請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68627
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 成佳憲(Jason Chia-Hsien Cheng) | |
dc.contributor.author | Chiao-Ling Tsai | en |
dc.contributor.author | 蔡巧琳 | zh_TW |
dc.date.accessioned | 2021-06-17T02:28:03Z | - |
dc.date.available | 2025-07-31 | |
dc.date.copyright | 2020-09-02 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-19 | |
dc.identifier.citation | Abrams RA, Cardinale RM, Enger C, Haulk TL, Hurwitz H, Osterman F, Sitzmann JV. Influence of prognostic groupings and treatment results in the management of unresectable hepatoma: experience with Cisplatinum-based chemoradiotherapy in 76 patients. Int J Radiat Oncol Biol Phys. 1997 Dec 1; 39(5), 1077-1085. Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proceedings of the National Academy of Sciences of the United States of America. 2007 Dec 4; 104(49), 19482-19487. Adimoolam S, Sirisawad M, Chen J, Thiemann P, Ford JM, Buggy JJ. HDAC inhibitor PCI-24781 decreases RAD51 expression and inhibits homologous recombination. Proc Natl Acad Sci U S A. 2007 Dec 4; 104(49), 19482-19487. Amerik AY, Hochstrasser M. Mechanism and function of deubiquitinating enzymes. Biochim Biophys Acta. 2004 Nov 29; 1695(1-3), 189-207. Ang C, O'Reilly EM, Carvajal RD, Capanu M, Gonen M, Doyle L, Ghossein R, Schwartz L, Jacobs G, Ma J, Schwartz GK, Abou-Alfa GK. A Nonrandomized, Phase II Study of Sequential Irinotecan and Flavopiridol in Patients With Advanced Hepatocellular Carcinoma. Gastrointest Cancer Res. 2012 Nov; 5(6), 185-189. Antonelli F, Campa A, Esposito G, Giardullo P, Belli M, Dini V, Meschini S, Simone G, Sorrentino E, Gerardi S, Cirrone GA, Tabocchini MA. Induction and Repair of DNA DSB as Revealed by H2AX Phosphorylation Foci in Human Fibroblasts Exposed to Low- and High-LET Radiation: Relationship with Early and Delayed Reproductive Cell Death. Radiation research. 2015 Apr; 183(4), 417-431. Armstrong DK. Topotecan dosing guidelines in ovarian cancer: reduction and management of hematologic toxicity. Oncologist. 2004 9(1), 33-42. Atwell S, Disseau L, Stasiak AZ, Stasiak A, Renodon-Corniere A, Takahashi M, Viovy JL, Cappello G. Probing Rad51-DNA interactions by changing DNA twist. Nucleic Acids Res. 2012 Dec; 40(22), 11769-11776. Bailey JM, Mohr AM, Hollingsworth MA. Sonic hedgehog paracrine signaling regulates metastasis and lymphangiogenesis in pancreatic cancer. Oncogene. 2009 Oct 8; 28(40), 3513-3525. Bailey JM, Swanson BJ, Hamada T, Eggers JP, Singh PK, Caffery T, Ouellette MM, Hollingsworth MA. Sonic hedgehog promotes desmoplasia in pancreatic cancer. Clin Cancer Res. 2008 Oct 1; 14(19), 5995-6004. Bernier J, Cooper JS, Pajak TF, van Glabbeke M, Bourhis J, Forastiere A, Ozsahin EM, Jacobs JR, Jassem J, Ang KK, Lefebvre JL. Defining risk levels in locally advanced head and neck cancers: a comparative analysis of concurrent postoperative radiation plus chemotherapy trials of the EORTC (#22931) and RTOG (# 9501). Head Neck. 2005 Oct; 27(10), 843-850. Boige V, Taieb J, Hebbar M, Malka D, Debaere T, Hannoun L, Magherini E, Mignard D, Poynard T, Ducreux M. Irinotecan as first-line chemotherapy in patients with advanced hepatocellular carcinoma: a multicenter phase II study with dose adjustment according to baseline serum bilirubin level. Eur J Cancer. 2006 Mar; 42(4), 456-459. Brade AM, Ng S, Brierley J, Kim J, Dinniwell R, Ringash J, Wong RR, Cho C, Knox J, Dawson LA. Phase 1 Trial of Sorafenib and Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys. 2016 Mar 1; 94(3), 580-587. Bressac B, Galvin KM, Liang TJ, Isselbacher KJ, Wands JR, Ozturk M. Abnormal structure and expression of p53 gene in human hepatocellular carcinoma. Proc Natl Acad Sci U S A. 1990 Mar; 87(5), 1973-1977. Callen E, Jankovic M, Wong N, Zha S, Chen HT, Difilippantonio S, Di Virgilio M, Heidkamp G, Alt FW, Nussenzweig A, Nussenzweig M. Essential role for DNA-PKcs in DNA double-strand break repair and apoptosis in ATM-deficient lymphocytes. Mol Cell. 2009 May 15; 34(3), 285-297. Camphausen K, Burgan W, Cerra M, Oswald KA, Trepel JB, Lee MJ, Tofilon PJ. Enhanced radiation-induced cell killing and prolongation of gammaH2AX foci expression by the histone deacetylase inhibitor MS-275. Cancer Res. 2004 Jan 1; 64(1), 316-321. Camphausen K, Cerna D, Scott T, Sproull M, Burgan WE, Cerra MA, Fine H, Tofilon PJ. Enhancement of in vitro and in vivo tumor cell radiosensitivity by valproic acid. Int J Cancer. 2005 Apr 10; 114(3), 380-386. Camphausen K, Tofilon PJ. Inhibition of histone deacetylation: a strategy for tumor radiosensitization. J Clin Oncol. 2007 Sep 10; 25(26), 4051-4056. Cardenes HR. Role of stereotactic body radiotherapy in the management of primary hepatocellular carcinoma. Rationale, technique and results. Clin Transl Oncol. 2009 May; 11(5), 276-283. Chan IS, Guy CD, Chen Y, Lu J, Swiderska-Syn M, Michelotti GA, Karaca G, Xie G, Kruger L, Syn WK, Anderson BR, Pereira TA, Choi SS, Baldwin AS, Diehl AM. Paracrine Hedgehog signaling drives metabolic changes in hepatocellular carcinoma. Cancer Res. 2012 Dec 15; 72(24), 6344-6350. Chang DT, Lopez A, von Kessler DP, Chiang C, Simandl BK, Zhao R, Seldin MF, Fallon JF, Beachy PA. Products, genetic linkage and limb patterning activity of a murine hedgehog gene. Development. 1994 Nov; 120(11), 3339-3353. Chen AY, Chen PM, Chen YJ. DNA topoisomerase I drugs and radiotherapy for lung cancer. J Thorac Dis. 2012 Aug; 4(4), 390-397. Chen AY, Chou R, Shih SJ, Lau D, Gandara D. Enhancement of radiotherapy with DNA topoisomerase I-targeted drugs. Crit Rev Oncol Hematol. 