請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68740完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅仁權(Ren C. Luo) | |
| dc.contributor.author | Ching-Lin Wei | en |
| dc.contributor.author | 魏靖霖 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:33:05Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | [1] U. Kim, Y. B. Kim, D. Y. Seok, J. So and H. R. Choi, 'Development of surgical forceps integrated with a multi-axial force sensor for minimally invasive robotic surgery,' 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, 2016, pp. 3684-3689.
[2] http://medaccessindia.com/laparosopicminimally-invasive/ [3] http://www.emedicinehealth.com/laparoscopy/article_em.htm [4] R. Reilink, G. de Bruin, M. Franken, M. A. Mariani, S. Misra and S. Stramigioli, 'Endoscopic camera control by head movements for thoracic surgery,' 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, 2010, pp. 510-515. [5] L. A. Zhang, R. Khare, E. Wilson, S. X. Wang, C. A. Peters and K. Cleary, 'Robotic assistance for manipulating a flexible endoscope,' 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, 2014, pp. 5380-5385. [6] J. Pransky,” ROBODOC-surgical robot success story,” Industrial Robot: An International Journal, vol. 24, pp. 231-233, 1997. [7] I. A. Broeders and J. Ruurda,” Robotics revolutionizing surgery: the intuitive surgical da Vinci system,” Industrial Robot: An International Journal, vol. 28, pp. 387-392, 2001. [8] https://prezi.com/xo3h_gyzp58m/da-vinci-robotic-surgery-system/ [9] M. Fujii, K. Fukushima, N. Sugita, T. Ishimaru, T. Iwanaka and M. Mitsuishi, 'Design of intuitive user interface for Multi-DOF forceps for laparoscopic surgery,' 2011 IEEE International Conference on Robotics and Automation (ICRA), Shanghai, 2011, pp. 5743-5748. [10] M. Zecca, F. Cavallo, M. Saito, N. Endo, Y. Mizoguchi, S. Sinigaglia, K. Itoh, H. Takanobu, G. Megali, O. Tonet, P. Dario, A. Pietrabissa and A. Takanishi, 'Using the Waseda Bioinstrumentation System WB-1R to analyze Surgeon’s performance during laparoscopy - towards the development of a global performance index -,' 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Diego, CA, 2007, pp. 1272-1277. [11] M. J. H. Lum, J. Rosen, T. S. Lendvay, A. S. Wright, M. N. Sinanan and B. Hannaford, 'TeleRobotic Fundamentals of Laparoscopic Surgery (FLS): Effects of time delay - pilot study,' 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, 2008, pp. 5597-5600. [12] R. C. Luo, J. Wang, J. Y. Tsai, K. M. Lee and Y. W. Perng, 'Robotic flexible laparoscope with position retrieving system for assistive minimally invasive surgery,' 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 2015, pp. 2024-2029. [13] K. Jo, B. Choi, S. Choi, Y. Moon and J. Choi, 'Automatic detection of hemorrhage and surgical instrument in laparoscopic surgery image,' 2016 38th Annual Inter-national Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, 2016, pp. 1260-1263. [14] M. Li, S. Luo and G. Xu, 'A tactile sensing and feedback system for tumor localization,' 2016 13th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Xi'an, 2016, pp. 259-262. [15] R. J. Webster and B. A. Jones, 'Design and kinematic modeling of constant curvature continuum robots: A review,' The International Journal of Robotics Re-search, 2010. [16] A. De Donno, F. Nageotte, P. Zanne, L. Zorn