sustainability, 7(8), 11098–11113.
62. Pielou, E. C. (1969). An introduction to mathematical ecology. An Introduction to Mathematical Ecology. Wiley-Interscience.
63. Plascencia, M., Philpott, S. M. (2017). Floral abundance, richness, and spatial distribution drive urban garden bee communities. Bulletin of Entomological Research, 107(5), 658–667.
64. Platt, R. H. (Ed.). (1994). The Ecological City: Preserving and Restoring Urban Biodiversity. University of Massachusetts Press.
65. Rapport, D. J., Costanza, R., McMichael, A. J. (1998). Assessing ecosystem health. Trends in Ecology Evolution, 13(10), 397–402.
66. Razzaghmanesh, M., Beecham, S. (2014). The hydrological behaviour of extensive and intensive green roofs in a dry climate. Science of The Total Environment, 499, 284–296.
67. Razzaghmanesh, M., Beecham, S., Salemi, T. (2016). The role of green roofs in mitigating Urban Heat Island effects in the metropolitan area of Adelaide, South Australia. Urban Forestry Urban Greening, 15, 89–102.
68. Régnière, J., Bolstad, P. (1994). Statistical Simulation of Daily Air Temperature Patterns Eastern North America to Forecast Seasonal Events in Insect Pest Management. Environmental Entomology, 23(6), 1368–1380.
69. Saunders, D. A., Hobbs, R. J., Margules, C. R. (1991). Biological Consequences of Ecosystem Fragmentation: A Review. Conservation Biology, 5(1), 18–32. JSTOR.
70. Schindler, B. Y., Vasl, A., Blaustein, L., Gurevich, D., Kadas, G. J., Seifan, M. (2019). Fine-scale substrate heterogeneity does not affect arthropod communities on green roofs. PeerJ, 7, e6445.
71. Schmiegelow, F. K. A., Mönkkönen, M. (2002). Habitat Loss and Fragmentation in Dynamic Landscapes: Avian Perspectives from the Boreal Forest*. Ecological Applications, 12(2), 375–389.
72. Schowalter, T. D. (2016). Insect Ecology: An Ecosystem Approach. Academic Press.
73. Schulze, C. H., Waltert, M., Kessler, P. J. A., Pitopang, R., Veddeler, D., Mühlenberg, M., Gradstein, S. R., Leuschner, C., Steffan-Dewenter, I., Tscharntke, T. (2004). Biodiversity indicator groups of tropical land-use systems: Comparing plants, birds, and insects. Ecological Applications, 14(5), 1321–1333.
74. Seto, K. C., Güneralp, B., Hutyra, L. R. (2012). Global forecasts of urban expansion to 2030 and direct impacts on biodiversity and carbon pools. Proceedings of the National Academy of Sciences, 109(40), 16083–16088.
75. Sklenicka, P. (2016). Classification of farmland ownership fragmentation as a cause of land degradation: A review on typology, consequences, and remedies. Land Use Policy 57, 694–701.
76. Soulé, M. E. (1991). Conservation: Tactics for a Constant Crisis. Science, 253(5021), 744–750.
77. Spellerberg, I. F. (1998). Ecological effects of roads and traffic: A literature review. Global Ecology Biogeography Letters, 7(5), 317–333.
78. Spellerberg, I. F., Hardes, S. R. (1992). Biological Conservation. Cambridge University Press.
79. Strohbach, M. W., Lerman, S. B., Warren, P. S. (2013). Are small greening areas enhancing bird diversity? Insights from community-driven greening projects in Boston. Landscape and Urban Planning, 114, 69–79.
80. Taylor, L. R. (1963). Analysis of the Effect of Temperature on Insects in Flight. Journal of Animal Ecology, 32(1), 99–117.
81. Thompson, C. W., Roe, J., Aspinall, P. (2013). Woodland improvements in deprived urban communities: What impact do they have on people’s activities and quality of life? Landscape and Urban Planning, 118, 79–89.
82. Tilman, D., Downing, J. A. (1994). Biodiversity and stability in grasslands. Nature, 367(6461), 363–365.
83. Tonietto, R., Fant, J., Ascher, J., Ellis, K., Larkin, D. (2011). A comparison of bee communities of Chicago green roofs, parks and prairies. Landscape and Urban Planning, 103(1), 102–108.
84. Tsang, S. W., Jim, C. Y. (2011). Game-Theory Approach for Resident Coalitions to Allocate Green-Roof Benefits: Environment and Planning A.
85. Virgós, E. (2001). Role of isolation and habitat quality in shaping species abundance: A test with badgers (Meles meles L.) in a gradient of forest fragmentation. Journal of Biogeography, 28(3), 381–389.
86. Williams, N. S. G., Lundholm, J., MacIvor, J. S. (2014). FORUM: Do green roofs help urban biodiversity conservation? Journal of Applied Ecology, 51(6), 1643–1649.
87. Wilson, E. O. (1992). The Diversity of Life. Harvard University Press.
88. Wilson, E. O., Peter, F. M. (Eds.). (1988). Biodiversity. National Academy Press.
89. Wong, J. K. W., Lau, L. S. K. (2013). From the ‘urban heat island’ to the ‘green island’? A preliminary investigation into the potential of retrofitting green roofs in Mongkok district of Hong Kong. Habitat International, 39, 25–35.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68760-
dc.description.abstract隨著人類活動與開發程度的提高,城市的灰色基礎設施、各類建築物與道路等已開發土地持續擴增。這些大型量體與鋪面,造成了棲地破碎化,使得都市中的物種在空間分佈、生存與繁殖上受到干擾。
近幾十年來發展興盛的綠屋頂技術,具有增加都市綠地面積、減少建築物表面逕流、隔熱降溫與節能等功能。除此之外,若以景觀生態學的角度來看,綠屋頂可為生活在都市的物種提供庇護、棲息與移動的場所,提高生物多樣性,進而促進健全的都市生態系。然而,設置於建築物之上的綠屋頂,其在生物多樣性上的效益仍受到基地樓高、周邊綠地與建物環境等實質環境屬性因子所影響,綠屋頂形式、植栽類型、綠化面積等綠化條件的不同也會對其造成程度上的差異。
因此,本研究之研究目的在於瞭解都市中不同的綠屋頂之物種組成情形,以及探討綠屋頂的不同環境屬性因子與生物物種的分布狀況之間的關係,以作為未來的都市規劃、綠屋頂推廣,在基於生態考量上,綠屋頂的設置與分佈建議依據。
本研究以新北市環境保護局低碳中心推動的建物綠化示範推廣計畫及參與式屋頂農場推動計畫之8座屋頂農場作為研究地點,利用目視觀察法(Visual observation)與掉落式陷阱法(Pitfall trap),以對環境高度敏感且可穩定生態系食物鏈的昆蟲綱與蛛形綱動物作為目標來進行物種調查,並分析、歸納各屋頂的環境屬性,包括外部環境屬性—周邊建物平均高度、周邊綠覆率,以及內部環境屬性—綠化面積、綠屋頂樓高、綠屋頂綠化年資、植栽種類及其是否正值花期等。物種調查結果將計算成物種豐度、物種歧異度與物種均勻度等生物多樣性指數,討論不同環境屬性的綠屋頂與物種組成之關聯。
研究結果顯示,綠屋頂的綠化面積對物種豐富度與物種豐度有正面影響,但對物種均勻度有負面影響;綠屋頂樓高對物種豐富度、物種豐度與物種歧異度有正面影響;屋頂的綠化年資則對物種豐富度、物種豐度與物種歧異度有負面影響。植栽的豐富度、正值花期之植栽的豐富度皆對物種豐富度、物種豐度具正向影響。外部半徑100公尺內的周邊建物平均高度則對物種豐富度、物種豐度具正面影響。而外部半徑200公尺內的周邊綠覆率則對物種均勻度、物種歧異度有正面影響。
zh_TW
dc.description.abstractFollowing the expansion of human activities and developments, the developed land of urban gray infrastructure, various structures, and roads continue to expand. These huge building volumes and paved areas have caused habitat fragmentation that has disturbed the distribution, survival, and breeding of the urban species.
In recent decades, the progressing green roof technology has brought multiple functions, such as increasing the area of urban green space, reducing the surface runoff of buildings, thermal insulation, cooling, and energy-saving. Furthermore, from the perspective of landscape ecology, the green roof can provide shelter, habitat, and movement for the species living in the city, forming ecological stepping stones in the city, and improving biodiversity to promote a sound urban ecosystem.
However, due to its location on the building, the extent of the biodiversity benefit still depends on the physical environmental attributes such as the building height, the surrounding green space, and the nearby environment of the building. The result would also vary based on the greening area and the age of the green roof.