2004 May; 50(2), 111-119. Chen CS, Wang YC, Yang HC, Huang PH, Kulp SK, Yang CC, Lu YS, Matsuyama S, Chen CY, Chen CS. Histone deacetylase inhibitors sensitize prostate cancer cells to agents that produce DNA double-strand breaks by targeting Ku70 acetylation. Cancer Res. 2007 Jun 1; 67(11), 5318-5327. Chen CS, Weng SC, Tseng PH, Lin HP. Histone acetylation-independent effect of histone deacetylase inhibitors on Akt through the reshuffling of protein phosphatase 1 complexes. The Journal of biological chemistry. 2005 Nov 18; 280(46), 38879-38887. Chen G, Goto Y, Sakamoto R, Tanaka K, Matsubara E, Nakamura M, Zheng H, Lu J, Takayanagi R, Nomura M. GLI1, a crucial mediator of sonic hedgehog signaling in prostate cancer, functions as a negative modulator for androgen receptor. Biochem Biophys Res Commun. 2011 Jan 21; 404(3), 809-815. Chen SW, Lin LC, Kuo YC, Liang JA, Kuo CC, Chiou JF. Phase 2 study of combined sorafenib and radiation therapy in patients with advanced hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2014 Apr 1; 88(5), 1041-1047. Chen X, Wong P, Radany EH, Stark JM, Laulier C, Wong JY. Suberoylanilide hydroxamic acid as a radiosensitizer through modulation of RAD51 protein and inhibition of homology-directed repair in multiple myeloma. Molecular cancer research : MCR. 2012 Aug; 10(8), 1052-1064. Chen YJ, Lin CP, Hsu ML, Shieh HR, Chao NK, Chao KS. Sonic hedgehog signaling protects human hepatocellular carcinoma cells against ionizing radiation in an autocrine manner. Int J Radiat Oncol Biol Phys. 2011 Jul 1; 80(3), 851-859. Chen YJ, Wu H, Shen XZ. The ubiquitin-proteasome system and its potential application in hepatocellular carcinoma therapy. Cancer Lett. 2016 Sep 1; 379(2), 245-252. Cheng JC, Chuang VP, Cheng SH, Huang AT, Lin YM, Cheng TI, Yang PS, You DL, Jian JJ, Tsai SY, Sung JL, Horng CF. Local radiotherapy with or without transcatheter arterial chemoembolization for patients with unresectable hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2000 May 1; 47(2), 435-442. Cheng JC, Wu JK, Huang CM, Liu HS, Huang DY, Cheng SH, Tsai SY, Jian JJ, Lin YM, Cheng TI, Horng CF, Huang AT. Radiation-induced liver disease after three-dimensional conformal radiotherapy for patients with hepatocellular carcinoma: dosimetric analysis and implication. Int J Radiat Oncol Biol Phys. 2002 Sep 1; 54(1), 156-162. Cheng S, Evans WK, Stys-Norman D, Shepherd FA, Lung Cancer Disease Site Group of Cancer Care Ontario's Program in Evidence-based C. Chemotherapy for relapsed small cell lung cancer: a systematic review and practice guideline. J Thorac Oncol. 2007 Apr; 2(4), 348-354. Cheng WT, Xu K, Tian DY, Zhang ZG, Liu LJ, Chen Y. Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. Int J Oncol. 2009 Mar; 34(3), 829-836. Chia-Hsien Cheng J, Chuang VP, Cheng SH, Lin YM, Cheng TI, Yang PS, Jian JJ, You DL, Horng CF, Huang AT. Unresectable hepatocellular carcinoma treated with radiotherapy and/or chemoembolization. Int J Cancer. 2001 Aug 20; 96(4), 243-252. Chinnaiyan P, Cerna D, Burgan WE, Beam K, Williams ES, Camphausen K, Tofilon PJ. Postradiation sensitization of the histone deacetylase inhibitor valproic acid. Clin Cancer Res. 2008 Sep 1; 14(17), 5410-5415. Chinnaiyan P, Vallabhaneni G, Armstrong E, Huang SM, Harari PM. Modulation of radiation response by histone deacetylase inhibition. Int J Radiat Oncol Biol Phys. 2005 May 1; 62(1), 223-229. Choudhary SK, Li R. BRCA1 modulates ionizing radiation-induced nuclear focus formation by the replication protein A p34 subunit. Journal of cellular biochemistry. 2002 84(4), 666-674. Ciombor KK, Feng Y, Benson AB, 3rd, Su Y, Horton L, Short SP, Kauh JS, Staley C, Mulcahy M, Powell M, Amiri KI, Richmond A, Berlin J. Phase II trial of bortezomib plus doxorubicin in hepatocellular carcinoma (E6202): a trial of the Eastern Cooperative Oncology Group. Investigational New Drugs. 2014 Oct; 32(5), 1017-1027. Ciszewski WM, Tavecchio M, Dastych J, Curtin NJ. DNA-PK inhibition by NU7441 sensitizes breast cancer cells to ionizing radiation and doxorubicin. Breast Cancer Res Treat. 2014 Jan; 143(1), 47-55. Conroy T, Paillot B, Francois E, Bugat R, Jacob JH, Stein U, Nasca S, Metges JP, Rixe O, Michel P, Magherini E, Hua A, Deplanque G. Irinotecan plus oxaliplatin and leucovorin-modulated fluorouracil in advanced pancreatic cancer--a Groupe Tumeurs Digestives of the Federation Nationale des Centres de Lutte Contre le Cancer study. J Clin Oncol. 2005 Feb 20; 23(6), 1228-1236. Cooper JS, Zhang Q, Pajak TF, Forastiere AA, Jacobs J, Saxman SB, Kish JA, Kim HE, Cmelak AJ, Rotman M, Lustig R, Ensley JF, Thorstad W, Schultz CJ, Yom SS, Ang KK. Long-term follow-up of the RTOG 9501/intergroup phase III trial: postoperative concurrent radiation therapy and chemotherapy in high-risk squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2012 Dec 1; 84(5), 1198-1205. Cornell L, Munck JM, Alsinet C, Villanueva A, Ogle L, Willoughby CE, Televantou D, Thomas HD, Jackson J, Burt AD, Newell D, Rose J, Manas DM, Shapiro GI, Curtin NJ, Reeves HL. DNA-PK-A candidate driver of hepatocarcinogenesis and tissue biomarker that predicts response to treatment and survival. Clin Cancer Res. 2015 Feb 15; 21(4), 925-933. Davies AA, Masson JY, McIlwraith MJ, Stasiak AZ, Stasiak A, Venkitaraman AR, West SC. Role of BRCA2 in control of the RAD51 recombination and DNA repair protein. Molecular cell. 2001 Feb; 7(2), 273-282. Deutsch G, Jung J, Zheng M, Lora J, Zaret KS. A bipotential precursor population for pancreas and liver within the embryonic endoderm. Development. 2001 Mar; 128(6), 871-881. Flatmark K, Nome RV, Folkvord S, Bratland A, Rasmussen H, Ellefsen MS, Fodstad O, Ree AH. Radiosensitization of colorectal carcinoma cell lines by histone deacetylase inhibition. Radiat Oncol. 