and M. de Mathelin, 'Master/slave control of flexible instruments for minimally invasive surgery,' 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 483-489. [17] Y. Chen, J. Liang and I. W. Hunter, 'Modular continuum robotic endoscope design and path planning,' 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 5393-5400. [18] Y. Chen, J. M. Oliveira and I. W. Hunter, 'Two-axis bend sensor design, kinematics and control for a continuum robotic endoscope,' 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 704-710. [19] J. Jung, R. S. Penning, N. J. Ferrier and M. R. Zinn, 'A modeling approach for continuum robotic manipulators: effects of nonlinear internal device friction,' 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5139-5146. [20] R. C. Luo, J. W. Chen and Y. W. Perng, 'Robotic endoscope system with compliance effect including adaptive impedance and velocity control for assistive laparoscopic surgery,' 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Tokyo, 2010, pp. 100-105. [21] R. C. Luo and C. L. Wei, “Robotic assistant for manipulating a flexible-type laparoscope with intuitive maneuverability”, 49th International Symposium on Robotics (ISR 2017), Shanghai, China, July 6-7, 2017. [22] R. C. Luo, J. Wang, C. K. Chang and Y. W. Perng, 'Surgeon's third hand: An assistive robot endoscopic system with intuitive maneuverability for laparoscopic surgery,' 5th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics (BioRob), Sao Paulo, 2014, pp. 138-143. [23] A. Amber, Y. Iwahori, M. K. Bhuyan, R. J. Woodham and K. Kasugai, 'Feature Point Based Polyp Tracking in Endoscopic Videos,' 2015 3rd International Conference on Applied Computing and Information Technology/2nd International Conference on Computational Science and Intelligence, Okayama, 2015, pp. 299-304. [24] P. N. Elango and S. K. Lam, 'Bounded iterative thresholding for lumen region detection in endoscopic images,' 2016 14th International Conference on Control, Automation, Robotics and Vision (ICARCV), Phuket, 2016, pp. 1-6. [25] http://opencv.org/ [26] https://processing.org/tutorials/color/ | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68740 | - |
| dc.description.abstract | 腹腔鏡手術的應用已遍及許多手術的範疇。在過去,此種手術不僅需要反覆的訓練,也要求醫師與助手之間的高配合度與良好的默契。因此,人們致力於開發腹腔鏡手術機器人系統,藉由手術機器人的穩定性及易操作、不易抖動的特性,得以實現內視鏡自動操作的功能。
我們建立了機器人多關節可撓式腹腔鏡系統(RFLS),使醫師能藉由頭部控制操作腹腔鏡。然而,將機器人引進手術室,不僅需要考慮安全性,更需要考量使用者友善的議題,提高手術執行效率,且能夠真正將機器人與醫療結合。因此本研究主要是針對使用者友善的議題做探討,分為三大類:系統參數適應性、手術操作位置之記憶與取回、腹腔異物質偵測系統。系統參數適應性方面,針對因不同醫師對於機器人操作的熟悉度不同,系統會偵測使用者的操作流暢度,改變系統增益,使醫師能更加適應本系統。另外,外科醫師在手術操作時,常需使用腹腔鏡往返兩點之間的視野。針對此需求,我們提出手術操作位置之記憶與取回的功能,使醫師能以簡單的方式記憶當下的位置,並且能輕易地回到該次記錄的位置,此為腹腔鏡機器人之一大優點。進行微創手術時,常需尋找腹腔中的異物質(例如:腫瘤、息肉等),因此我們提出了一套腹腔異物質偵測系統,在腹腔鏡的視野下,系統可自動辨別是否為異物質,且自動將畫面移動至異物質所在的中心點位置,幫助醫師在手術中能更方便地使用腹腔鏡機器人。實驗結果顯示自動參數調整可使得每位使用者能以最短的時間熟悉本系統,且此演算法平均可降低19.39%使用者完成手術操作的時間;記錄視野位置的準確度能提升手術流暢度,其取回的最終位置與記錄的位置誤差小於0.15度;腹腔異物質偵測系統能快速偵測異物的位置,且在3秒內準確且穩定地將畫面移動至目標處。 | zh_TW |
| dc.description.abstract | The practice of laparoscopic surgery continues to gain widespread adoption for a variety of surgical procedures. In the past, this kind of surgery required not only thorough training but also highly coordinated fashion between the surgeon and assistant. There-fore, people have done a lot of research on laparoscopic surgery robotic systems to fulfill laparoscopic endoscope navigation.
