Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68618
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor呂東武(Tung-Wu Lu)
dc.contributor.authorShih-Che Paien
dc.contributor.author白仕哲zh_TW
dc.date.accessioned2021-06-17T02:27:41Z-
dc.date.available2019-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-17
dc.identifier.citation1. Lin, C.-C., et al., A slice-to-volume registration method based on real-time magnetic resonance imaging for measuring three-dimensional kinematics of the knee. Medical Physics, 2013. 40(10).
2. Cheng-Chung Lin, S.Z., Chao-Yu Hsu, Jens Frahm, Ting-Fang Shih, Tung-Wu Lu, A Method for Measuring in vivo Three- Dimensional Knee Kinematics Using Dual- Slice Real-Time MRI, in 3D Analysis of Human Movement. 2016: Taipei, Taiwan.
3. Lu, T. and J. O'Connor, Lines of action and moment arms of the major force-bearing structures crossing the human knee joint: Comparison between theory and experiment. Journal of anatomy, 1996. 189(Pt 3): p. 575.
4. Takahashi, M., et al., Anatomical study of the femoral and tibial insertions of the anteromedial and posterolateral bundles of human anterior cruciate ligament. The American journal of sports medicine, 2006. 34(5): p. 787-792.
5. Papannagari, R., et al., Function of posterior cruciate ligament bundles during in vivo knee flexion. The American journal of sports medicine, 2007. 35(9): p. 1507-1512.
6. Nordin, M. and V.H. Frankel, Basic biomechanics of the musculoskeletal system. 2001: Lippincott Williams & Wilkins.
7. Wilson, D., J. Feikes, and J. O’Connor, Ligaments and articular contact guide passive knee flexion. Journal of biomechanics, 1998. 31(12): p. 1127-1136.
8. Wilson, D., et al., The components of passive knee movement are coupled to flexion angle. Journal of Biomechanics, 2000. 33(4): p. 465-473.
9. Muybridge, E., Animal Locomotion: An Electrophotographic Investigation of Consecutive Phases of Animal Movements. 1887: University of Pennsylvania.
10. Baker, R., The history of gait analysis before the advent of modern computers. Gait & Posture, 2007. 26(3): p. 331-342.
11. Andriacchi, T.P. and E.J. Alexander, Studies of human locomotion: past, present and future. Journal of Biomechanics, 2000. 33(10): p. 1217-1224.
12. Huang, S.-C., et al., Effects of severity of degeneration on gait patterns in patients with medial knee osteoarthritis. Medical Engineering & Physics, 2008. 30(8): p. 997-1003.
13. Cappozzo, A., et al., Human movement analysis using stereophotogrammetry - Part 1: theoretical background. Gait & Posture, 2005. 21(2): p. 186-196.
14. Lu, T.-W., H.-L. Chien, and H.-L. Chen, Joint loading in the lower extremities during elliptical exercise. Medicine and Science in Sports and Exercise, 2007. 39(9): p. 1651-1658.
15. Cappozzo, A., et al., Position and orientation in space of bones during movement: Experimental artefacts. Clinical Biomechanics, 1996. 11(2): p. 90-100.
16. Kuo, M.-Y., et al., Influence of soft tissue artifacts on the calculated kinematics and kinetics of total knee replacements during sit-to-stand. Gait & Posture, 2011. 33(3): p. 379-384.
17. Tsai, T.-Y., et al., Effects of soft tissue artifacts on the calculated kinematics and kinetics of the knee during stair-ascent. Journal of Biomechanics, 2011. 44(6): p. 1182-1188.
18. Lin, C.-C., et al., Effects of soft tissue artifacts on differentiating kinematic differences between natural and replaced knee joints during functional activity. Gait & Posture, 2016. 46: p. 154-160.
19. Banks, S.A. and W.A. Hodge, Accurate measurement of three-dimensional knee replacement kinematics using single-plane fluoroscopy. Ieee Transactions on Biomedical Engineering, 1996. 43(6): p. 638-649.