2006 Aug 3; 1, 25. Fukuda M, Soda H, Fukuda M, Kinoshita A, Nakamura Y, Nagashima S, Takatani H, Tsukamoto K, Kohno S, Oka M. Irinotecan and cisplatin with concurrent split-course radiotherapy in locally advanced nonsmall-cell lung cancer: a multiinstitutional phase 2 study. Cancer. 2007 Aug 1; 110(3), 606-613. Galanty Y, Belotserkovskaya R, Coates J, Polo S, Miller KM, Jackson SP. Mammalian SUMO E3-ligases PIAS1 and PIAS4 promote responses to DNA double-strand breaks. Nature. 2009 Dec 17; 462(7275), 935-939. Garcia CP, Videla Richardson GA, Romorini L, Miriuka SG, Sevlever GE, Scassa ME. Topoisomerase I inhibitor, camptothecin, induces apoptogenic signaling in human embryonic stem cells. Stem Cell Res. 2014 Mar; 12(2), 400-414. Geng H, Harvey CT, Pittsenbarger J, Liu Q, Beer TM, Xue C, Qian DZ. HDAC4 protein regulates HIF1alpha protein lysine acetylation and cancer cell response to hypoxia. The Journal of biological chemistry. 2011 Nov 04; 286(44), 38095-38102. Geng L, Cuneo KC, Fu A, Tu T, Atadja PW, Hallahan DE. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Res. 2006 Dec 1; 66(23), 11298-11304. Geng L, Cuneo KC, Fu A, Tu T, Atadja PW, Hallahan DE. Histone deacetylase (HDAC) inhibitor LBH589 increases duration of gamma-H2AX foci and confines HDAC4 to the cytoplasm in irradiated non-small cell lung cancer. Cancer Research. 2006 Dec 1; 66(23), 11298-11304. Ghamande S, Lin C-C, Cho DC, Shapiro GI, Kwak EL, Silverman MH, Tseng Y, Kuo M-W, Mach WB, Hsu S-C, Coleman T, Yang JC-H, Cheng A-L, Ghalib MH, Chuadhary I, Goel S. A phase 1 open-label, sequential dose-escalation study investigating the safety, tolerability, and pharmacokinetics of intravenous TLC388 administered to patients with advanced solid tumors. Investigational New Drugs. 2014 32(3), 445-451. Glynne-Jones R, Falk S, Maughan TS, Meadows HM, Sebag-Montefiore D. A phase I/II study of irinotecan when added to 5-fluorouracil and leucovorin and pelvic radiation in locally advanced rectal cancer: a Colorectal Clinical Oncology Group Study. Br J Cancer. 2007 Feb 26; 96(4), 551-558. Golan DE, Armstrong EJ, Armstrong AW, Lippincott Williams Wilkins. Principles of pharmacology : the pathophysiologic basis of drug therapy. Fourth edition. Retrieved from http://medjournal.hmc.psu.edu:2048/login?url=http://meded.lwwhealthlibrary.com/book.aspx?bookid=1765 Goodwin JF, Knudsen KE. Beyond DNA repair: DNA-PK function in cancer. Cancer Discov. 2014 Oct; 4(10), 1126-1139. Groselj B, Sharma NL, Hamdy FC, Kerr M, Kiltie AE. Histone deacetylase inhibitors as radiosensitisers: effects on DNA damage signalling and repair. British journal of cancer. 2013 Mar 5; 108(4), 748-754. Hall EJ, Giaccia AJ, Ovid Technologies Inc. Radiobiology for the radiologist(7th ed., pp. 576 pages). Hawkins MA, Dawson LA. Radiation therapy for hepatocellular carcinoma: from palliation to cure. Cancer. 2006 Apr 15; 106(8), 1653-1663. Hayashi M, Saito Y, Kawashima S. Calpain activation is essential for membrane fusion of erythrocytes in the presence of exogenous Ca2+. Biochem Biophys Res Commun. 1992 Jan 31; 182(2), 939-946. Ho JC, Warr NJ, Shimizu H, Watts FZ. SUMO modification of Rad22, the Schizosaccharomyces pombe homologue of the recombination protein Rad52. Nucleic acids research. 2001 Oct 15; 29(20), 4179-4186. Ho SR, Lee YJ, Lin WC. Regulation of RNF144A E3 Ubiquitin Ligase Activity by Self-association through Its Transmembrane Domain. J Biol Chem. 2015 Sep 18; 290(38), 23026-23038. Ho SR, Mahanic CS, Lee YJ, Lin WC. RNF144A, an E3 ubiquitin ligase for DNA-PKcs, promotes apoptosis during DNA damage. Proc Natl Acad Sci U S A. 2014 Jul 1; 111(26), E2646-2655. Hsieh YL, Kuo HY, Chang CC, Naik MT, Liao PH, Ho CC, Huang TC, Jeng JC, Hsu PH, Tsai MD, Huang TH, Shih HM. Ubc9 acetylation modulates distinct SUMO target modification and hypoxia response. The EMBO journal. 2013 Mar 20; 32(6), 791-804. Huang C-Y, Lin C-S, Tai W-T, Hsieh C-Y, Shiau C-W, Cheng A-L, Chen K-F. Sorafenib enhances radiation-induced apoptosis in hepatocellular carcinoma by inhibiting STAT3. Int J Radiat Oncol Biol Phys. 2013 86(3), 456-462. Huang CY, Wei CC, Chen KC, Chen HJ, Cheng AL, Chen KF. Bortezomib enhances radiation-induced apoptosis in solid tumors by inhibiting CIP2A. Cancer Lett. 2012 Apr 1; 317(1), 9-15. Huang G, Wang H, Yang LX. Enhancement of radiation-induced DNA damage and inhibition of its repair by a novel camptothecin analog. Anticancer Res. 2010 Mar; 30(3), 937-944. Huang S, He J, Zhang X, Bian Y, Yang L, Xie G, Zhang K, Tang W, Stelter AA, Wang Q, Zhang H, Xie J. Activation of the hedgehog pathway in human hepatocellular carcinomas. Carcinogenesis. 2006 Jul; 27(7), 1334-1340. Hurwitz HI, Tan BR, Reeves JA, Xiong H, Somer B, Lenz HJ, Hochster HS, Scappaticci F, Palma JF, Price R, Lee JJ, Nicholas A, Sommer N, Bendell J. Phase II Randomized Trial of Sequential or Concurrent FOLFOXIRI-Bevacizumab Versus FOLFOX-Bevacizumab for Metastatic Colorectal Cancer (STEAM). Oncologist. 2018 Dec 14. Iwao C, Shidoji Y. Induction of nuclear translocation of mutant cytoplasmic p53 by geranylgeranoic acid in a human hepatoma cell line. Sci Rep. 2014 Mar 24; 4, 4419. Jiang N, Shen Y, Fei X, Sheng K, Sun P, Qiu Y, Larner J, Cao L, Kong X, Mi J. Valosin-containing protein regulates the proteasome-mediated degradation of DNA-PKcs in glioma cells. Cell Death Dis. 2013 May 30; 4, e647. Jimeno A, Weiss GJ, Miller WH, Jr., Gettinger S, Eigl BJ, Chang AL, Dunbar J, Devens S, Faia K, Skliris G, Kutok J, Lewis KD, Tibes R, Sharfman WH, Ross RW, Rudin CM. Phase I study of the Hedgehog pathway inhibitor IPI-926 in adult patients with solid tumors. Clin Cancer Res. 2013 May 15; 19(10), 2766-2774. Johnson ES, Blobel G. Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. The Journal of biological chemistry. 