We use a Robotic Flexible Laparoscope System (RFLS) to provide surgeons manipulate the laparoscope with his/her head movement. However, we need to concern not only the safety issues but also the user-friendly aspect if robot-assisted system is introduced into the practical surgical operation. It needs to improve the efficiency of the surgery, and be perfectly combined with surgical procedures. First of all, because the operational sophistication of surgeons is different, not every user is familiar with our RFLS. An adaptive intelligent control algorithm is integrated with our system so that the system will automatically adjust the parameters with every user based on their sophistication with the operation. Therefore, surgeons can get used to our robot-assisted system in a relatively short time. Surgeons usually need to manipulate the laparoscopic view back and forth between two targets during the surgery. We propose the Anatomical Position Retrieving Ability to record the anatomical position which the surgeon operates at the time. Surgeons can easily retrieve the previous position by a single command with small errors. Besides, the system can determine whether there is any tissue obstacle, and decide to retrieve the recorded position along a straight trajectory or previous one. In minimally invasive surgery, surgeons often need to find the foreign bodies inside the abdomen (i.e. tumors, polyps... etc.). As a result, we propose the Target Detecting System that identifies foreign bodies and moves the flexible laparoscope to the target. Experimental results show that simultaneous self-calibration will always work during operation. The algorithm can simultaneously adjust the system parameters with every user. It can reduce the task time up to 19.39% on average, making the overall system more user-friendly with the operator. Surgeons can accurately retrieve the previous position by using the Anatomical Position Retrieving Functions. The error between the recorded position and the end position is less than 0.15 degrees. The Target Detecting System can fast detect the target inside the abdomen and stably moves to the accurate target within 3 seconds. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:33:05Z (GMT). No. of bitstreams: 1 ntu-106-R04921067-1.pdf: 5790103 bytes, checksum: 1e9a08549ac15fa569e29e7499dd72ef (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii ABSTRACT iii TABLE OF CONTENTS v LIST OF FIGURES viii LIST OF TABLES xii Chapter 1 Introduction 1 1.1 Introduction to Minimally Invasive Procedure 1 1.1.1 Minimally Invasive Surgery 1 1.1.2 Laparoscopic surgery 3 1.2 Motivation 5 1.3 Objective 7 1.4 Literature Review 7 1.5 Thesis Organization 9 Chapter 2 Research Materials 12 2.1 Hardware 12 2.1.1 Flexible Laparoscope 12 2.1.2 Wireless Gyroscope 13 2.1.3 Maxon® Motor and EPOS 24/1 Controller 14 2.1.4 Zooming Functional Mechanism 16 2.2 Software 17 2.3 Mathematical Models of the Flexible Laparoscope 17 2.3.1 Kinematics Model 17 2.3.2 Inverse Kinematics model 19 2.4 Newly Designed Mechanism 20 Chapter 3 System Architecture 22 3.1 Comparison with Techniques 22 3.2 System Environment 24 3.3 Information Flow and Overall System Block 28 3.3.1 System Structure 29 3.3.2 Mode Switch 29 3.3.3 PC Based Control 30 Chapter 4 Adaptive Intelligent Control 32 4.1 Overall System with Adaptive Intelligent Control 32 4.2 Optimization of Motor Control 35 4.3 Fuzzy Logic 36 4.3.1 User’s Sophistication 37 4.3.2 Membership Function 41 4.4 Adaptive Parameters Adjustment 43 Chapter 5 Anatomical Position Retrieving Ability 45 5.1 Need of Minimally Invasive Surgery 45 5.2 Implementation of Anatomical Position Retrieving Ability 46 Chapter 6 Target Detecting System 49 6.1 Suspicious Tumor or Polyps Detection 49 6.2 System Structure of the Target Detecting System 51 6.3 Detecting Algorithms 53 6.4 Automatic Detection Control 58 6.5 System Integration 61 Chapter 7 Experiment and Experimental results 64 7.1 Adaptive Intelligent Control 64 7.1.1 Two Targets Back and Forth 65 7.1.2 Laparoscopic Training Box Tasks 69 7.1.3 Mimic Laparoscopic Surgery Scenario 71 7.2 Discussion 72 7.3 Anatomical Position Retrieving Ability 74 7.4 Target Detecting System 79 Chapter 8 Conclusions and Contributions 83 Chapter 9 Future Work 84 REFERENCE 85 VITA 89 | |
| dc.language.iso | en | |
| dc.subject | 偵測異物 | zh_TW |
| dc.subject | 微創手術 | zh_TW |
| dc.subject | 腹腔鏡手術 | zh_TW |
| dc.subject | 機器人輔助手術 | zh_TW |
| dc.subject | 使用者友善 | zh_TW |
| dc.subject | 使用者介面 | zh_TW |
| dc.subject | 視野位置記憶與取回 | zh_TW |
| dc.subject | minimally invasive surgery | en |
| dc.subject | robot-assisted surgery | en |
| dc.subject | laparoscopic procedures | en |
| dc.subject | user-friendly | en |
| dc.subject | user interface | en |
| dc.subject | target detection | en |
| dc.title | 可撓式腹腔鏡使用者友善操作系統於機器人微創手術之應用 | zh_TW |
| dc.title | User-friendly Flexible-Type Laparoscopic Control System for Minimally Invasive Surgery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 康仕仲(Shih-Chung Kang),張帆人(Fan-Ren Chang) | |
| dc.subject.keyword | 微創手術,腹腔鏡手術,機器人輔助手術,使用者友善,使用者介面,視野位置記憶與取回,偵測異物, | zh_TW |
| dc.subject.keyword | minimally invasive surgery,robot-assisted surgery,laparoscopic procedures,user-friendly,user interface,target detection, | en |
| dc.relation.page | 89 | |
| dc.identifier.doi | 10.6342/NTU201703391 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.65 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
