請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68748
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 周子賓(Tze-Bin Chou) | |
dc.contributor.author | Hung-Chun Tung | en |
dc.contributor.author | 董虹君 | zh_TW |
dc.date.accessioned | 2021-06-17T02:33:28Z | - |
dc.date.available | 2020-08-24 | |
dc.date.copyright | 2017-08-24 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-08-17 | |
dc.identifier.citation | Aravin, A., Gaidatzis, D., Pfeffer, S., Lagos-Quintana, M., Landgraf, P., Iovino, N., Morris, P., Brownstein, M.J., Kuramochi-Miyagawa, S., Nakano, T., et al. (2006). A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207.
Aravin, A.A., Sachidanandam, R., Bourc'his, D., Schaefer, C., Pezic, D., Toth, K.F., Bestor, T., and Hannon, G.J. (2008). A piRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Mol Cell 31, 785-799. Aravin, A.A., Sachidanandam, R., Girard, A., Fejes-Toth, K., and Hannon, G.J. (2007). Developmentally regulated piRNA clusters implicate MILI in transposon control. Science 316, 744-747. Aravin, A.A., van der Heijden, G.W., Castaneda, J., Vagin, V.V., Hannon, G.J., and Bortvin, A. (2009). Cytoplasmic compartmentalization of the fetal piRNA pathway in mice. PLoS Genet 5, e1000764. Barau, J., Teissandier, A., Zamudio, N., Roy, S., Nalesso, V., Herault, Y., Guillou, F., and Bourc'his, D. (2016). The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science 354, 909-912. Beck, C.R., Garcia-Perez, J.L., Badge, R.M., and Moran, J.V. (2011). LINE-1 elements in structural variation and disease. Annu Rev Genomics Hum Genet 12, 187-215. Bourc'his, D., and Bestor, T.H. (2004). Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431, 96-99. Bourc'his, D., Xu, G.L., Lin, C.S., Bollman, B., and Bestor, T.H. (2001). Dnmt3L and the establishment of maternal genomic imprints. Science 294, 2536-2539. Brugh, V.M., 3rd, and Lipshultz, L.I. (2004). Male factor infertility: evaluation and management. Med Clin North Am 88, 367-385. Buaas, F.W., Kirsh, A.L., Sharma, M., McLean, D.J., Morris, J.L., Griswold, M.D., de Rooij, D.G., and Braun, R.E. (2004). Plzf is required in adult male germ cells for stem cell self-renewal. Nat Genet 36, 647-652. Chedin, F., Lieber, M.R., and Hsieh, C.L. (2002). The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. Proc Natl Acad Sci U S A 99, 16916-16921. Choi, H.W., Joo, J.Y., Hong, Y.J., Kim, J.S., Song, H., Lee, J.W., Wu, G., Scholer, H.R., and Do, J.T. (2016). Distinct Enhancer Activity of Oct4 in Naive and Primed Mouse Pluripotency. Stem Cell Reports 7, 911-926. Chuva de Sousa Lopes, S.M., Hayashi, K., Shovlin, T.C., Mifsud, W., Surani, M.A., and McLaren, A. (2008). X chromosome activity in mouse XX primordial germ cells. PLoS Genet 4, e30. Cool, J., and Capel, B. (2009). Mixed signals: development of the testis. Semin Reprod Med 27, 5-13. Cool, J., DeFalco, T., and Capel, B. (2012). Testis formation in the fetal mouse: dynamic and complex de novo tubulogenesis. Wiley Interdiscip Rev Dev Biol 1, 847-859. Costa, Y., Speed, R.M., Gautier, P., Semple, C.A., Maratou, K., Turner, J.M., and