請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68613完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳柏華 | |
| dc.contributor.author | Ching-Chun Chen | en |
| dc.contributor.author | 陳靖淳 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:27:28Z | - |
| dc.date.available | 2027-12-31 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | “2016 Statistics of Causes of Death.” (2017). Ministry of Health and Welfare, <http://www.mohw.gov.tw/cp-3327-33592-2.html>.
Angelova, A., Krizhevsky, A., View, M., View, M., Vanhoucke, V., Ogale, A., and Ferguson, D. (2015).“Real-Time Pedestrian Detection With Deep Network Cascades.” Bmvc2015, 1–12. Balasubramanian, P. (2016). “Improving Gradient Histogram Based Descriptors for Pedestrian Detection in Datasets with Large Variations.” Cvpr, 104–113. Bradley, A. P. (1997). “The use of the area under the ROC curve in the evaluation of machine learning algorithms.” Pattern Recognition, 30(7), 1145–1159. Cai, Z., Saberian, M., and Vasconcelos, N. (2015). “Learning Complexity-Aware Cascades for Deep Pedestrian Detection.” Iccv, 3361–3369. “Cardiac arrest a automated external defibrillators (AEDs).” (2001). U.S. Department of Labor Occupational Safety and Health Administration. Chan, T. C. Y., Demirtas, D., and Kwon, R. H. (2016). “Optimizing the Deployment of Public Access Defibrillators.” Management Science, 62(12), 3617–3635. Chen, A. Y., and Huang, T. (2015). “Toward BIM-Enabled Decision Making for In-Building Response Missions.” IEEE Transactions on Intelligent Transportation Systems, 16(5), 2765–2773. Chen, A. Y., and Lee, C.-T. (2016). “Location Planning of AED Deployment through Building Information Modeling Considering the Spatial Properties of Structures.” National Taiwan University. “Daimler Mono Pedestrian Classification Benchmark Datasets.” (2006). <http://www.gavrila.net/Datasets/Daimler_Pedestrian_Benchmark_D/Daimler_Mono_Ped__Class__Bench/daimler_mono_ped__class__bench.html>. Dalal, N. (2006). “Finding People in Images and Videos.” Institut National Polytechnique de Grenoble-INPG. Dalal, N., and Triggs, B. (2005). “Histograms of oriented gradients for human detection.” Proceedings - 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, I, 886–893. “Heart Attack or Sudden Cardiac Arrest: How Are They Different?” (2016). American Heart Association, <http://www.heart.org/ HEARTORG/Conditions/HeartAttack/ AboutHeartAttacks/Heart-Attack-or-Sudden-Cardiac-Arrest-How-Are-They-Different_UCM_440804_Article.jsp#.WXEPNoiGM2w>. Huang, C. Y., and Wen, T. H. (2014).“Optimal installation locations for automated external defibrillators in taipei 7-eleven stores: Using GIS and a genetic algorithm with a new stirring operator.” Computational and Mathematical Methods in Medicine, 2014. “INRIA Person dataset.” (2005). <http://pascal.inrialpes.fr/data/human/> (Dec.16, 2016). “MIT CBCL Pedestrian Database.” (2000). <http://cbcl.mit.edu/software-datasets/PedestrianData.html> (Dec.16, 2016). Myers, D. C., and Mohite, M. (2008). “Locating automated external defibrillators in a university community.” Journal of the Operational Research Society, 60(6), 869–872. “Open Source Computer Vision Library.” (2010). Intel. Public Access Defibrillation Guidelines. (2001). Department of Health and Human Services, 28495–28511. Rublee, E., Rabaud, V., Konolige, K., and Bradski, G. (2011). “ORB: An efficient alternative to SIFT or SURF.” Proceedings of the IEEE International Conference on Computer Vision, 2564–2571. Suzuki, S., and Abe, K. (1985). “Topological Structural Analysis of Digitalized Binary Images by Border Following.” Computer Vision, Graphics, and Image Processing, 30(1), 32–46. Tian, Y., Luo, P., Wang, X., and Tang, X. (2015).“Pedestrian detection aided by deep learning semantic tasks.” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 07–12–June, 5079–5087. Tsai, Y. S., Ko, P. C. I., Huang, C. Y., and Wen, T. H. (2012). “Optimizing locations for the installation of automated external defibrillators (AEDs) in urban public streets through the use of spatial and temporal weighting schemes.” Applied Geography, 35(1–2), 394–404. Walk, S., Majer, N., Schindler, K., and Schiele, B. (2010). “New features and insights for pedestrian detection.” Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 1030–1037. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68613 | - |