1997 Oct 24; 272(43), 26799-26802. Kao GD, McKenna WG, Guenther MG, Muschel RJ, Lazar MA, Yen TJ. Histone deacetylase 4 interacts with 53BP1 to mediate the DNA damage response. The Journal of Cell Biology. 2003 Mar 31; 160(7), 1017-1027. Karagiannis TC, El-Osta A. Modulation of cellular radiation responses by histone deacetylase inhibitors. Oncogene. 2006 Jun 29; 25(28), 3885-3893. Kim IA, No M, Lee JM, Shin JH, Oh JS, Choi EJ, Kim IH, Atadja P, Bernhard EJ. Epigenetic modulation of radiation response in human cancer cells with activated EGFR or HER-2 signaling: potential role of histone deacetylase 6. Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology. 2009 Jul; 92(1), 125-132. Kim IA, Shin JH, Kim IH, Kim JH, Kim JS, Wu HG, Chie EK, Ha SW, Park CI, Kao GD. Histone deacetylase inhibitor-mediated radiosensitization of human cancer cells: class differences and the potential influence of p53. Clin Cancer Res. 2006 Feb 1; 12(3 Pt 1), 940-949. Kim JH, Shin JH, Kim IH. Susceptibility and radiosensitization of human glioblastoma cells to trichostatin A, a histone deacetylase inhibitor. Int J Radiat Oncol Biol Phys. 2004 Jul 15; 59(4), 1174-1180. Kovalenko OV, Plug AW, Haaf T, Gonda DK, Ashley T, Ward DC, Radding CM, Golub EI. Mammalian ubiquitin-conjugating enzyme Ubc9 interacts with Rad51 recombination protein and localizes in synaptonemal complexes. Proceedings of the National Academy of Sciences of the United States of America. 1996 Apr 2; 93(7), 2958-2963. Krishnan S, Dawson L, Seong J, Akine Y, Beddar S, Briere T, Crane C, Mornex F. Radiotherapy for Hepatocellular Carcinoma: An Overview. Annals of Surgical Oncology. 2008 2008/04/01; 15(4), 1015-1024. Kudo M. Systemic Therapy for Hepatocellular Carcinoma: 2017 Update. Oncology. 2017 93 Suppl 1, 135-146. Lawrence TS, Blackstock AW, McGinn C. The mechanism of action of radiosensitization of conventional chemotherapeutic agents. Semin Radiat Oncol. 2003 Jan; 13(1), 13-21. Leonard JM, Ye H, Wetmore C, Karnitz LM. Sonic Hedgehog signaling impairs ionizing radiation–induced checkpoint activation and induces genomic instability. The Journal of Cell Biology. 2008 November 3, 2008; 183(3), 385-391. Li W, Hesabi B, Babbo A, Pacione C, Liu J, Chen DJ, Nickoloff JA, Shen Z. Regulation of double-strand break-induced mammalian homologous recombination by UBL1, a RAD51-interacting protein. Nucleic acids research. 2000 Mar 1; 28(5), 1145-1153. Liu Y, Schneider MF. Opposing HDAC4 nuclear fluxes due to phosphorylation by beta-adrenergic activated protein kinase A or by activity or Epac activated CaMKII in skeletal muscle fibres. The Journal of physiology. 2013 Jul 15; 591(14), 3605-3623. Lopez CA, Feng FY, Herman JM, Nyati MK, Lawrence TS, Ljungman M. Phenylbutyrate sensitizes human glioblastoma cells lacking wild-type p53 function to ionizing radiation. Int J Radiat Oncol Biol Phys. 2007 Sep 1; 69(1), 214-220. LoRusso PM, Rudin CM, Reddy JC, Tibes R, Weiss GJ, Borad MJ, Hann CL, Brahmer JR, Chang I, Darbonne WC, Graham RA, Zerivitz KL, Low JA, Von Hoff DD. Phase I trial of hedgehog pathway inhibitor vismodegib (GDC-0449) in patients with refractory, locally advanced or metastatic solid tumors. Clin Cancer Res. 2011 Apr 15; 17(8), 2502-2511. Lu JT, Zhao WD, He W, Wei W. Hedgehog signaling pathway mediates invasion and metastasis of hepatocellular carcinoma via ERK pathway. Acta Pharmacol Sin. 2012 May; 33(5), 691-700. Lu Q, Wang DS, Chen CS, Hu YD, Chen CS. Structure-based optimization of phenylbutyrate-derived histone deacetylase inhibitors. J Med Chem. 2005 Aug 25; 48(17), 5530-5535. Lu YS, Chou CH, Tzen KY, Gao M, Cheng AL, Kulp SK, Cheng JC. Radiosensitizing effect of a phenylbutyrate-derived histone deacetylase inhibitor in hepatocellular carcinoma. Int J Radiat Oncol Biol Phys. 2012 Jun 1; 83(2), e181-189. Lu YS, Kashida Y, Kulp SK, Wang YC, Wang D, Hung JH, Tang M, Lin ZZ, Chen TJ, Cheng AL, Chen CS. Efficacy of a novel histone deacetylase inhibitor in murine models of hepatocellular carcinoma. Hepatology. 2007 Oct; 46(4), 1119-1130. Lucero H, Gae D, Taccioli GE. Novel localization of the DNA-PK complex in lipid rafts: a putative role in the signal transduction pathway of the ionizing radiation response. J Biol Chem. 2003 Jun 13; 278(24), 22136-22143. Marcu LG. Improving therapeutic ratio in head and neck cancer with adjuvant and cisplatin-based treatments. Biomed Res Int. 2013 2013, 817279. Mazumdar T, DeVecchio J, Agyeman A, Shi T, Houghton JA. Blocking Hedgehog Survival Signaling at the Level of the GLI Genes Induces DNA Damage and Extensive Cell Death in Human Colon Carcinoma Cells. Cancer Research. 2011 September 1, 2011; 71(17), 5904-5914. Mladenov E, Iliakis G. Induction and repair of DNA double strand breaks: the increasing spectrum of non-homologous end joining pathways. Mutat Res. 2011 Jun 3; 711(1-2), 61-72. Mohamed AK, Magdy M. Caspase 3 role and immunohistochemical expression in assessment of apoptosis as a feature of H1N1 vaccine-caused Drug-Induced Liver Injury (DILI). Electron Physician. 2017 May; 9(5), 4261-4273. Moschos SJ, Smith AP, Mandic M, Athanassiou C, Watson-Hurst K, Jukic DM, Edington HD, Kirkwood JM, Becker D. SAGE and antibody array analysis of melanoma-infiltrated lymph nodes: identification of Ubc9 as an important molecule in advanced-stage melanomas. Oncogene. 2007 Jun 21; 26(29), 4216-4225. Mullally JE, Moos PJ, Edes K, Fitzpatrick FA. Cyclopentenone prostaglandins of the J series inhibit the ubiquitin isopeptidase activity of the proteasome pathway. J Biol Chem. 2001 Aug 10; 276(32), 30366-30373. Nakamura N. The Role of the Transmembrane RING Finger Proteins in Cellular and Organelle Function. Membranes (Basel). 2011 Dec 9; 1(4), 354-393. Ng JM, Curran T. The Hedgehog's tale: developing strategies for targeting cancer. Nat Rev Cancer. 