請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68726完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 魏宏宇 | |
| dc.contributor.author | Dian-Yu Lin | en |
| dc.contributor.author | 林典育 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:32:25Z | - |
| dc.date.available | 2018-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | [1] N. Bhushan, J. Li, D. Malladi, R. Gilmore, D. Brenner, A. Damnjanovic, R. Sukhavasi, C. Patel, and S. Geirhofer. Network densification: the dominant theme for wireless evolution into 5G. IEEE Communications Magazine, 52(2):82–89, 2014.
[2] A. Checko, H. Holm, and H. Christiansen. Optimizing small cell deployment by the use of C-RANs. European Wireless 2014; 20th European Wireless Conference, pages 1–6, Jun. 2014. [3] M. Weiner, M. Jorgovanovic, A. Sahai, and B. Nikolie. Design of a low-latency, high-reliability wireless communication system for control applications. Communications (ICC), 2014 IEEE International Conference on, pages 3829–3835, Aug. 2014. [4] R. Wang, H. Hu, and X. Yang. Potentials and challenges of C-RAN supporting multi-RATs toward 5G mobile networks. IEEE Access, 2:1187–1195, Oct. 2014. [5] China Mobile. C-RAN: the road towards green RAN. White Paper, ver, 2, Oct. 2011. [6] F. Boccardi, R. Heath, A. Lozano, T. Marzetta, and P. Popovski. Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2):74–80, Feb. 2014. [7] Software-Defined radio technology overview. White Paper, Aug. 2002. [8] M. Bansal, J. Mehlman, S. Katti, and P. Levis. Openradio: a programmable wireless dataplane. Proceedings of the first workshop on Hot topics in software defined networks, pages 109–114, Aug. 2012. [9] M. Khan, R. Alhumaima, and H. Al-Raweshidy. Reducing energy consumption by dynamic resource allocation in C-RAN. Networks and Communications (EuCNC), 2015 European Conference on, pages 169–174, Jul. 2015. [10] Z. Kong, J. Gong, C. Xu, K. Wang, and J. Rao. eBase: A baseband unit cluster testbed to improve energy-efficiency for cloud radio access network. Communications (ICC), 2013 IEEE International Conference on, pages 4222–4227, Jun. 2013. [11] C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G. Chang. The case for reconfigurable backhaul in cloud-RAN based small cell networks. Infocom, 2013 Proceedings IEEE, pages 1124–1132, Jul. 2013. [12] K. Sundaresan, M. Arslan, S. Singh, S. Rangarajan, and S. Krishnamurthy. FluidNet: A flexible cloud-based radio access network for small cells. IEEE/ACM Transactions on Networking, 24(2):915–928, Apr. 2016. [13] S. Namba, T. Warabino, and S. Kaneko. BBU-RRH switching schemes for centralized RAN. Communications and Networking in China (CHINACOM), 2012 7th International ICST Conference on, pages 762–766, Aug. 2012. [14] I Chih-Lin, C. Rowell, S. Han, Z. Xu, G. Li, and Z. Pan. Toward green and soft: a 5G perspective. IEEE Communications Magazine, 52(2):66–73, Feb. 2014. [15] L. Liu, F. Yang, R. Wang, Z. Shi, A. Stidwell, and D. Gu. Analysis of handover performance improvement in cloud-RAN architecture. pages 850–855, Aug. 2012. [16] G. Li, S. Zhang, X. Yang, F. Liao, T. Ngai, S. Zhang, and C. Kuilin. Architecture of GPP based, scalable, large-scale C-RAN BBU pool. Globecom Workshops (GCWkshps), 2012 IEEE, pages 267–272, 2012. [17] E. Ahmed, A. Akhunzada, M. Whaiduzzaman, A. Gani, H. Ab, H. Siti, and R. Buyya. Network-centric performance analysis of runtime application migration in mobile cloud computing. Simulation Modelling Practice and Theory, 50:42–56, Jan. 2015. [18] J. Liu, E. Ahmed, M. Shiraz, A. Gani, R. Buyya, and A. Qureshi. Application partitioning algorithms in mobile cloud computing: Taxonomy, review and future directions. Journal of Network and Computer Applications, 48:99–117, Feb. 2015. [19] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the internet of things. MCC workshop on Mobile cloud computing, pages 13–16, Aug. 2012. [20] M. Chiang and T. Zhang. Fog and IoT: An overview of research opportunities. IEEE Internet of Things Journal, 3(6):854–864, Jun. 2016. [21] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal, et al. Mobile-edge computing introductory technical white paper. White Paper, Mobile-edge Computing (MEC) industry initiative, Sept. 2014. [22] M. Beck, M. Werner, S. Feld, and T. Schimper. Mobile edge computing: A taxonomy. Jan. 2014. [23] K. Habak, M. Ammar, K. Harras, and E. Zegura. Femto clouds: Leveraging mobile devices to provide cloud service at the edge. Cloud Computing (CLOUD), 2015 IEEE 8th International Conference on, pages 9–16, Jun. 2015. [24] Y. Shih, W. Chung, A. Pang, T. Chiu, and H. Wei. Enabling Low-Latency Applications in Fog-Radio Access Network. IEEE Networks, 31(1):52–58, Jan. 2017. [25] ETSI MEC ISG. Mobile edge computing (MEC); Framework and Reference Architecture GS MEC 003 V1.1.1. Mar. 2016. [26] G. Brown. Converging Telecom & IT in the LTE RAN. White Paper, Heavy Reading, 1(2.1):2, Feb. 2013. [27] E. Coffman and L. Kleinrock. Feedback Queueing Models for Time-Shared Systems. Journal of the ACM, 15(4):549–576, Oct. 1968. [28] Y. Ku, D. Lin, and H. Wei. Fog RAN over General Purpose Processor Platform. Vehicular Technology Conference (VTC-Fall), 2016 IEEE 84th, pages 1–2, Sept. 2016. [29] Y. Ku, D. Lin, C. Lee, P. Hsieh, H. Wei andC. Chou, and A. Pang. 5G Radio Access Network Design with the Fog Paradigm: Confluence of Communications and Computing. IEEE Communications Magazine, 55(4):46–52, Apr. 2017. [30] D. Gross, J. Shortie, J. Thompson, and C. Harris. Fundamentals of Queueing Theory. 2008. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68726 | - |