Cooke, H.J. (2006). Mouse MAELSTROM: the link between meiotic silencing of unsynapsed chromatin and microRNA pathway? Hum Mol Genet 15, 2324-2334. Cox, D.N., Chao, A., Baker, J., Chang, L., Qiao, D., and Lin, H. (1998). A novel class of evolutionarily conserved genes defined by piwi are essential for stem cell self-renewal. Genes Dev 12, 3715-3727. Czech, B., and Hannon, G.J. (2016). A Happy 3' Ending to the piRNA Maturation Story. Cell 164, 838-840. De Fazio, S., Bartonicek, N., Di Giacomo, M., Abreu-Goodger, C., Sankar, A., Funaya, C., Antony, C., Moreira, P.N., Enright, A.J., and O'Carroll, D. (2011). The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements. Nature 480, 259-263. Deplus, R., Brenner, C., Burgers, W.A., Putmans, P., Kouzarides, T., de Launoit, Y., and Fuks, F. (2002). Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res 30, 3831-3838. Drumond, A.L., Meistrich, M.L., and Chiarini-Garcia, H. (2011). Spermatogonial morphology and kinetics during testis development in mice: a high-resolution light microscopy approach. Reproduction 142, 145-155. Gunesdogan, U., and Surani, M.A. (2016). Developmental Competence for Primordial Germ Cell Fate. Curr Top Dev Biol 117, 471-496. Hata, K., Okano, M., Lei, H., and Li, E. (2002). Dnmt3L cooperates with the Dnmt3 family of de novo DNA methyltransferases to establish maternal imprints in mice. Development 129, 1983-1993. He, Z., Jiang, J., Hofmann, M.C., and Dym, M. (2007). Gfra1 silencing in mouse spermatogonial stem cells results in their differentiation via the inactivation of RET tyrosine kinase. Biol Reprod 77, 723-733. Hirsh, A. (2003). Male subfertility. BMJ 327, 669-672. Ikami, K., Tokue, M., Sugimoto, R., Noda, C., Kobayashi, S., Hara, K., and Yoshida, S. (2015). Hierarchical differentiation competence in response to retinoic acid ensures stem cell maintenance during mouse spermatogenesis. Development 142, 1582-1592. Ishiuchi, T., and Torres-Padilla, M.E. (2014). LINEing germ and embryonic stem cells' silencing of retrotransposons. Genes Dev 28, 1381-1383. Kao, T.H., Liao, H.F., Wolf, D., Tai, K.Y., Chuang, C.Y., Lee, H.S., Kuo, H.C., Hata, K., Zhang, X., Cheng, X., et al. (2014). Ectopic DNMT3L triggers assembly of a repressive complex for retroviral silencing in somatic cells. J Virol 88, 10680-10695. Kapitonov, V.V., and Jurka, J. (2008). A universal classification of eukaryotic transposable elements implemented in Repbase. Nat Rev Genet 9, 411-412; author reply 414. Kato, Y., Kaneda, M., Hata, K., Kumaki, K., Hisano, M., Kohara, Y., Okano, M., Li, E., Nozaki, M., and Sasaki, H. (2007). Role of the Dnmt3 family in de novo methylation of imprinted and repetitive sequences during male germ cell development in the mouse. Hum Mol Genet 16, 2272-2280. Kluin, P.M., Kramer, M.F., and de Rooij, D.G. (1982). Spermatogenesis in the immature mouse proceeds faster than in the adult. Int J Androl 5, 282-294. Kobayashi, H., Sakurai, T., Miura, F., Imai, M., Mochiduki, K., Yanagisawa, E., Sakashita, A., Wakai, T., Suzuki, Y., Ito, T., et