20. Carpenter, R.D., S. Majumdar, and C.B. Ma, Magnetic Resonance Imaging of 3-Dimensional In Vivo Tibiofemoral Kinematics in Anterior Cruciate Ligament-Reconstructed Knees. Arthroscopy-the Journal of Arthroscopic and Related Surgery, 2009. 25(7): p. 760-766.
21. Johal, P., et al., Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI. Journal of Biomechanics, 2005. 38(2): p. 269-276.
22. Scarvell, J.M., et al., Comparison of kinematics in the healthy and ACL injured knee using MRI. Journal of Biomechanics, 2005. 38(2): p. 255-262.
23. d'Entremont, A.G., et al., Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magnetic Resonance in Medicine, 2013. 69(6): p. 1634-1644.
24. Sheehan, F.T., F.E. Zajac, and J.E. Drace, Using cine phase contrast magnetic resonance imaging to non-invasively study in vivo knee dynamics. Journal of Biomechanics, 1998. 31(1): p. 21-26.
25. Behnam, A.J., D.A. Herzka, and F.T. Sheehan, Assessing the accuracy and precision of musculoskeletal motion tracking using cine-PC MRI on a 3.0T platform. Journal of Biomechanics, 2011. 44(1): p. 193-197.
26. Westphal, C.J., et al., Load-dependent variations in knee kinematics measured with dynamic MRI. Journal of Biomechanics, 2013. 46(12): p. 2045-2052.
27. Fei, B.W., et al., Slice-to-volume registration and its potential application to interventional MRI-guided radio-frequency thermal ablation of prostate cancer. Ieee Transactions on Medical Imaging, 2003. 22(4): p. 515-525.
28. Ferrante, E. and N. Paragios, Slice-to-volume medical image registration: A survey. Medical Image Analysis, 2017. 39: p. 101-123.
29. Paragios, E.F., Non-rigid 2D-3D Medical Image Registration Using Markov Random Fields. Medical Image Computing and Computer-Assisted Intervention, 2013. 8151: p. 163-170.
30. Leung, K.Y.E., et al., Sparse Registration for Three-Dimensional Stress Echocardiography. Ieee Transactions on Medical Imaging, 2008. 27(11): p. 1568-1579.
31. Papenberg, S.H., A Variational Approach for Volume-to-Slice Registration. Scale Space and Variational Methods in Computer Vision, 2009: p. 624-635.
32. Fogtmann, M., et al., A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy. Ieee Transactions on Medical Imaging, 2014. 33(2): p. 272-289.
33. Gholipour, A., J.A. Estroff, and S.K. Warfield, Robust Super-Resolution Volume Reconstruction From Slice Acquisitions: Application to Fetal Brain MRI. Ieee Transactions on Medical Imaging, 2010. 29(10): p. 1739-1758.
34. Ayache, A.G., Registration of a curve on a surface using differential properties. Computer Vision — ECCV '94, 1994: p. 187-192.
35. Cleary, T.P.K., Image-Guided Interventions: Technology and Applications. 2008: Springer Science & Business Media.
36. Smolikova-Wachowiak, R., et al., Registration of two-dimensional cardiac images to preprocedural three-dimensional images for interventional applications. Journal of Magnetic Resonance Imaging, 2005. 22(2): p. 219-228.
37. Raúl San José Estépar, C.-F.W.G.V., Towards real time 2D to 3D registration for ultrasound-guided endoscopic and laparoscopic procedures. International Journal of Computer Assisted Radiology and Surgery, 2009: p. 549-560.
38. Bahram Marami, S.S., David W. Capson, Model-based 3D/2D deformable registration of MR image, in Internal Conference of the IEEE Engineering in Medicine and Biology Society. 2011. p. 4880-3.