| dc.description.abstract | 隨著低延遲應用程式的興起,我們需要一個新的行動網路架構來支援此類的應用程式,有著行動邊緣運算的雲端無線接取網路可以提供低延遲的特性,將基頻處理和行動邊緣運算應用程式結合在一起可以讓我們更有效率的使用運算資源,而基頻處理和行動邊緣運算應用程式的結合是以通用處理器為基礎,在此篇論文中,我們提出數學模型來分析通用處理器平台。首先,我們把行動邊緣運算應用程式塑造模型,比較先入先出、處理器共享和擴增型處理器共享的模型。下一步,我們加入基頻處理,並分析基頻處理和行動邊緣運算應用程式的資源分配,除了數學模型和模擬結果外,我們還提出一個轉發策略演算法,依照目前的資料量來動態安排資料路徑,這個演算法也有實驗在實際的測試平台上,驗證結果顯示,我們能依照應用程式的需求去控制應用程式的等待時間。 | zh_TW |
| dc.description.abstract | With the arising of the low-latency applications, we need a new mobile network architecture to support this kind of applications. The cloud radio access network (C-RAN) with mobile edge computing (MEC) architecture can provide the low-latency attribute. The combination of the baseband processing and the MEC application can let us use the computing resource more efficiently. The foundation of combining the baseband processing and the MEC application is the general purpose processor (GPP). In this paper, We propose the mathematical model to analyze the GPP platform. First, we model the MEC stage by comparing the first-in-first-out (FIFO), processor-sharing (PS) and generalized-processor-sharing (GPS). Next, we take the baseband stage into our consideration and analyze the resource allocation between the baseband processing and the MEC application. In addition to the mathematical model and the simulation result, we propose the forwarding policy algorithm to dynamically arrange the data path according to the current traffic. The algorithm is implemented on the real testbed. The demonstration shows that we can control the waiting time corresponding to the application requirement. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:32:25Z (GMT). No. of bitstreams: 1 ntu-106-R04921057-1.pdf: 4827000 bytes, checksum: de86c113e6e2af385ca2876d9f1de02e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
誌謝 i 摘要 ii Abstract iii 1 Introduction 1 2 Preliminary Result 7 2.1 Multiple Applications on the GPP Platform . . . . . . . . . . . . . . . . 8 2.2 The Relationship between the Traffic Intensity and the CPU Utilization . 11 3 Mathematical Model of a Single MEC Platform 13 3.1 Traffic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.2 First In First Out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3 Processor Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.4 Generalized Processor Sharing . . . . . . . . . . . . . . . . . . . . . . . 16 4 Mathematical Model of Multiple MEC Platforms 20 5 Mathematical Model of the Baseband and MEC Combined Platform 24 6 Mathematical Model of the Baseband and MEC Combined Platform with Feedback 27 7 Simulation and Testbed Results 30 7.1 Mean Waiting Time on the Real GPS Processor under Fairly Distributed Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 7.2 Mean Waiting Time on the Real GPS Processor under Unfairly Distributed Traffic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 7.3 Comparison of Different Models under Fairly Distributed Traffic . . . . . 36 7.4 Comparison of Different Models under Unfairly Distributed Traffic . . . 38 7.4.1 Heavily-Loaded Application . . . . . . . . . . . . . . . . . . . . 40 7.4.2 Lightly-Loaded Application . . . . . . . . . . . . . . . . . . . . 42 7.5 Mean Waiting Time of the GPS Processor with Different Service rates . . 44 7.6 Resource Allocation between the Baseband and MEC Application . . . . 46 7.7 Blocking Probability of the Baseband and MEC Application with Feedback 48 8 Testbed Experiment 50 8.1 Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 8.2 Proposed Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 8.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 8.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 8.5 Experiment Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 9 Conclusion 63 Bibliography 64 | |
| dc.language.iso | en | |
| dc.subject | 雲端無線接取網路 | zh_TW |
| dc.subject | 行動邊緣運算 | zh_TW |
| dc.subject | 低延遲 | zh_TW |
| dc.subject | C-RAN | en |
| dc.subject | MEC | en |
| dc.subject | low latency | en |
| dc.title | 在有著行動邊緣運算的雲端無線接取網路架構下的轉發策略 | zh_TW |
| dc.title | Forwarding Policy under Cloud Radio Access Network with Mobile Edge Computing Architecture | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周俊廷,石圜鋼 | |
| dc.subject.keyword | 雲端無線接取網路,行動邊緣運算,低延遲, | zh_TW |
| dc.subject.keyword | C-RAN,MEC,low latency, | en |
| dc.relation.page | 67 | |
| dc.identifier.doi | 10.6342/NTU201703473 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電機工程學研究所 | zh_TW |
| 顯示於系所單位: | 電機工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.71 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