al. (2013). High-resolution DNA methylome analysis of primordial germ cells identifies gender-specific reprogramming in mice. Genome Res 23, 616-627. Kubota, H., Avarbock, M.R., and Brinster, R.L. (2003). Spermatogonial stem cells share some, but not all, phenotypic and functional characteristics with other stem cells. Proc Natl Acad Sci U S A 100, 6487-6492. Kuramochi-Miyagawa, S., Kimura, T., Ijiri, T.W., Isobe, T., Asada, N., Fujita, Y., Ikawa, M., Iwai, N., Okabe, M., Deng, W., et al. (2004). Mili, a mammalian member of piwi family gene, is essential for spermatogenesis. Development 131, 839-849. Kuramochi-Miyagawa, S., Watanabe, T., Gotoh, K., Totoki, Y., Toyoda, A., Ikawa, M., Asada, N., Kojima, K., Yamaguchi, Y., Ijiri, T.W., et al. (2008). DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev 22, 908-917. Liao, H.-F. (2014). The function of DNMT3L in spematogonial progenitor cell homeostasis and differentiation. In Institute of Biothechnology (National Taiwan University), pp. 1-135. Liao, H.-F., Kuo, J., Lin, H.-H., and Lin, S.-P. (2016). Isolation of THY1+ Undifferentiated Spermatogonia from Mouse Postnatal Testes Using Magnetic-activated Cell Sorting (MACS). Bio-Protocol 6. Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441. Liu, T.M., Lee, E.H., Lim, B., and Shyh-Chang, N. (2016). Concise Review: Balancing Stem Cell Self-Renewal and Differentiation with PLZF. Stem Cells 34, 277-287. Lovelace, D.L., Gao, Z., Mutoji, K., Song, Y.C., Ruan, J., and Hermann, B.P. (2016). The regulatory repertoire of PLZF and SALL4 in undifferentiated spermatogonia. Development 143, 1893-1906. Matzuk, M.M., and Lamb, D.J. (2008). The biology of infertility: research advances and clinical challenges. Nat Med 14, 1197-1213. McLean, D.J., Friel, P.J., Johnston, D.S., and Griswold, M.D. (2003). Characterization of spermatogonial stem cell maturation and differentiation in neonatal mice. Biol Reprod 69, 2085-2091. Molaro, A., Falciatori, I., Hodges, E., Aravin, A.A., Marran, K., Rafii, S., McCombie, W.R., Smith, A.D., and Hannon, G.J. (2014). Two waves of de novo methylation during mouse germ cell development. Genes Dev 28, 1544-1549. Mori, C., Nakamura, N., Dix, D.J., Fujioka, M., Nakagawa, S., Shiota, K., and Eddy, E.M. (1997). Morphological analysis of germ cell apoptosis during postnatal testis development in normal and Hsp 70-2 knockout mice. Dev Dyn 208, 125-136. Munoz-Lopez, M., and Garcia-Perez, J.L. (2010). DNA transposons: nature and applications in genomics. Curr Genomics 11, 115-128. Nakagawa, T., Nabeshima, Y., and Yoshida, S. (2007). Functional identification of the actual and potential stem cell compartments in mouse spermatogenesis. Dev Cell 12, 195-206. Nakagawa, T., Sharma, M., Nabeshima, Y., Braun, R.E., and Yoshida, S. (2010). Functional hierarchy and reversibility within the murine spermatogenic stem cell compartment. Science 328, 62-67. Nandi, S., Chandramohan, D., Fioriti, L., Melnick, A.M., Hebert, J.M., Mason, C.E., Rajasethupathy, P., and Kandel, E.R. (2016). Roles for small noncoding RNAs in silencing of retrotransposons in the mammalian brain. Proc Natl Acad Sci U S A. Naughton, C.K., Jain, S., Strickland, A.M., Gupta, A., and Milbrandt, J. (2006). Glial cell-line derived neurotrophic factor-mediated RET signaling regulates spermatogonial stem cell fate. Biol Reprod 74, 314-321. Nguyen-Chi, M., and Morello, D. (2011). RNA-binding proteins, RNA granules, and gametes: is unity strength? Reproduction 142, 803-817. Oatley, J.M., and Brinster, R.L. (2008). Regulation of spermatogonial stem cell self-renewal in mammals. Annu Rev Cell Dev Biol 24, 263-286. Orwig, K.E., Avarbock, M.R., and Brinster, R.L. (2002). Retrovirus-mediated modification of male germline stem cells in rats. Biol Reprod 67, 874-879. Puszyk, W., Down, T., Grimwade, D., Chomienne, C., Oakey, R.J., Solomon, E., and Guidez, F. (2013). The epigenetic regulator PLZF represses L1 retrotransposition in germ and progenitor cells. EMBO J 32, 1941-1952. Qu, X., Liu, J., Zhong, X., Li, X., and Zhang, Q. (2015). PIWIL2 promotes progression of non-small cell lung cancer by inducing CDK2 and Cyclin A expression. J Transl Med 13, 301. Saitou, M., and Yamaji, M. (2012). Primordial germ cells in mice. Cold Spring Harb Perspect Biol 4. Sakai, Y., Suetake, I., Shinozaki, F., Yamashina, S., and Tajima, S. (2004). Co-expression of de novo DNA methyltransferases Dnmt3a2 and Dnmt3L in gonocytes of mouse embryos. Gene Expr Patterns 5, 231-237. Saxe, J.P., Chen, M., Zhao, H., and Lin, H. (2013). Tdrkh is essential for spermatogenesis and participates in primary piRNA biogenesis in the germline. EMBO J 32, 1869-1885. Scholer, H.R., Dressler, G.R., Balling, R., Rohdewohld, H., and Gruss, P. (1990). Oct-4: a germline-specific transcription factor mapping to the mouse t-complex. EMBO J 9, 2185-2195. Singh, P., Li, A.X., Tran, D.A., Oates, N., Kang, E.R., Wu, X., and Szabo, P.E. (2013). De novo DNA methylation in the male germ line occurs by default but is excluded at sites of H3K4 methylation. Cell Rep 4, 205-219. Slotkin, R.K., and Martienssen, R. (2007). Transposable elements and the epigenetic regulation of the genome. Nat Rev Genet 8, 272-285. Song, H.W., and Wilkinson, M.F. (2014). Transcriptional control of spermatogonial maintenance and differentiation. Semin Cell Dev Biol 30, 14-26. Suetake, I., Shinozaki, F., Miyagawa, J., Takeshima, H., and Tajima, S. (2004). DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J Biol Chem 279, 27816-27823. Suliman, B.A., Xu, D., and Williams, B.R. (2012). The promyelocytic leukemia zinc finger protein: two decades of molecular oncology. Front Oncol 2, 74. Suzuki, H., Ahn, H.W., Chu, T., Bowden, W., Gassei, K., Orwig, K., and Rajkovic, A. (2012a). SOHLH1 and SOHLH2 coordinate spermatogonial differentiation. Dev Biol 361, 301-312. Suzuki, H., Sada, A., Yoshida, S., and Saga, Y. (2009). The heterogeneity of spermatogonia is revealed by their topology and expression of marker proteins including the germ cell-specific proteins Nanos2 and Nanos3. Dev