2011 Jul; 11(7), 493-501. Nome RV, Bratland A, Harman G, Fodstad O, Andersson Y, Ree AH. Cell cycle checkpoint signaling involved in histone deacetylase inhibition and radiation-induced cell death. Mol Cancer Ther. 2005 Aug; 4(8), 1231-1238. Novotna E, Tichy A, Pejchal J, Lukasova E, Salovska B, Vavrova J. DNA-dependent protein kinase and its inhibition in support of radiotherapy. Int J Radiat Biol. 2013 Jun; 89(6), 416-423. Nusslein-Volhard C, Wieschaus E. Mutations affecting segment number and polarity in Drosophila. Nature. 1980 Oct 30; 287(5785), 795-801. O'Reilly EM, Stuart KE, Sanz-Altamira PM, Schwartz GK, Steger CM, Raeburn L, Kemeny NE, Kelsen DP, Saltz LB. A phase II study of irinotecan in patients with advanced hepatocellular carcinoma. Cancer. 2001 Jan 1; 91(1), 101-105. Page P, Yang L-X. Novel chemoradiosensitizers for cancer therapy. Anticancer research. 2010 30(9), 3675-3682. Park HC, Yu JI, Cheng JCH, Zeng ZC, Hong JH, Wang MLC, Kim MS, Chi KH, Liang PC, Lee RC, Lau WY, Han KH, Chow PKH, Seong J. Consensus for Radiotherapy in Hepatocellular Carcinoma from The 5th Asia-Pacific Primary Liver Cancer Expert Meeting (APPLE 2014): Current Practice and Future Clinical Trials. Liver Cancer. 2016 5(3), 162-174. Park SH, Bang SM, Cho EK, Baek JH, Oh JH, Im SA, Park YS, Shin DB, Lee JH. First-line chemotherapy with irinotecan plus capecitabine for advanced colorectal cancer. Oncology. 2004 66(5), 353-357. Philips GM, Chan IS, Swiderska M, Schroder VT, Guy C, Karaca GF, Moylan C, Venkatraman T, Feuerlein S, Syn W-K, Jung Y, Witek RP, Choi S, Michelotti GA, Rangwala F, Merkle E, Lascola C, Diehl AM. Hedgehog Signaling Antagonist Promotes Regression of Both Liver Fibrosis and Hepatocellular Carcinoma in a Murine Model of Primary Liver Cancer. PLoS One. 2011 6(9), e23943. Pommier Y. DNA topoisomerase I inhibitors: chemistry, biology, and interfacial inhibition. Chem Rev. 2009 Jul; 109(7), 2894-2902. Poondla N, Chandrasekaran AP, Kim KS, Ramakrishna S. Deubiquitinating enzymes as cancer biomarkers: new therapeutic opportunities? BMB Rep. 2019 Mar; 52(3), 181-189. Povirk LF, Zhou T, Zhou R, Cowan MJ, Yannone SM. Processing of 3'-phosphoglycolate-terminated DNA double strand breaks by Artemis nuclease. J Biol Chem. 2007 Feb 9; 282(6), 3547-3558. Romanenko AM, Kinoshita A, Wanibuchi H, Wei M, Zaparin WK, Vinnichenko WI, Vozianov AF, Fukushima S. Involvement of ubiquitination and sumoylation in bladder lesions induced by persistent long-term low dose ionizing radiation in humans. The Journal of urology. 2006 Feb; 175(2), 739-743. Rothkamm K, Barnard S, Moquet J, Ellender M, Rana Z, Burdak-Rothkamm S. DNA damage foci: Meaning and significance. Environmental and molecular mutagenesis. 2015 Jul; 56(6), 491-504. Schwartz LH, Litiere S, de Vries E, Ford R, Gwyther S, Mandrekar S, Shankar L, Bogaerts J, Chen A, Dancey J, Hayes W, Hodi FS, Hoekstra OS, Huang EP, Lin N, Liu Y, Therasse P, Wolchok JD, Seymour L. RECIST 1.1-Update and clarification: From the RECIST committee. Eur J Cancer. 2016 Jul; 62, 132-137. Schwarz SE, Matuschewski K, Liakopoulos D, Scheffner M, Jentsch S. The ubiquitin-like proteins SMT3 and SUMO-1 are conjugated by the UBC9 E2 enzyme. Proceedings of the National Academy of Sciences of the United States of America. 1998 Jan 20; 95(2), 560-564. Seiwert TY, Salama JK, Vokes EE. The concurrent chemoradiation paradigm--general principles. Nat Clin Pract Oncol. 2007 Feb; 4(2), 86-100. Shafaee Z, Schmidt H, Du W, Posner M, Weichselbaum R. Cyclopamine increases the cytotoxic effects of paclitaxel and radiation but not cisplatin and gemcitabine in Hedgehog expressing pancreatic cancer cells. Cancer Chemother Pharmacol. 2006 Dec; 58(6), 765-770. Shen Z, Pardington-Purtymun PE, Comeaux JC, Moyzis RK, Chen DJ. Associations of UBE2I with RAD52, UBL1, p53, and RAD51 proteins in a yeast two-hybrid system. Genomics. 1996 Oct 15; 37(2), 183-186. Shima H, Suzuki H, Sun J, Kono K, Shi L, Kinomura A, Horikoshi Y, Ikura T, Ikura M, Kanaar R, Igarashi K, Saitoh H, Kurumizaka H, Tashiro S. Activation of the SUMO modification system is required for the accumulation of RAD51 at sites of DNA damage. Journal of cell science. 2013 Nov 15; 126(Pt 22), 5284-5292. Sicklick JK, Li YX, Jayaraman A, Kannangai R, Qi Y, Vivekanandan P, Ludlow JW, Owzar K, Chen W, Torbenson MS, Diehl AM. Dysregulation of the Hedgehog pathway in human hepatocarcinogenesis. Carcinogenesis. 2006 Apr; 27(4), 748-757. Sims-Mourtada J, Izzo JG, Apisarnthanarax S, Wu TT, Malhotra U, Luthra R, Liao Z, Komaki R, van der Kogel A, Ajani J, Chao KS. Hedgehog: an attribute to tumor regrowth after chemoradiotherapy and a target to improve radiation response. Clin Cancer Res. 2006 Nov 1; 12(21), 6565-6572. Sorenson CM, Barry MA, Eastman A. Analysis of events associated with cell cycle arrest at G2 phase and cell death induced by cisplatin. J Natl Cancer Inst. 1990 May 2; 82(9), 749-755. Soubeyrand S, Pope L, Pakuts B, Hache RJ. Threonines 2638/2647 in DNA-PK are essential for cellular resistance to ionizing radiation. Cancer Res. 2003 Mar 15; 63(6), 1198-1201. Takeba Y, Kumai T, Matsumoto N, Nakaya S, Tsuzuki Y, Yanagida Y, Kobayashi S. Irinotecan activates p53 with its active metabolite, resulting in human hepatocellular carcinoma apoptosis. J Pharmacol Sci. 2007 Jul; 104(3), 232-242. Tauchi H, Kobayashi J, Morishima K, Matsuura S, Nakamura A, Shiraishi T, Ito E, Masnada D, Delia D, Komatsu K. The forkhead-associated domain of NBS1 is essential for nuclear foci formation after irradiation but not essential for hRAD50[middle dot]hMRE11[middle dot]NBS1 complex DNA repair activity. The Journal of biological chemistry. 2001 Jan 5; 276(1), 12-15. Tian H, Callahan CA, DuPree KJ, Darbonne WC, Ahn CP, Scales SJ, de Sauvage FJ. Hedgehog signaling is restricted to the stromal compartment during pancreatic carcinogenesis. Proc Natl Acad Sci U S A. 2009 Mar 17; 106(11), 4254-4259. Tomasi ML, Tomasi I, Ramani K, Pascale RM, Xu J, Giordano P, Mato JM, Lu SC. S-adenosyl methionine regulates ubiquitin-conjugating enzyme 9 protein expression and sumoylation in murine liver and human cancers. Hepatology. 2012 Sep; 56(3), 982-993. Tsai CL, Hsu FM, Cheng JC. How to Improve Therapeutic Ratio in Radiotherapy of HCC. Liver Cancer. 2016 Jul; 5(3), 210-220. Tsai CL, Hsu FM, Tzen KY, Liu WL, Cheng AL, Cheng JC. Sonic Hedgehog inhibition as a strategy to augment radiosensitivity of hepatocellular carcinoma. J Gastroenterol Hepatol. 2015 Aug; 30(8), 1317-1324. Tsai CL, Liu WL, Hsu FM, Yang PS, Yen RF, Tzen KY, Cheng AL, Chen PJ, Cheng JC. Targeting histone deacetylase 4/ubiquitin-conjugating enzyme 9 impairs DNA repair for radiosensitization of hepatocellular carcinoma cells in mice. Hepatology. 2018 Feb; 67(2), 586-599. Van Oorschot B, Oei AL, Nuijens AC, Rodermond H, Hoeben R, Stap J, Stalpers LJ, Franken NA. Decay of gamma-H2AX foci correlates with potentially lethal damage repair and P53 status in human colorectal carcinoma cells. Cellular molecular biology letters. 2014 Mar; 19(1), 37-51. Varjosalo M, Bjorklund M, Cheng F, Syvanen H, Kivioja T, Kilpinen S, Sun Z, Kallioniemi O, Stunnenberg HG, He WW, Ojala P, Taipale J. Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell. 2008 May 2; 133(3), 537-548. Voelter V, Zouhair A, Vuilleumier H, Matter M, Bouzourene H, Leyvraz S, Bauer J, Coucke P, Stupp R. CPT-11 and concomitant hyperfractionated accelerated radiotherapy induce efficient local control in rectal cancer patients: results from a phase II. Br J Cancer. 2006 Sep 18; 95(6), 710-716. Wagner JM, Hackanson B, Lubbert M, Jung M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clinical epigenetics. 2010 Dec; 1(3-4), 117-136. Wang AT, Kim T, Wagner JE, Conti BA, Lach FP, Huang AL, Molina H, Sanborn EM, Zierhut H, Cornes BK, Abhyankar A, Sougnez C, Gabriel SB, Auerbach AD, Kowalczykowski SC, Smogorzewska A. A Dominant Mutation in Human RAD51 Reveals Its Function in DNA Interstrand Crosslink Repair Independent of Homologous Recombination. Molecular cell. 2015 Aug 6; 59(3), 478-490. Ward A, Khanna KK, Wiegmans AP. Targeting homologous recombination, new pre-clinical and clinical therapeutic combinations inhibiting RAD51. Cancer treatment reviews. 2015 Jan; 41(1), 35-45. Wei JY, Li WM, Zhou LL, Lu QN, He W. Melatonin induces apoptosis of colorectal cancer cells through HDAC4 nuclear import mediated by CaMKII inactivation. Journal of pineal research. 2015 May; 58(4), 429-438. Wu F, Zhu S, Ding Y, Beck WT, Mo YY. MicroRNA-mediated regulation of Ubc9 expression in cancer cells. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009 Mar 1; 15(5), 1550-1557. Wu X, Che J, Sun K, Shen X, Yang D, Zhong N, Zhao H. Cyclopamine increases the radiosensitivity of human pancreatic cancer cells by regulating the DNA repair signal pathway through an epidermal growth factor receptor‑dependent pathway. Mol Med Rep. 2013 8(4), 979-983. Xiao W, Graham PH, Hao J, Chang L, Ni J, Power CA, Dong Q, Kearsley JH, Li Y. Combination therapy with the histone deacetylase inhibitor LBH589 and radiation is an effective regimen for prostate cancer cells. PLoS One. 2013 8(8), e74253. Xu L, Zhu Y, Shao J, Chen M, Yan H, Li G, Zhu Y, Xu Z, Yang B, Luo P, He Q. Dasa | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68627 | - |
dc.description.abstract | 緒論 隨著科技日新月異,放射線治療(放療)逐漸成為肝癌的治療選項之一,藉由抑制放療引發之訊息傳導和次致死傷害修復可能有助於提升療效。Sonic hedgehog (SHH)已被證實在肝癌的腫瘤生成過程扮演重要的調節角色。放療引發之SHH可以藉由自分泌模式,促進DNA修復,保護肝癌細胞。此研究之第一部分目標為探究SHH於放療抵抗性,及SHH抑制劑作為放射增敏劑之可行性。 放療引發之DNA損傷修復可由組織蛋白去乙醯酵素(HDAC)所調控。其中,放射線引發之DNA受損可造成HDAC4與泛素載體蛋白9(Ubc9)和Rad51結合入核進行修補。第二部分,我們研究HDAC4抑制劑增強肝癌之放療效用。 第一型拓樸異構酶(topoisomerase I,TOP1)與放療後之DNA雙股螺旋體之修補有關。在此修補機制中,RNF144A調控DNA-PKcs的泛素化(ubiquitination)。第三部分,我們欲釐清TOP1抑制劑作為放射增敏時,RNF144A於DNA-PKcs之ubiquitination對於不同肝癌之DNA修補調控及相關機制。 方法 細胞實驗中,重組SHH蛋白或SHH抑制劑合併放療,使用人類肝癌細胞株Huh7和PLC5,及小鼠肝癌細胞株BNL。短夾型構造的RNA(short hairpin RNA;shRNA)、HDAC抑制劑、TOP1抑制劑(Lipotecan及irinotecan)和蕾莎瓦(sorafenib),使用Huh7及PLC5進行合併放療之細胞實驗。以群落形成測定分析癌細胞存活率,以Annexin V染色觀察細胞凋亡。以西方墨點法觀察蛋白質變化。免疫螢光染色、共軛焦顯微鏡和核質分離技術偵測目標蛋白的位置。以免疫沉澱法研究蛋白質間交互作用。使用肝癌的同種原位移植小鼠模式,檢測SHH抑制劑合併放療合併放射線治療可能造成之療效。肝癌的異位異種移植小鼠模式,檢測HDAC抑制劑和shRNA剔除HDAC4合併放療的效果。以異種原位移植免疫缺陷小鼠模式,檢測Lipotecan或蕾莎瓦合併放療於活體之治療效果。 結果 第一部分:細胞實驗中,我們發現使用重組SHH蛋白可以顯著抵抗放射線對於細胞之毒殺效果。合併放射線及SHH抑制劑則明顯地比單一治療更能抑制肝癌細胞生長,其效果主要來自於細胞凋亡的增加。單獨使用放射線會造成肝癌細胞之Gli-1蛋白增加,且隨放射劑量增加,其增加主要在細胞核內。於活體實驗中,亦可觀察到相同之現象。合併放射線及SHH抑制劑(cyclopamine)可減少Gli-1並增加DNA雙股斷裂. 於同種原位移植小鼠模式合併放射線及cyclopamine與單獨放射線治療相比,可多抑制67%腫瘤大小(p < 0.05)。 第二部分:HDAC4抑制劑或shRNA剔除HDAC4合併放療都可以增強放射線造成之癌細胞死亡,並減少蛋白激酶B及同源性重排(Homologous Recombination)之DNA雙股螺旋體斷裂之修補,增加癌細胞凋亡。於活體實驗中,HDAC4抑制劑或shRNA剔除HDAC4合併放療都能夠延緩腫瘤生長。放射線引發之Rad51入核為HDAC4相關之模式,且Rad51與Ubc9直接結合,HDAC4造成Ubc9乙醯侲,入核進行DNA修補。抑制HDAC4,則造成HDAC4/Ubc9/Rad51複合體之分解,進而阻止其入核修補DNA雙股螺旋體斷裂。 第三部分:於肝癌細胞株(Huh7及PLC5)及,我們發現Lipotecan比蕾莎瓦有更佳的放射線增敏效果。異種原位移植小鼠模式中,合併放射線及Lipotecan抑制腫瘤生長效果比單獨放射線多7倍(p < 0.05),比合併放射線及蕾莎瓦多9倍 (p < 0.01)。Lipotecan造成更多的放射線引起的DNA-PKcs和DNA傷害。TOP1抑制劑作為放射增敏劑,對於抑制放射線引起的DNA-PKcs增加效果,在Huh7細胞優於PLC5細胞。於Huh7細胞,其RNF144A (DNA-PKcs與其E3連接酶)於合併放射線和TOP1抑制劑後有增加的情形,而DNA-PKcs則減少。這些現象,在抑制泛素/蛋白酪系統(ubiquitin/proteasome system)後,則可逆轉。然而,於PLC5細胞中,合併於合併放射線和TOP1抑制劑後,則造成RNF144A入核及DNA-PKcs堆積,以致於較強的放射線抗性。 結論 抑制SHH訊息,可以經由增加凋亡和DNA雙股斷裂,造成肝癌細胞及同種原位移植活體腫瘤之放射增敏作用。抑制HDAC4訊息傳遞則可以增加肝癌之放射線致死效果。其作用主要藉由則抑制HDAC4,進而導致HDAC4/Ubc9/Rad51複合體之分解,進而阻止其入核修補DNA斷裂。TOP1抑制劑之放射增敏效果則是經由RNF144A所調控之DNA-PKcs泛素化。此研究經由SHH、HDAC4和TOP1訊息傳遞路徑,勾畫出可行之放射增敏分子生物學機制。 | zh_TW |
dc.description.abstract | Introduction With the advances in technologies, radiotherapy (RT) has become one of the treatment choices for hepatocellular carcinoma (HCC). One strategy to enhance the tumoricidal effect of RT is to inhibit radiation-activated signals and overcome sublethal damage repair. Radiosensitizer (RS) is the agent that augments the effect of RT. The most common investigational RSs are chemotherapeutic agents, especially DNA base analogs. Among these agents, CDDP is the typical RS in the treatment of a variety of cancer types. Sonic hedgehog (SHH) is a regulator in tumorigenesis of HCC. RT-induced SHH signaling protects HCC cells against RT in an autocrine manner by facilitating DNA damage repair. The first part of this study aimed to determine the role of SHH in radio-resistance and propose the SHH inhibitor as a RS. The histone deacetylases (HDACs) could mediate the process of DNA damage repair following RT. HDAC4 interacts with ubiquitin-conjugating enzyme 9 (Ubc9) and Rad51 proteins upon RT-induced DNA damage. In the second part, we postulated HDAC4 inhibition to enhance the RT effect on HCC cells. DNA topoisomerase I (TOP1) involves the repair of DNA double-strand break (DSB) after RT. RNF144A mediates ubiquitination of catalytic subunit of DNA protein kinase (DNA-PKcs), a critical factor in DSB repair. In the third part, we aimed to demonstrate the radiosensitization with TOPI inhibition and investigate the differentiating mechanism by DNA-PKcs/RNF144A between HCC cells. Materials and Methods The in vitro effects of combining SHH ligand (recombinant human SHH) or inhibitor (cyclopamine) with RT were evaluated in the human HCC cell lines, Huh7 and PLC5, and murine cell line BNL. The in vitro effects of short hairpin RNA (shRNA) and HDAC inhibitor (HDACi), panobinostat to knock down expression of HDAC4, and TOP1 inhibitors (Lipotecan and irinotecan) or sorafenib with RT were evaluated in Huh7 and PLC5. We evaluated cell survival by a clonogenic assay, and apoptosis by Annexin V staining. Western blotting was used to detect protein expression. We used immunofluorescence staining, confocal microscopy, and cell fractionation to identify the location of target proteins. We evaluated the physical interaction between proteins by immunoprecipitation. We tested the in vivo response to RT and cyclopamine in BALB/c mice with an orthotopic allogeneic tumor. Ectopic xenografts were pretreated with HDACi or shRNA to knockdown expression of HDAC4 and then irradiated. Orthotopic HCC xenografts with severe combined immunodeficient mice were treated with Lipotecan or sorafenib and RT for the in vivo response. Results First part: SHH ligand protected HCC cells from RT on clonogenic cell survival. The combination of RT and cyclopamine produced a more potent inhibitory effect on cell proliferation than either modality alone. RT upregulated the expression of Gli-1 (a transcription factor induced by SHH) dose-dependently, predominantly in the nucleus. When combined with cyclopamine, RT inhibited Gli-1 and increased DNA DSB. Treatment with cyclopamine and RT reduced the mean tumor size of orthotopic tumors by 67% when compared with RT alone (p < 0.05). Second part: HDAC4 knockdown and HDACi both increased RT-induced cell death and lowered homologous recombination repair of DNA DSBs and Akt activation. The combination of HDAC4 knockdown or an HDACi with RT led to increased cancer cell apoptosis. HDAC4 knockdown or an HDACi with RT delayed tumor growth in a xenograft model, significantly. RT triggered the nuclear translocation of Rad51 in an HDAC4-dependent manner. The binding of Ubc9 directly to HDAC4 results in Ubc9 acetylation. Furthermore, these effects were followed by HDAC4/Ubc9/Rad51 complex dissociation through the block of nuclear translocation. Third part: Lipotecan/RT had a superior synergistic impact on sorafenib/RT on HCC cells. Combined RT and Lipotecan reduced the tumor growth by 7-fold than RT alone (p < 0.05) and by 9-fold than sorafenib plus RT (p < 0.01). Lipotecan induced more RT-induced DNA damage and DNA-PKcs signalings than sorafenib. The radiosensitization with TOP1 inhibitors and the inhibition of RT-induced DNA-PKcs were more effective in Huh7 than PLC5 cells. In Huh7 cells, RNF144A, an E3 ubiquitin ligase for DNA-PKcs, increased, and DNA-PKcs decreased after the combination of RT and TOP1 inhibitors. The effect was reversed with the inhibition of the ubiquitin/proteasome system. In comparison, RNF144A decreased through nuclear translocation after the combinational treatment, resulting in accumulated DNA-PKcs and radio-resistance of PLC5 cells. Conclusion The inhibition of SHH signaling significantly sensitizes HCC cells and orthotopic xenografts to radiation by increasing apoptosis and the number of DSBs. HDAC4 signaling blockade enhances radiation-induced lethality in HCC. The effects are accompanied by the dissociation of HDAC4/Rad51/Ubc9 complex to inhibit DNA repair. TOP1 inhibitor radiosensitizes HCC through RNF144A mediated DNA-PKcs ubiquitination. This study delineates the molecular mechanisms of radiosensitization through the inhibition of SHH, HDAC4, and TOP1 signaling pathways. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:28:03Z (GMT). No. of bitstreams: 1 U0001-1708202011221700.pdf: 41167410 bytes, checksum: 02392c3514db00a92c52c7c6d1fd945e (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝 ii 中文摘要 iii ABSTRACT vi CONTENTS ix INDEX OF FIGURES xv ABBREVIATIONS xvii Chapter 1 Introduction 1 1.1 The rationale of the Sonic hedgehog signaling pathway for radiosensitization in hepatocellular carcinoma 2 1.1.1 Sonic hedgehog signaling and hepatocellular carcinoma 2 1.1.2 Sonic hedgehog signaling and hepatocellular carcinoma 3 1.1.3 Sonic hedgehog signaling and Radiotherapy in hepatocellular carcinoma 3 1.2 The rationale of targeting Histone deacetylase 4/Ubc9 for radiosensitization of hepatocellular carcinoma 4 1.2.1 Histone deacetylases signaling and hepatocellular carcinoma 5 1.2.2 Histone deacetylases signaling and radiotherapy 5 1.2.3 SUMOylation regulates DNA repair 6 1.3 The rationale of Type I Topoisomerase Inhibition for radiosensitization of hepatocellular carcinoma 7 1.3.1 Systemic therapy for HCC patients 7 1.3.2 Type I Topoisomerase inhibitors 8 1.3.3 RT and Topoisomerase I inhibitors 9 1.3.4 RING finger (RNF) protein family 9 Chapter 2 Materials and Methods 11 2.1 Cell lines of hepatocellular carcinoma and cell culture 11 2.1.1 Lentiviral vector preparation 11 2.2 Reagents 12 2.3 Cell biology investigation 12 2.3.1 Irradiation of cells 12 2.3.2 Colony-formation assay 13 2.3.3 Combination index 14 2.3.4 Immunofluorescence staining analysis 14 2.3.5 γ-H2AX immunofluorescence microscopy 15 2.3.6 Immunoprecipitation 15 2.3.7 Subcellular fractionation 16 2.3.8 Tissue preparation for Western blotting 17 2.3.9 Western blot analysis. 17 2.3.10 Apoptosis analysis 17 2.3.11 Determination of apoptosis with fluorescence microscopy 18 2.4 In vivo tumor model 18 2.4.1 Orthotopic tumor model 18 2.4.2 In vivo ectopic tumor model 19 2.4.3 Orthotopic xenograft model 19 2.4.4 In vivo orthotopic tumor model 20 2.4.5 Irradiation of mouse liver 21 2.4.6 Histological evaluation 21 2.5 Statistical analysis 21 Chapter 3 Results 23 3.1 The radiosensitization effects of sonic hedgehog signaling 23 3.1.1 Radiation activated SHH signaling 23 3.1.2 Protective effect by exogenous SHH protein in irradiated HCC cells 23 3.1.3 Inhibition of the SHH pathway induced radiosensitization 24 3.1.4 Combined radiation and SHH inhibitor reduced Gli-1 transcription 24 3.1.5 SHH inhibitor increased RT-induced HCC cell apoptosis 24 3.1.6 The combination of SHH inhibitor and RT enhanced suppression of tumor growth in orthotopic HCC xenograft models 25 3.2 Histone deacetylase 4/Ubc9 impairs DNA repair for radiosensitization of hepatocellular carcinoma cells 26 3.2.1 Radiosensitization of HCC cells by HDAC4 inhibition 26 3.2.2 HDAC4 inhibition enhances in vivo radiosensitivity 27 3.2.3 HDAC4 inhibition inhibits homologous recombination repair 28 3.2.4 HDAC4 and Rad51 interact with Ubc9 29 3.2.5 Radiation activates HDAC4 and Ubc9 nuclear transportation 29 3.2.6 HDAC4 inhibition increases apoptosis 30 3.3 The DNA-PK/RNF144A mediated mechanism of Type I Topoisomerase inhibition in HCC Radiosensitization 30 3.3.1 Superior radiosensitizing effect of TOP1 inhibitors to sorafenib but different efficacy on clonogenicity between two HCC cell lines 30 3.3.2 Lipotecan induces radiation-induced DNA 31 3.3.3 TOP1 inhibitor better synergizes the antitumor effect of radiotherapy than sorafenib 32 3.3.4 TOP1 inhibitor inhibits radiation-activated DNA-PK and Akt signaling of Huh7 but not PLC5 cells 33 3.3.5 RNF144A mitigates the prosurvival function of radiation-induced DNA-PKcs phosphorylation after TOP1 inhibition 33 3.3.6 Interaction of DNA-PKcs and RNF144A after TOP1 inhibition with/without irradiation 34 3.3.7 The differential effect in nuclear translocation of RNF144A after radiation and TOP1 inhibition between Huh7 and PLC5 cells 35 3.3.8 The reverse effects with proteasome inhibition on phosphorylated DNA-PK and RNF144A after combining TOP1 inhibitor and radiation 36 Chapter 4 Discussion 37 4.1 Sonic hedgehog signaling and radiotherapy 37 4.1.1 Compounds of sonic hedgehog 38 4.1.2 Sonic hedgehog signaling in liver regeneration 38 4.1.3 Sonic hedgehog signaling in HCC carcinogenesis 39 4.1.4 Cancer treatment and sonic hedgehog signaling 39 4.1.5 Immunocompetent in vivo radiosensitization 40 4.1.6 Additive cytotoxic effect of cyclopamine and RT 40 4.1.7 Limitations 41 4.2 Histone deacetylase 4/Ubc9 impairs DNA repair for radiosensitization of hepatocellular carcinoma cells 41 4.2.1 HDAC in cancer treatment 42 4.2.2 HDAC inhibitors as radiation sensitizers 43 4.2.3 Classes of HDAC inhibitors 44 4.2.4 Preclinical investigations of HDAC inhibitors 44 4.2.5 Radiosensitization of HDAC inhibitors 45 4.2.6 Radiosensitization of a phenylbutyrate-derived HDAC inhibitor 46 4.2.7 Mechanism of HDAC inhibitor 46 4.2.8 Sumoylation pathway and radiosensitization 47 4.2.9 PI3K/Akt signaling and radiosensitization 48 4.3 DNA-PK/RNF144A-mediated radiosensitivity mechanism of the inhibitor of Type I Topoisomerase 49 4.3.1 Effects of TOP1 inhibitors 49 4.3.2 DNA-PKcs and radiosensitization 50 4.3.3 RNF144A and DNA repair 51 4.3.4 The ubiquitin-proteasome system 51 4.3.5 Limitations 52 Chapter 5 Perspectives 54 5.1 Future Work 55 5.1.1 Deubiquitinating (DUB) enzymes 55 5.1.2 Differential effect of nuclear translocation of RNF144A and p53 after irradiation 56 5.1.3 Translation between bench work and bedside 57 5.2 The possible problems for future work 58 5.3 Future study directions 58 REFERENCES 60 FIGURES 71 APPENDIX 115 | |
dc.language.iso | zh-TW | |
dc.title | 機轉為基礎的肝癌放射治療增敏研究 | zh_TW |
dc.title | Mechanism-Based Research of Radiosensitization in Hepatocellular Carcinoma | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 博士 | |
dc.contributor.coadvisor | 鄭安理(Ann-Lii Cheng) | |
dc.contributor.oralexamcommittee | 陳培哲(Pei-Jer Chen),黃正仲(Jeng-Jong Hwang),徐志宏(Chih-Hung Hsu),黃文彥(Wen-Yen Huang) | |
dc.subject.keyword | 放射增敏劑,肝癌,Sonic hedgehog,組織蛋白去乙醯酵素4,第一型拓樸異構酶, | zh_TW |
dc.subject.keyword | Radiosensitization,Hepatocellular carcinoma,Sonic hedgehog,Histone deacetylases 4,DNA topoisomerase I, | en |
dc.relation.page | 125 | |
dc.identifier.doi | 10.6342/NTU202003701 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 臨床醫學研究所 | zh_TW |
顯示於系所單位: | 臨床醫學研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1708202011221700.pdf 目前未授權公開取用 | 40.2 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。