39. Charles X. B. Yan, B.G.T., D. Louis Collins, Ultrasound-CT registration of vertebrae without reconstruction. International Journal of Computer Assisted Radiology and Surgery, 2012. 7(6): p. 901-909.
40. Kaiser, J., et al., Accuracy of model-based tracking of knee kinematics and cartilage contact measured by dynamic volumetric MRI. Medical Engineering & Physics, 2016. 38(10): p. 1131-1135.
41. Sheng Xu, J.K., Baris Turkbey, Neil Glossop, Anurag K. Singh, Peter Choyke, Peter Pinto & Bradford J. Wood, Real-time MRI-TRUS fusion for guidance of targeted prostate biopsies. Computer Aided Surgery, 2008. 13(5): p. 255-264.
42. Huang, X.S., et al., Dynamic 2D Ultrasound and 3D CT Image Registration of the Beating Heart. Ieee Transactions on Medical Imaging, 2009. 28(8): p. 1179-1189.
43. Kim, B., et al., Motion correction in fMRI via registration of individual slices into an anatomical volume. Magnetic Resonance in Medicine, 1999. 41(5): p. 964-972.
44. Yeo, D.T.B., J.A. Fessler, and B. Kim, Concurrent correction of geometric distortion and motion using the map-slice-to-volume method in echo-planar imaging. Magnetic Resonance Imaging, 2008. 26(5): p. 703-714.
45. Penney, G.P., et al., Cadaver validation of intensity-based ultrasound to CT registration. Medical Image Analysis, 2006. 10(3): p. 385-395.
46. Schnabel, A.C.R.P.H.C.A., Rigid Registration of Untracked Freehand 2D Ultrasound Sweeps to 3D CT of Liver Tumours, in International MICCAI Workshop on Computational and Clinical Challenges in Abdominal Imaging. 2013. p. 155-164.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68618-
dc.description.abstract精確量測膝關節於功能性動作時的關節運動將有助於對膝關節功能之了解與許多臨床醫療與研究之應用。雖然許多量測技術已被提出且用來量測膝關節運動,至今能夠以非侵入式的方法精準量測三維、動態膝關節運動的方法仍然有限。在臨床上,基於皮膚表面反光標記之動作捕捉方法被大量應用在評估人體肢段在空間中的運動行為,然而位於皮膚表面的反光標記與骨頭之間的相對移動卻會造成誤差,進而影響計算結果。
近年來,許多利用放射影像的對位方法被開發出來,藉由直接觀察骨頭在空間中的方位來計算膝關節的運動,克服了皮膚移動誤差所帶來的問題,但受試者須接受輻射劑量,對受試者還是有一定的風險,限制此方法在臨床上的應用。
核磁共振影像提供了一個非侵入式、無輻射的技術來觀測膝關節的運動行為,現今,二維或是三維的核磁共振影像已大量地被用在準靜態狀態下的膝關節測量,然而,動態狀態下的核磁共振影像測量技術由於拍攝空間、影像在時空間的解析度等諸多限制,仍然有需多待發展的空間。本實驗室已成功開發出單切面MRI 對位技術[1],並進一步地發展出以雙平面動態核磁共振影像為基礎之創新的雙切面對位技術[2]。
本研究希望藉由膝關節試體來驗證,在不同速度條件下此創新雙切面對位技術之精確度,並將此量測方法應用在膝關節於不同功能性動作(膝關節彎曲伸直)情況下的運動學量測,希望本研究所得到之數據,能夠幫助了解膝關節複雜的運動模式,以及提供醫學在治療與復健上更精確的診斷依據。
zh_TW
dc.description.abstractAccurate quantification of the three-dimensional (3-D) kinematics of the knee is essential for studying its normal function and diagnosing pathology. Although, there are many techniques have been developed for measuring knee kinematics, the methods for non-invasively measuring three-dimensional and dynamic knee motion are still limited. Skin marker-based methods have been widely used in clinical gait analysis and sports biomechanics to reconstruct quantitatively the 3-D kinematics of human body segments. However, movements between the skin markers and the underlying bones (i.e., soft tissue artifacts) during activities are inevitable and have been shown to affect the measurement outcome of joint kinematics.