| dc.description.abstract | 本研究提出一偵測室內人流分佈的影像方法,目的為協助主管單位進行自動體外心臟去顫器設置選址之決策。自動體外心臟去顫器(Automated External Defibrillator,AED)為一重要之緊急救護裝置,主要針對心臟驟停之病患施行急救措施,提供經訓練之專業救護人員或未經訓練的一般民眾使用。其主要設置於人潮聚集之室內建築或室外地點。目前我國於現行法令中只列出符合特定條件之建物或是地點必須設置,卻未提及明確設置之規範細節。因此本研究期望透過偵測人流影像的方式,蒐集建物室內人群的實際分佈,用以協助進行設置位置之最佳化決策。研究方法中我們錄製建物內部行人的影片,之後藉由影像處理的程序進行人員的影像偵測。在行人偵測的部分,本研究以方向梯度直方圖 (Histogram of Oriented Gradient,HOG) 和Oriented FAST and Rotated BRIEF (ORB) 作為特徵描述子,並結合支持向量機 (Support Vector Machine,SVM) 作為分類器,藉以獲得一段時間內人員於該建物內部的分佈情形,進而將該分佈資料結合目標建物之室內路網模型,分別作為參數資料導入最佳化位置模型,進行選址問題之求解,得出目標建物的自動體外心臟去顫器最佳設置位置建議,並提升自動體外心臟去顫器於緊急狀況發生時的效益。 | zh_TW |
| dc.description.abstract | A vision based method was introduced to detect human patterns for in-door environments. The purpose of the research is to assist decision makers at which locations should automated external defibrillators (AEDs) be installed. AED is a critical first-aid equipment which can be used by professionals or bystanders to give the first aid treatment to the sudden cardiac victims. It is mainly installed at the crowded outdoor public places or buildings. Currently, the regulation in Taiwan only regulate buildings and places that meet specific conditions should install AEDs. It does not offer specific details for people to follow while installing AEDs. Therefore, the study observes the actual distribution of pedestrian in the building by human detection techniques. These data would be used as an important parameter while calculating the optimized install locations. We first recorded the video of people in the target building. During the process of detection, we adopt the Histogram of Oriented Gradient (HOG) and the Oriented FAST and Rotated BRIEF (ORB) as the feature descriptor. Additionally, using Support Vector Machine (SVM) as the classifier to classify the target and detect the locations of people at each time interval. After the extraction of the human volume data, we consider it as a critical parameter in the decision making model. The distribution data we collected previously and the distance data we extracted from the geometric network would be used in the decision making analysis. The analysis would help to plan and evaluate locations of AEDs based on the real potential demand distribution and could optimize the performance of AED during an emergency. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:27:28Z (GMT). No. of bitstreams: 1 ntu-106-R04521511-1.pdf: 1350341 bytes, checksum: 90c4c8c82f8aa4183010c9b5b6234010 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
致謝 ii 中文摘要 iv ABSTRACT v CONTENTS vii LIST OF FIGURES x LIST OF TABLES xi Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 2 1.3 Scope of the Research 3 Chapter 2 Literature Review 4 2.1 AED Setting 4 2.2 Human Data Extraction 5 2.3 Summary 6 Chapter 3 Methodology 7 3.1 Data Collection 7 3.2 Pedestrian Data Extraction 8 3.2.1 Feature Descriptor Calculation 10 3.2.2 Classifier Training 12 3.2.3 Region of Interest Selection 13 3.2.4 Human Detection 14 3.2.5 Tracking 15 3.3 Accumulation Data 16 3.4 Geometric Network 17 3.5 Decision Making Model for AED Location Planning 17 Chapter 4 Results 19 4.1 HOG Feature-based Classifier 20 4.2 ORB Feature-based Classifier 20 4.3 Experiment Cases 21 4.3.1 Few Pedestrian Case 22 4.3.2 Crowded Pedestrians Case 23 4.3.3 Computation Efficiency 25 4.4 Summary 26 Chapter 5 Conclusions 28 REFERENCES 30 | |
| dc.language.iso | en | |
| dc.subject | 自動體外心臟電擊去顫器 | zh_TW |
| dc.subject | 行人偵測 | zh_TW |
| dc.subject | 影像處理 | zh_TW |
| dc.subject | 方向梯度直方圖 | zh_TW |
| dc.subject | 支持向量機 | zh_TW |
| dc.subject | image processing | en |
| dc.subject | histogram of oriented gradients | en |
| dc.subject | Automated external defibrillators | en |
| dc.subject | human detection | en |
| dc.subject | support vector machine | en |
| dc.title | 基於室內人流影像辨識之自動體外心臟電擊去顫器設置決策 | zh_TW |
| dc.title | Video-based Indoor Human Detection for Decision-Making for the Installation Locations of Automated External Defibrillators | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳柏翰,周建成,郭佩棻 | |
| dc.subject.keyword | 自動體外心臟電擊去顫器,行人偵測,影像處理,方向梯度直方圖,支持向量機, | zh_TW |
| dc.subject.keyword | Automated external defibrillators,human detection,image processing,histogram of oriented gradients,support vector machine, | en |
| dc.relation.page | 33 | |
| dc.identifier.doi | 10.6342/NTU201703955 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-18 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
| 顯示於系所單位: | 土木工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.32 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
