請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68580完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 李明穗(Ming-Sui Lee) | |
| dc.contributor.author | Jing-Hong Tang | en |
| dc.contributor.author | 湯敬浤 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:26:08Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2017-08-24 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | [1] Lindenbaum, M., Fischer, M., Bruckstein, A. (1994). On Gabor's contribution to image enhancement. Pattern Recognition, 27(1), 1-8. [2] Tomasi, C., Manduchi, R. (1998, January). Bilateral filtering for gray and color images. In Computer Vision, 1998. Sixth International Conference on (pp. 839-846). IEEE. [3] Roth, S., Black, M. J. (2005, June). Fields of experts: A framework for learning image priors. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 860-867). IEEE. [4] Elad, M., Aharon, M. (2006). Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image processing, 15(12), 3736-3745. [5] Mairal, J., Elad, M., Sapiro, G. (2008). Sparse representation for color image restoration. IEEE Transactions on image processing, 17(1), 53-69. [6] Zoran, D., Weiss, Y. (2011, November). From learning models of natural image patches to whole image restoration. In Computer Vision (ICCV), 2011 IEEE International Conference on (pp. 479-486). IEEE. [7] Dong, W., Zhang, L., Shi, G., Li, X. (2013). Nonlocally centralized sparse representation for image restoration. IEEE Transactions on Image Processing, 22(4), 1620-1630. [8] Sulam, J., Elad, M. (2015). Expected patch log likelihood with a sparse prior. Energy Minimization Methods in Computer Vision and Pattern Recognition, Lecture Notes in Computer Science, 99-111. [9] Papyan, V., Elad, M. (2016). Multi-scale patch-based image restoration. IEEE Transactions on image processing, 25(1), 249-261. [10] Buades, A., Coll, B., Morel, J. M. (2005, June). A non-local algorithm for image denoising. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on (Vol. 2, pp. 60-65). IEEE. [11] Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K. (2007). Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Transactions on image processing, 16(8), 2080-2095. [12] Mairal, J., Bach, F., Ponce, J., Sapiro, G., Zisserman, A. (2009, September). Non-local sparse models for image restoration. In Computer Vision, 2009 IEEE 12th International Conference on (pp. 2272-2279). IEEE. [13] Alkinani, M. H., El-Sakka, M. R. (2015, July). Non-local means for stereo image denoising using structural similarity. In International Conference Image Analysis and Recognition (pp. 51-59). Springer, Cham. [14] Jain, V., Seung, S. (2009). Natural image denoising with convolutional networks. In Advances in Neural Information Processing Systems (pp. 769-776). [15] Burger, H. C., Schuler, C. J., Harmeling, S. (2012, June). Image denoising: Can plain neural networks compete with BM3D? In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on (pp. 2392-2399). IEEE. [16] Xie, J., Xu, L., Chen, E. (2012). Image denoising and inpainting with deep neural networks. In Advances in Neural Information Processing Systems (pp. 341-349). [17] Krizhevsky, A., Sutskever, I., Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). [18] Sun, J., Cao, W., Xu, Z., Ponce, J. (2015). Learning a convolutional neural network for non-uniform motion blur removal. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 769-777). [19] Xu, L., Ren, J. S., Liu, C., Jia, J. (2014). Deep convolutional neural network for image deconvolution. In Advances in Neural Information Processing Systems (pp. 1790-1798). [20] Liu, N., Han, J., Zhang, D., Wen, S., Liu, T. (2015). Predicting eye fixations using convolutional neural networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (pp. 362-370). [21] Rumelhart, D. E., Hinton, G. E., Williams, R. J. (1988). Learning representations by back-propagating errors. Cognitive modeling, 5(3), 1. [22] Liu, X., Tanaka, M., Okutomi, M. (2013). Single-image noise level estimation for blind denoising. IEEE transactions on image processing, 22(12), 5226-5237. [23] Møller, M. F. (1993). A scaled conjugate gradient algorithm for fast supervised learning. Neural networks, 6(4), 525-533. [24] Martin, D., Fowlkes, C., Tal, D., Malik, J. (2001). A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In Computer Vision, 2001. ICCV 2001. Proceedings. Eighth IEEE International Conference on (Vol. 2, pp. 416-423). IEEE. [25] Turmon, M. J., Fine, T. L. (1995). Sample size requirements for feedforward neural networks. In Advances in Neural Information Processing Systems (pp. 327-334). [26] Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., ... Berg, A. C. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211-252. [27] Everingham, M., Van Gool, L., Williams, C. K., Winn, J., Zisserman, A. (2008). The pascal visual object classes challenge 2007 (voc 2007) results (2007). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68580 | - |
| dc.description.abstract | 去除影像雜訊一直以來都是數位影像處理領域中最重要的議題之一。到目前為止,有很多基於影像先驗資訊的去除影像高斯雜訊演算法在近幾年已經發展的非常成熟。但是,在這一類的方法中,使用全域先驗資訊或是使用特定先驗資訊所開發出來的這兩種影像去除雜訊演算法卻沒有辦法同時擁有彼此的優點。基於觀察到這個現象之後,此篇論文的研究採用一個多層感知神經網路去有系統地結合這兩種分別使用全域先驗資訊和使用特定先驗資訊的去雜訊方法,以保留彼此的優點進而得到更好的影像去除雜訊效果。此篇論文提出的方法流程主要由五個步驟所構成。分別是估計雜訊強度、使用BM3D和EPLL作第一階段平行去除雜訊、把第一階段的去除雜訊影像分解出重疊的區塊、使用多層感知神經網路預測每個像素的值、聚合所有預測來還原除雜影像。多層感知神經網路再這裡扮演重要的角色。對於一個多層感知神經網路,影像除雜的問題被模擬成一個分類的問題,並且做了一系列的實驗去找出對於提出的模型最好的多層感知神經網路架構。實驗結果顯示,提出的方法流程不只在PSNR得到了改善,和目前最先進的兩個影像去除雜訊演算法(BM3D和EPLL)相比,也得到了更好的視覺品質。 | zh_TW |
| dc.description.abstract | Image denoising has always been one of the most important issues in the domain of digital image processing. So far, many image denoising algorithms based on learning image priors for removing Gaussian noise have evolved a lot and matured over recent years. However, in such prior-based denoising methods, using specific priors have advantages that do not exist in the methods using generic priors and vice versa. Inspired by this observation, a multilayer perceptron (MLP) neural network is adopted in this thesis to systematically combine these two image denoising methods, separately using generic and local priors, in order to keep both their own advantages and obtain a better performance. The denoising framework are mainly composed of 5 steps: noise level estimation, predenoising parallel by BM3D and EPLL, decomposing the results into overlapping patches, using a MLP for pixel-wise estimations, and aggregation for final denoised result. MLP plays a critical role in the proposed framework. We model the image denoising as a classification problem for the MLP and do a series of experiments to verify the best structure. Experiment results demonstrate that not only does the proposed framework gain improvements in terms of PSNR but also have better denoising visual quality compared to the two state-of-the-art denoising algorithms, BM3D and EPLL. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:26:08Z (GMT). No. of bitstreams: 1 ntu-106-R04922135-1.pdf: 4063717 bytes, checksum: dac4b4dc7f111f501b1b8802390c6d62 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter 1 Introduction----------------------------1 1.1 Introduction of Image Denoising---------1 1.2 Thesis Organization---------------------4 Chapter 2 Related Work----------------------------5 2.1 Image Denoising Method Overview---------5 2.2 Expected Patch Log Likelihood (EPLL)----11 2.3 Block Matching 3D (BM3D)----------------12 2.4 Multilayer Perceptron (MLP)-------------13 Chapter 3 Proposed Framework----------------------14 3.1 Framework Overview----------------------15 3.2 Design of Multilayer Perceptron Neural Network--------------------------17 3.2.1 Problem Modeling------------------------17 3.2.2 Structure of Multilayer Perceptron Neural Network--------------------------18 3.2.3 Training--------------------------------19 3.2.4 Validation------------------------------20 Chapter 4 Results---------------------------------25 4.1 Denoising at Single Noise Level (σ=50)--25 4.2 Denoising for Blind Noise Level---------31 4.3 User Study------------------------------38 4.4 Color Image Denoising-------------------45 Chapter 5 Conclusion and Future Work--------------56 5.1 Conclusion------------------------------56 5.2 Future work-----------------------------57 REFERENCE ----------------------------------------58 | |
| dc.language.iso | en | |
| dc.subject | EPLL | zh_TW |
| dc.subject | BM3D | zh_TW |
| dc.subject | 多層感知 | zh_TW |
| dc.subject | 影像先驗資訊高斯雜訊 | zh_TW |
| dc.subject | 影像除噪 | zh_TW |
| dc.subject | EPLL | en |
| dc.subject | image priors | en |
| dc.subject | Gaussian noise | en |
| dc.subject | multilayer perceptron | en |
| dc.subject | BM3D | en |
| dc.subject | Image denoising | en |
| dc.title | 使用多層感知神經網路移除影像高斯雜訊 | zh_TW |
| dc.title | Gaussian Noise Removal based on a Multilayer Perceptron Neural Network | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周承復,李界羲 | |
| dc.subject.keyword | 影像除噪,影像先驗資訊高斯雜訊,多層感知,BM3D,EPLL, | zh_TW |
| dc.subject.keyword | Image denoising,image priors,Gaussian noise,multilayer perceptron,BM3D,EPLL, | en |
| dc.relation.page | 61 | |
| dc.identifier.doi | 10.6342/NTU201703914 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
| 顯示於系所單位: | 資訊工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.97 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