Recently, many radiographic techniques based on the registration of 3-D bone models and 2-D dynamic fluoroscopic images have been developed to acquire kinematic data of the bones for a variety of human joints without the distraction of the soft tissues artifacts. However, such techniques are subject to a risk of radiation overdose, limiting their widespread clinical application.
Magnetic resonance imaging (MRI) provides an opportunity to measure non-invasively and free of ionizing radiation the kinematics of the knee. MRI has been used predominately for static 2D or 3D measurements of the knee alignment at discrete positions. However, limited scan space and low temporal resolution of the MR scanner let those techniques affront to many limitations. In our lab, a slice-to-volume (SVR) registration method was proposed for measuring dynamic joint positions using real-time MRI with single-slice. We also proposed a new registration method in conjunction with dual-slices real-time MRI for measuring 3-D kinematics of the knee.
The purpose of this study was to validate dual-slices SVR methods in different speed condition and apply this novel method to in vivo kinematics study such as the effects of different functional movement and acting different force and moment on the knee. With the results of this study, it will provide a kinematics analysis methods and data of complicated knee motion. It may be used in rehabilitation programs for better treatment outcome in future clinical applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:27:41Z (GMT). No. of bitstreams: 1
ntu-106-R04548043-1.pdf: 1791416 bytes, checksum: 3bf24dd96f3722bed6a705f50571fbbf (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
ABSTRACT III
圖目錄 VII
表目錄 VIII
第一章 緒論 1
第一節 研究背景 1
第二節 膝關節之解剖學 2
第三節 膝關節之運動學 5
第四節 人體動作研究之歷史 6
第五節 切片對體積影像對位技術 9
I. 匹配準則 10
II. 轉換模型 11
III. 方法驗證 12
第六節 研究目的 14
第二章 材料與方法 15
第一節 雙切片動態核磁共振影像對位 15
第二節 試體驗證 18
I. 膝關節試體 18
II. 膝關節驗證實驗平台 19
III. 定義液體柱之座標系統 22
IV. 標準轉換模型之參數取得 24
V. 試體驗證流程 26
VI. 資料分析 27
第三節 活體量測 27
I. 受試者 28
II. 主被動彎曲伸直測試之夾具設計 28
III. 活體實驗流程 29
IV. 統計方法 30
第三章 結果與討論 31
I. 試體驗證結果與討論 31
II. 活體量測結果與討論 35
III. 結論 35
參考文獻 38
dc.language.isozh-TW
dc.subject核磁共振zh_TW
dc.subject動態雙切片影像zh_TW
dc.subject影像比對zh_TW
dc.subject試體驗證zh_TW
dc.subject膝關節zh_TW
dc.subject運動學zh_TW
dc.subjectMR Imagesen
dc.subjectdynamic dual-slices imagesen
dc.subjectimage registrationen
dc.subjectvalidationen
dc.subjectknee jointsen
dc.subjectkinematicsen
dc.title驗證及應用創新動態核磁共振影像技術量測活體膝關節三維運動zh_TW
dc.titleValidation and Application of a Novel Dynamic Magnetic Resonance Image-Based Technique to the Measurement of Three-Dimensional Knee Joint Kinematics In Vivoen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor林正忠(Cheng-Chung Lin)
dc.contributor.oralexamcommittee陳文斌(Weng-Pin Chen),陳祥和(Hsiang-Ho Chen),王廷明(Ting-Ming Wang)
dc.subject.keyword核磁共振,動態雙切片影像,影像比對,試體驗證,膝關節,運動學,zh_TW
dc.subject.keywordMR Images,dynamic dual-slices images,image registration,validation,knee joints,kinematics,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201703611
dc.rights.note有償授權
dc.date.accepted2017-08-18
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.75 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved