請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68582完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李瑞庭 | |
| dc.contributor.author | Hui-Wen Cheng | en |
| dc.contributor.author | 鄭惠文 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:26:12Z | - |
| dc.date.available | 2027-12-31 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-17 | |
| dc.identifier.citation | [1] S. Chakraborty, A. Venkataraman, S. Jagabathula, L. Subramanian, Predicting socio-economic indicators using news events, Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2016) 1455-1464.
[2] H. L. Chieu, Y. K. Lee, Query based event extraction along a timeline, Proceedings of the 27th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval (2004) 425-432. [3] Y. Choi, C. Cardie, E. Riloff, S. Patwardhan, Identifying sources of opinions with conditional random fields and extraction patterns, Proceedings of the Conference on Human Language Technology and Empirical Methods in Natural Language Processing Association for Computational Linguistics (2005) 355-362. [4] A. Gupta, P. Srinivasan, J. Shi, L. S. Davis, Understanding videos, constructing plots learning a visually grounded storyline model from annotated videos, IEEE Computer Vision and Pattern Recognition (2009) 2012-2019. [5] H. Ji, R. Grishman, Refining event extraction through cross-document inference, Proceedings of the Association of Computational Linguistics (2008) 254-262. [6] J. Kalyanam, A. Mantrach, D. Saez-Trumper, H. Vahabi, G. Lanckriet, Leveraging social context for modeling topic evolution, Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2015) 517-526. [7] J. Lafferty, A. McCallum, F. Pereira, Conditional random fields - Probabilistic models for segmenting and labeling sequence data, Proceedings of the Eighteenth International Conference on Machine Learning (2001) 282-289. [8] Q. Li, H. Ji, L. Huang, Joint event extraction via structured prediction with global features, Proceedings of the 51st the Association of Computational Linguistics (2013) 73-82. [9] C. Lin, C. Lin, J. Li, D. Wang, Y. Chen, T. Li, Generating event storylines from microblogs, Proceedings of the 21st ACM International Conference on Information and Knowledge Management (2012) 175-184. [10] F. R. Lin, C. H. Liang, Storyline-based summarization for news topic retrospection, Decision Support Systems (2008) 473–490. [11] S. Y. Lu, A tree-to-tree distance and its application to cluster analysis, IEEE Transactions on Pattern Analysis and Machine Intelligence 2 (1979) 219-224. [12] F. Peng, F. Feng, A. McCallum, Chinese segmentation and new word detection using conditional random fields, Proceedings of the 20th International Conference on Computational Linguistics Association for Computational Linguistics (2004) 562. [13] M. F. Porter, An algorithm for suffix stripping, Program (1980) 130-137. [14] A. Ritter, Mausam, O. Etzioni, S. Clark, Open domain event extraction from Twitter, Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2012) 1104-1112. [15] H. Sakoe, S. Chiba, Dynamic programming algorithm optimization for spoken word recognition, IEEE Transactions on Acoustics Speech, and Signal Processing (1978) 43-49. [16] A. P. Singh, G. J. Gordon, Relational learning via collective matrix factorization, Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (2008) 650-658. [17] F. Sha, F. Pereira, Shallow parsing with conditional random fields, Proceedings of the Conference of the North American Chapter of the Association for Computational Linguistics on Human Language Technology (2003) 134-141. [18] Y. Tanahashi, K. L. Ma, Design considerations for optimizing storyline visualizations, IEEE Transactions on Visualization and Computer Graphics (2012) 2679-2688. [19] H. Tanev, J. Piskorski, M. Atkinson, Real-time news event extraction for global crisis monitoring, Proceedings of International Conference on Application of Natural Language to Information Systems (2008) 207 - 218. [20] Y. Wei, L. Singh, B. Gallagher, D. Buttler, Overlapping target event and story line detection of online newspaper articles, Proceedings of IEEE International Conference on Data Science and Advanced Analytics (2016) 222-232. [21] Y. Zhang, C. Xu, Y. Rui, J. Wang, H. Lu, Semantic event extraction from basketball games using multi-modal analysis, Proceedings of IEEE International Conference on Multimedia and Expo (2007) 2190-2193. [22] W. Zhou, C. Shen, T. Li, S. C. Chen, N. Xie, Generating textual storyline to improve situation awareness in disaster management, Proceedings of IEEE 15th International Conference on Information Reuse and Integration (IRI) (2014) 585-592. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68582 | - |
| dc.description.abstract | 隨著體育賽事的大眾化,越來越多的運動都擁有廣大的粉絲,很多粉絲會想知道今天最喜歡的球隊或球員發生了什麼事,很多球隊經理也會想知道怎麼招募、訓練、交易球員才可以得到最好的表現,新聞文章是他們獲得這類情報一個很重要的來源,但隨著網際網路的快速發展,網路上的體育新聞數以萬計。因此,我們提出了一個研究架構幫助他們快速整理體育新聞中的重要故事情節,讓他們能隨時掌握每天發生的每一個體育事件的發展走向。所提出的研究架構分為三部份,首先,我們對新聞文章做前處理,將文章分割成段落;接著,我們利用了體育新聞文章中擁有的特定事件種類和種類中的關鍵字,並搭配條件隨機域模型得到每個段落在每個事件種類的隸屬程度,最後,利用在體育新聞文章中很常被提到的名稱實體捕捉段落之間的相似性,我們建構了名稱實體樹來計算每個名稱實體的距離,得到最後的故事情節為圖形結構。實驗結果顯示我們的方法在兩個指標上面都勝過SteinerTree方法,因為我們的方法善用了運動領域的獨有的特色,且在故事情節的結構上面更具有表達力。本研究所提出的針對特定主題的故事情節,可以使球迷與球隊管理階層對每天眾多體育事件做更快速的掌握與運用。 | zh_TW |
| dc.description.abstract | In this thesis, we propose a framework to mine sport event storylines from a collection of news articles. The proposed framework contains three phases. First, we preprocess the news articles by removing stop words, normalizing the variants for each word, and extracting name entities. Next, we employ a conditional random fields model to label the event category of each word in news paragraphs and derive an event vector for each news paragraph. Finally, we use the event vectors derived and name entities to compute the similarity between news paragraphs, and then generate the storylines for a given query. The experiment results show that the proposed framework outperforms the comparing method and can generate better understanding storylines. The proposed framework can help obtain some valuable insights for sport fans and team managers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:26:12Z (GMT). No. of bitstreams: 1 ntu-106-R04725033-1.pdf: 1378108 bytes, checksum: e0c2a41ed452d2fd6a6027feae23dc24 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
Chapter 2 Related Work 5 2.1 Event extraction 5 2.2 Storyline mining 6 Chapter 3 The Proposed Method 8 3.1 News preprocessing 9 3.2 Event vector extraction 10 3.3 Storyline generation 13 Chapter 4 Experiment Results 19 4.1 Dataset and metrics 19 4.2 Performance evaluation 22 4.3 Example storylines 26 Chapter 5 Conclusions and Future Work 31 References 34 | |
| dc.language.iso | en | |
| dc.subject | 故事情節探勘 | zh_TW |
| dc.subject | NBA新聞文章 | zh_TW |
| dc.subject | 條件隨機域模型 | zh_TW |
| dc.subject | 事件擷取 | zh_TW |
| dc.subject | 名稱實體樹 | zh_TW |
| dc.subject | conditional random fields model | en |
| dc.subject | NBA news | en |
| dc.subject | storyline mining | en |
| dc.subject | event extraction | en |
| dc.subject | name entity tree | en |
| dc.title | 藉由條件隨機域探勘運動領域的故事情節 | zh_TW |
| dc.title | Mining Sport Event Storylines Based On Conditional
Random Fields Model | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許秉瑜,呂永和 | |
| dc.subject.keyword | 故事情節探勘,NBA新聞文章,條件隨機域模型,事件擷取,名稱實體樹, | zh_TW |
| dc.subject.keyword | storyline mining,NBA news,conditional random fields model,event extraction,name entity tree, | en |
| dc.relation.page | 39 | |
| dc.identifier.doi | 10.6342/NTU201703906 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-19 | |
| dc.contributor.author-college | 管理學院 | zh_TW |
| dc.contributor.author-dept | 資訊管理學研究所 | zh_TW |
| 顯示於系所單位: | 資訊管理學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.35 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