Biol 336, 222-231. Suzuki, R., Honda, S., and Kirino, Y. (2012b). PIWI Expression and Function in Cancer. Front Genet 3, 204. Toth, K.F., Pezic, D., Stuwe, E., and Webster, A. (2016). The piRNA Pathway Guards the Germline Genome Against Transposable Elements. Adv Exp Med Biol 886, 51-77. Tseng, Y.T., Liao, H.F., Yu, C.Y., Mo, C.F., and Lin, S.P. (2015). Epigenetic factors in the regulation of prospermatogonia and spermatogonial stem cells. Reproduction 150, R77-91. Unhavaithaya, Y., Hao, Y., Beyret, E., Yin, H., Kuramochi-Miyagawa, S., Nakano, T., and Lin, H. (2009). MILI, a PIWI-interacting RNA-binding protein, is required for germ line stem cell self-renewal and appears to positively regulate translation. J Biol Chem 284, 6507-6519. Vergouwen, R.P., Jacobs, S.G., Huiskamp, R., Davids, J.A., and de Rooij, D.G. (1991). Proliferative activity of gonocytes, Sertoli cells and interstitial cells during testicular development in mice. J Reprod Fertil 93, 233-243. Wang, J., Saxe, J.P., Tanaka, T., Chuma, S., and Lin, H. (2009). Mili interacts with tudor domain-containing protein 1 in regulating spermatogenesis. Curr Biol 19, 640-644. Webster, K.E., O'Bryan, M.K., Fletcher, S., Crewther, P.E., Aapola, U., Craig, J., Harrison, D.K., Aung, H., Phutikanit, N., Lyle, R., et al. (2005). Meiotic and epigenetic defects in Dnmt3L-knockout mouse spermatogenesis. Proc Natl Acad Sci U S A 102, 4068-4073. Yin, H., and Lin, H. (2007). An epigenetic activation role of Piwi and a Piwi-associated piRNA in Drosophila melanogaster. Nature 450, 304-308. Yoshida, S., Sukeno, M., Nakagawa, T., Ohbo, K., Nagamatsu, G., Suda, T., and Nabeshima, Y. (2006). The first round of mouse spermatogenesis is a distinctive program that lacks the self-renewing spermatogonia stage. Development 133, 1495-1505. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68748 | - |
dc.description.abstract | 組織恆定及再生有賴於幹細胞的維持。幹細胞為一群具有自我更新及分化能力的細胞,能夠不斷分化出子細胞。而生殖幹細胞能夠生成配子,並將其遺傳和表觀遺傳訊息傳遞給下一代,對物種延續及子代健康極具重要性。而在生殖細胞發育過程中,有DNA甲基化去除及再建立的過程以建立生殖細胞特化之基因模式,後者有賴於3號DNA甲基化酶(DNMT3s, DNA methyltransferases 3)的幫助。由於甲基化的去除會造成反轉錄轉位子(retrotransposons)的活化,而此舉恐會使轉位子有能力在基因中任意跳躍而影響基因體的完整性,甚至造成無法產生配子。生殖細胞因此演化出特化小片段RNA (piRNA, PIWI-interacting RNA)路徑得以抑制轉位子的跳躍。
類3號DNA甲基化酶(DNMT3L, DNA methyltransferase 3-like)雖不具酵素功能,卻得以輔助3號A型DNA甲基化酶(DNMT3A, DNA methyltransferase 3A)催化的甲基化再建立,以抑制轉位子的跳躍,並影響piRNA的組成;且本實驗室發現其在精原細胞之細胞質表現,有可能與轉錄後調節相關。本篇論文著重於探討8天大小鼠精原細胞在缺少類3號DNA甲基化酶情況下生殖細胞維持分子和piRNA生成相關因子之表現量、細胞內座落位置及相互關係是否受到影響。本論文第一部分證實在缺少DNMT3L的情況下,會劇烈影響精原細胞之自我更新、分化,以及piRNA路徑相關基因的表現量,且反轉錄轉位子無法被抑制而大量活化。早幼粒細胞白血病鋅指蛋白(PLZF, Promyelocytic Leukemia Zinc Finger)為幹細胞與前軀細胞自我更新,及表觀基因體調節相關因子,而由於DNMT3L與PLZF的相互關係已被本實驗室證實,且MILI及PLZF此二蛋白在文獻中都指出另參與在轉錄後或轉譯層面的調控,因此第二部分實驗著重於此二蛋白。藉由蛋白質免疫定量及細胞免疫螢光染色確立Dnmt3l突變鼠之精原細胞中,PLZF的表現量顯著減少,且幾乎完全喪失位於細胞質之PLZF。而DNMT3L對MILI的影響則局限於表現量。進一步利用免疫共沉澱法證實MILI與PLZF相互結合關係,並觀察到TDRD2 (Tudor Domain-Containing Protein 2)及MILI的相互結合關係是會受到DNMT3L所影響的。 總結,本論文結果顯示Dnmt3l存在與否直接影響精原細胞中piRNA生成相關因子之表現量,因此極可能對piRNA生成產生嚴重影響。並推斷DNMT3L在轉錄及後轉錄層面影響MILI及PLZF的座落位置及表現量,以及MILI-PLZF共同參與抑制反轉錄轉位子的角色的可能性。更由於MILI為piRNA路徑的重要角色之一,故建議進一步研究PLZF參與調節piRNA路徑的可能性。 | zh_TW |
dc.description.abstract | Tissue homeostasis and regeneration relies on the maintenance of stem cells. Stem cells are a group of cells with self-renewal and differentiation ability and can continue to differentiate into daughter cells. Germline stem cells can produce gametes, and transfer its genetic and epigenetic information to next generation, that is crucial for producing viable and healthy offspring. During germ cell development, DNA sequences undergo demethylation and re-establishment of methylation pattern to regulate germ cell specific gene pattern, and the latter depends on DNA methyltransferases 3 (DNMT3s). The removal of methylation can cause the re-activation of retrotransposons. Activated retrotransposons have the ability to randomly jump in the genome and affect the integrity of the genome, and even cause infertility. For this reason, germ cells have developed specialized piRNA (PIWI-interacting RNA) pathway to suppress the transposition of the transposons.
Though DNMT3L (DNA methyltransferase 3 like) has no catalytic ability, but is critical to facilitate DNMT3A (DNA methyltransferase 3A) mediated DNA methylation re-establishment to repress retrotransposons. DNMT3L also affects the compositions of piRNA and the localization of DNMT3L in cytoplasm at postnatal stage, implies its influence on post-transcriptional regulation. This thesis focus on studying whether the absence of Dnmt3l would affect the expression, subcellular localization and interactions among germ cell surviving factors and piRNA biogenesis related factors in spermatogonia of 8 dpp mouse testes. In the first part of this thesis, I confirmed that in the absence of Dnmt3l, most of the tested self-renewal factors, differentiation factors, and piRNA pathway components are seriously down-regulated and also cause the failure of retrotransposon repression. Our lab previously observed the interaction between DNMT3L and PLZF (Promyelocytic Leukemia Zinc Finger) which is a self-renewal factor involving in epigenetic modulation. In addition, since both MILI and PLZF proteins are shown to be involved in post-transcriptional and translational regulation of retrotransposons, I focused on these two proteins in the second part of this thesis. Western blotting and immunofluorescent staining analyses confirmed that the expression and localization of PLZF were affected in Dnmt3l KO testes, while the effect on MILI was only restricted in the expression level. Furthermore, I confirmed the interaction between MILI and PLZF in 8 dpp testes by co-immunoprecipitation. I also observed a DNMT3L-dependent interaction between TDRD2 (Tudor Domain-Containing Protein 2) and MILI. In conclusion, the presence of Dnmt3l affects the expression level of piRNA biogenesis related factors that shows great importance for the production of piRNAs. My data also indicated that DNMT3L affected the expression and localization of PLZF. The observed MILI-PLZF interaction provided further implications on their potential collaborative function in retrotransposon silencing at transcriptional or post-transcriptional level. Moreover, as MILI is the most important player in piRNA pathway, the interaction of MILI and PLZF also suggested the potential influence of PLZF in the piRNA pathway. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:33:28Z (GMT). No. of bitstreams: 1 ntu-106-R04b43023-1.pdf: 3017780 bytes, checksum: ff037320cc2ae03b1f3074508b954752 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 I
中文摘要 II ABSTRACT IV CONTENTS VII LIST OF TABLES IX LIST OF FIGURES X ABBREVIATIONS XI CHAPTER 1 INTRODUCTION 1 1.1 MOUSE MALE GERMLINE DEVELOPMENT AND MAINTENANCE 1 1.1.1 STEM CELLS, THE FOUNDATION OF TISSUE HOMEOSTASIS 1 1.1.2 PRECURSORS OF UNDIFFERENTIATED SPERMATOGONIA 3 1.1.3 SPERMATOGENESIS 5 1.1.4 TRANSPOSONS 7 1.2 IMPORTANT FACTORS FOR TRANSPOSON SILENCING 8 1.2.1 DNMT3L (DNA METHYLATRANSFERASE 3-LIKE) 8 1.2.2 PIRNA PATHWAY: THE GUARD OF GENOME INTEGRITY 9 1.2.3 MILI: A KEY COMPONENT IN PIRNA PATHWAY FOR FACILITATING DE NOVO METHYLATION 10 1.2.4 PLZF IN GERMLINE MAINTENANCE AND RETROTRANSPOSON SILENCING 10 1.3 SIGNIFICANCE 12 1.4 HYPOTHESIS 12 1.5 SPECIFIC AIMS 13 CHAPTER 2 MATERIALS AND METHODS 14 2.1 BREEDING OF DNMT3L MUTANT MOUSE 14 2.2 GENOTYPING 14 2.3 H&E STAINING 15 2.4 REVERSE TRANSCRIPTION QUANTITATIVE PCR (RT-QPCR) 16 2.5 PREPARATION OF SINGLE CELL SUSPENSION FROM GERM CELL ENRICHED SEMINIFEROUS TUBULE CONTENTS 18 2.6 IMMUNOCYTOCHEMISTRY 20 2.7 IMMUNOHISTOCHEMISTRY 21 2.8 WESTERN BLOTTING 23 2.9 IMMUNOPRECIPITATION 25 2.10 STATISTICAL ANALYSIS 27 2.11 RNA SEQUENCING ANALYSIS 27 CHAPTER 3 RESULTS 28 3.1 GRADUAL DECLINE OF GERM CELLS IN DNMT3L KO TESTES AT POSTNATAL STAGE 28 3.2 CRUCIAL FUNCTIONS OF DNMT3L IN EXPRESSIONS OF GERMLINE MAINTENANCE FACTORS AND RETROTRANSPOSON SILENCING 29 3.3 EXPRESSION PATTERNS AND LOCALIZATION OF PLZF IN DNMT3L KO GERM CELLS AT 8 DPP. 31 3.4 DNMT3L CONTRIBUTES TO MILI-PLZF AND MILI-TDRD2 INTERACTIONS IN 8 DPP TESTES 32 CHAPTER 4 DISCUSSION 33 4.1 ESSENTIAL ROLE OF DNMT3L IN EXPRESSIONS OF GERMLINE MAINTENANCE FACTORS 33 4.2 THE ISOFORM OF MILI 34 4.3 POTENTIAL NOVEL ROLES OF DNMT3L IN POSTNATAL SPERMATOGONIA THROUGH INFLUENCING MILI-PLZF AND MILI-TDRD2 INTERACTIONS 35 4.4 PERSPECTIVE 37 CHAPTER 5 REFERENCES 59 | |
dc.language.iso | en | |
dc.title | 類3號DNA甲基化酶維持初生小鼠精原細胞恆定之機制探討 | zh_TW |
dc.title | DNMT3L Mediated Germline Maintenance in Postnatal
Spermatogonia | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 林劭品(Shau-Ping Lin) | |
dc.contributor.oralexamcommittee | 靖永皓(Yun-Hao Ching),曾大千(Ta-Chien Tseng),洪瑞鴻(Jui-Hung Hung) | |
dc.subject.keyword | piRNA 路徑,PLZF,類 3 號 DNA 甲基化?,精原細胞, | zh_TW |
dc.subject.keyword | DNMT3L,piRNA pathway,PLZF,spermatogonia, | en |
dc.relation.page | 64 | |
dc.identifier.doi | 10.6342/NTU201702966 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-08-18 | |
dc.contributor.author-college | 生命科學院 | zh_TW |
dc.contributor.author-dept | 分子與細胞生物學研究所 | zh_TW |
顯示於系所單位: | 分子與細胞生物學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。