This study sampled eight sites from two programs of the Low Carbon Community Development Division of New Taipei City Environmental Protection Department which take place once to twice a season from October 2019 to June 2020. Visual observation and pitfall-trap method were used to sample insects (Insecta) and spiders (Arachnida, Araneae)–which are keenly sensitive to the environment and able to stabilize the food chain in an ecosystem–as the target species. Meanwhile, the environmental attributes of each sample area, including external environmental attributes: the average height of surrounding buildings, the surrounding green coverage ratio, and the internal environmental attributes: the greening area, location height, green roof age, and plant richness would also be analyzed and summarized. The results of this survey would then turn into biodiversity indices like species abundance, species diversity, and species evenness, facilitating the analytics and discussions of the relationship between different environmental attributes and species composition of the green roof. The purpose of this study is to understand the species distribution of different green roofs in the city and to explore the relationships between various environmental factors of the green roof and the distribution of species, which will benefit the future green roof installation and distribution suggestion for ecological-based urban planning and green roof promotion.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:34:03Z (GMT). No. of bitstreams: 1
U0001-1708202009342100.pdf: 8317187 bytes, checksum: 71623eb8831470ae9b9964c73103a1e1 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents口試委員會審定書 I
謝 誌 III
摘 要 V
Abstract VII
第一章 前言 1
第一節 研究動機 1
第二節 研究目的 3
第三節 研究內容與流程 4
第二章 文獻回顧 5
第一節 生物多樣性 5
第二節 棲地破碎化及生態跳島 8
一、棲地破碎化 8
二、生態跳島 9
第三節 綠屋頂與生物多樣性 11
ㄧ、綠屋頂 11
二、綠屋頂的物種調查 12
三、綠屋頂的生物多樣性實證研究 12
第三章 研究方法 15
第一節 研究架構與假設 15
第二節 操作型定義 16
一、研究範圍 16
二、綠屋頂內部環境屬性 16
三、綠屋頂外部環境屬性 17
四、物種多樣性 17
第三節 研究地點 19
第四節 樣區環境屬性 21
一、三峽區公所(A樣區) 22
二、世界盃雪梨特區(B樣區) 24
三、興華市民活動中心(C樣區) 26
四、三德市民活動中心(D樣區) 28
五、長榮大樓社區(E樣區) 30
六、博覽天下梵谷特區(F樣區) 32
七、東方桂冠社區(G樣區) 34
八、吉安市民活動中心(H樣區) 36
第五節 物種調查 39
一、調查時間 39
二、調查方法 39
第六節 資料處理與分析 41
一、多樣性指標轉換 41
二、統計分析 42
三、研究限制 42
第四章 研究結果 43
第一節 物種調查結果 43
一、實際物種調查日期 43
二、實際植栽紀錄情形 44
三、物種總組成狀況 45
四、各季物種組成比較 49
第二節 各屋頂物種組成狀況 50
一、各屋頂之物種總組成 50
二、不同物種於各屋頂之組成比較 57
第三節 物種多樣性指標計算 59
第四節 物種多樣性與各環境屬性之關係 63
一、物種多樣性與內部環境屬性之關係 63
二、物種多樣性與外部環境屬性之關係 64
第五章 結論與建議 65
第一節 結論與討論 65
一、綠屋頂的物種組成 65
二、綠屋頂各環境屬性差異對物種多樣性的影響 66
第二節 後續研究建議 68
參考文獻 69
附錄一、物種調查詳細名錄 77
附錄二、物種調查各次紀錄總表 85
附錄三、現地調查照片紀錄 89
dc.language.isozh-TW
dc.subject屋頂農場zh_TW
dc.subject屋頂綠化zh_TW
dc.subject物種多樣性zh_TW
dc.subject都市生物多樣性zh_TW
dc.subject昆蟲相調查zh_TW
dc.subjectGreen roofen
dc.subjectRooftop farmen
dc.subjectUrban biodiversityen
dc.subjectSpecies diversityen
dc.subjectInsect surveyen
dc.title綠屋頂環境屬性與生物多樣性關係之研究zh_TW
dc.titleA Study of the Relationship between Green Roof Environmental Attributes and Biodiversityen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee林晏州(Yann-Jou Lin),張俊彥(Chun-Yen Chang),侯錦雄(Jing-Shoung Hou),謝正義(Cheng-I Hsieh)
dc.subject.keyword屋頂綠化,屋頂農場,都市生物多樣性,物種多樣性,昆蟲相調查,zh_TW
dc.subject.keywordGreen roof,Rooftop farm,Urban biodiversity,Species diversity,Insect survey,en
dc.relation.page89
dc.identifier.doi10.6342/NTU202003681
dc.rights.note有償授權
dc.date.accepted2020-08-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept園藝暨景觀學系zh_TW
顯示於系所單位:園藝暨景觀學系

文件中的檔案:
檔案 大小格式 
U0001-1708202009342100.pdf
  未授權公開取用
8.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved