請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68514完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生 | |
| dc.contributor.author | Yang-Ze Fan | en |
| dc.contributor.author | 范揚澤 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:23:39Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-18 | |
| dc.identifier.citation | REFERENCES AND NOTES (Chapter 1)
1. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, Wiley, 2008. 2. J. R. Platt, Journal of Chemical Physics, Chem. 1961, 34, 862. 3. W. Franz, Zeitschrift für Naturforschung A, 1958,13, 484. 4. L. Keldysh, Sov. Phys. JETP, 1958, 7, 788. 5. H. J. Byker, Proceedings of the. Symposium on Electrochromic Materials, 1994, 94-2, 3. 6. S. Deb, Applied Optics, 1969, 8, 192. 7. M. Green, Chemistry and industry, 1996, 641. 8. C. M. Lampert, Solar Energy Material, 1984, 11, 1. 9. R. Baetens, B.P. Jelle and A. Gustavsen, Solar Energy Materials and solar Cells, 2010, 94, 87. 10. E. S. Lee and D. DiBartolomeo, Solar Energy Materials and Solar Cells, 2002, 71, 465. 11. T. Kubo, J. Tanimoto, M. Minami, T. Toya, Y. Nishikitani and H, Watanabe, Solid State Ionics, 2003, 165, 97. 12. U. Bach, D. Corr, D. Lupo, F. Pichot and M. Ryan, Advanced Materials, 2002, 14, 845. 13. P. M. S. Monk, R. J. Mortimer and D. R. Rosseinsky, Electrochromism: Fundamentals and Applications, VCH, Weinheim, 1995. 14. W. C. Dautremont-Smith, Displays, 1982, 3, 3. 15. N. R. de Tacconi, K. Rajeshwar, R. O. Lezna, Chem Mater, 2003, 15, 3046. 16. C. G. Granqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, 1995. 17. B. W. Faughnan, R. S. Crandall, Display Devices, 1980, 5, 181. 18. G. V. Granqvist, Phys. Thin Films, 1993, 17, 301 19. T. Tesfamichael, M. Arita, T. Bostrom and J. Bell, Thin Solid Films, 2010, 518, 4791. 20. D. T. Gillaspie, R. C. Tenent, and A. C. Dillon, J. Mater. Chem., 2010, 20, 9585. 21. D. R. Rosseinsky, and R. J. Mortimer, J. Adv. Mater., 2001, 13, 783. 22. B. W. Faughnan, and R. S. Crandall, Top. Appl. Phys., 1980, 40, 181. 23. Y. Jung, Jaeyoung Lee, Y. Taka, Electrochem. Solid-State Lett. 2004, 7, H5. 24. G. Beni, C. E. Rice, J. L. Shay, Electrochem. Soc., 1980, 127, 1342. 25. R. J. Mortimer, Chem. Soc. Rev., 1997, 26, 147. 26. F. am. Main, D. C. Gesellschaft, Gmelin, Handbuch der Anoroganischen Chemie, 1930, 59, 671. 27. V. D. Neff, J. Electrochem. Soc., 1978, 125,886. 28. N. R. Tacconi, K. Rajeshwar, R. O. Lezna, Chem. Mater., 2003, 15, 3046. 29. A. Braun, J. Tcherniac. Über die Produkte der Einwirkung von Acetanhydrid auf Phthalamid. Berichte der deutschen chemischen Gesellschaft., 1907, 40(2), 2709. 30. G. C. S. Collins, D. J. Schiffrin, Electrochem. Soc., 1985, 132, 1835. 31. D. Cummins, G. Boschloo, M. Ryan, D. Corr, S. N. Rao and D. Fitzmaurice, The Journal of Physical Chemistry B, 2000, 104, 11449. 32. R. Cinnsealach, G. Boschloo, S. N. Rao and D. Fitzmauriec, Solar Energy Materials and Solar Cells, 1999, 57, 107. 33. C. S. Ah, J. Song, S. M. Cho, T. Y. Kim, H. N. Kim, J. Y. Oh, H. Y. Chu and H. Ryu, Bulletin of the Korean Chemical Society, 2015, 36, 548. 34. Y. P. Jou, Thesis for Master of Materials Science and Engineering Fneg Chia University, 2007. 35. H. Shirakawa, A. G. MacDiarmid, A. J. Heeger,Heeger, Chem. Commun. 2003, 1, 4. 36. P. M. Beaujuge, J. R. Reynolds, Chem. Rev., 2010, 110, 268. 37. M. Mastragostino, Applications of Electroactive Polymers; Chapman and Hall, London, 1993. 38. Yang, C. C. Lin, H. T. Chen, Org. Lett., 2003, 5, 839. 39. M. Y. Chou, M. K. Leung, Y. O. Su, C. L. Chiang, C. C. Lin, J. H. Liu, C. K. Kuo, C. Y. Mou, Chem. Mater., 2004, 16, 654. 40. S. Beaupre´, J. Dumas, M. Leclerc, Chem. Mater., 2006, 18, 4011. 41. B. Lim, Y. C. Nah, J. T. Hwang, J. Ghim, D. Vak, J. Yun, J. M., D. Y. J. Kim, J. Mater. Chem., 2009, 19, 2380. 42. T. H. Su, S. H. Hsiao, G. S. Liou, J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 2085. 43. G. S. Liou, S. H. Hsiao, T. H. Su, J. Mater. Chem., 2005, 15, 1812. 44. Yen, H. J.; Liou, G. S. J. Polym. Sci. Part A: Polym. Chem. 2009, 47, 1584. 45. G. S. Liou, S. H. Hsiao, W. C. Chen, H. J. Yen, Macromolecules, 2006, 39, 6036. 46. G. S. Liou, S. H. Hsiao, H. W. Chen, J. Mater. Chem. 2006, 16, 1831. 47. H. J. Yen, K. Y. Lin, G. S. Liou, J. Mater. Chem., 2011, 21, 6230. 48. C. Sanchez, B. Julian, P. Belleville, M. Popall, J. Mater. Chem., 2005, 15, 3559. 49. B. Arkles, Mater. Res. Bull., 2001, 26, 5, 402. 50. C. Sanchez and P. Go´mez-Romero, Functional Hybrid Materials, Wiley VCH, Weinheim, 2004. 51. S. Bhandari, M. Deepa, A. K. Srivastava, C. Lal, R. Kant, Macromol. Rapid Commun., 2008, 29, 1959. 52. S. Bhandari, M. Deepa, A. K. Srivastava, A. G. Joshi, R. Kant, Phys. Chem. B, 2009, 113, 9416. 53. D. Weng, Y. Shi, J. Zheng, C. Xu, Organic electronics, 2016, 34, 139. 54. V. K. Thakur, G. Ding, J. Ma, P. S. Lee, X. Lu, Adv. Mater., 2012, 24, 4071. 55. S. Xiong, S. L. Phua, B. S. Dunn, J. Ma, X. Lu, Chem. Mater., 2010, 22, 255. 56. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai and W. C. Chen, J. Mater. Chem., 2010, 20, 531. 57. Y. Q. Rao and S. Chen, Macromolecules 2008, 41, 4838. 58. C. J. Brinker and G. W. Scherer, Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing, 1st ed.; Academic Press: San Diego, 1990. 59. W. Que, Z. Sun, Y. Zhou, Y. L. Lam, Y. C. Chan and C. H. Kam, Thin Solid Films, 2000, 359, 177. (b)B. Wang and L. Hu, Ceram. Int., 2006, 32, 7. 60. A. D. Pomogailo, Russ. Chem. Rev., 2000, 69, 53. 61. U. Schubert, J. Mater. Chem., 2005, 15, 3701. 62. R. Aelion, A. Loebel and F. Eirich, J. Am. Chem. Soc. 1950, 72, 5750. J. Brinker and G. W. Scherer, Sol-Gel Science, London: Academic Press 1990. 63. C. J. Brinker, K. D. Keefer, D. W. Schaefer and C. S. Ashley, J. Non-Cryst. Solids. 1982, 48, 47. REFERENCES AND NOTES (Chapter 2) 1. M.A. Hickner, H. Ghassemi, Y. S. Kim, B.R. Einsla and J. E. McGrath, Chemical R eviews, 2004, 104, 4587-4611. 2. F. F. Li, J. Y. Wang, M. J. Zhou, X. C. Liu, C. Wang and D. M. Chao, Chemical Research in Chinese Universities, 2015, 31, 1066-1071. 3. H. R. Kricheldorf and K. Bornhorst, Journal of Polymer Science Part a-Polymer Chemistry, 2008, 46, 3732-3739. 4. H. R. Kricheldorf and G. Bier, J. Polym. Sci., Polym. Chem., 1983, 21, 2283-2289. 5. J. L. Hedrick, R. Twieg, Macromolecules, 1992, 25, 2021. 6. A. Köllhofer, H. Plenio, Chemistry - A European Journal, 2003, 9, 1416-1425. 7. G. S. Liou, H. Y. Lin, Macromolecules, 2009, 42, 125-134. 8. G. S. Liou, C. W. Chang, Macromolecules, 2008, 41, 1667-1674. 9. H. W. Chang, K. H. Lin, C. C. Chueh, G. S. Liou, W. C. Chen, J. Polym. Sci. Part A: Polym. Chem., 2009, 47, 4037-4050. REFERENCES AND NOTES (Chapter 3) 1. S. Xiong, S. L. Phua, B. S. Dunn, J. Ma, X. Lu, Chem. Mater., 2010, 22, 255-260. 2. Y. Li, T. Michinobu, J. Polym. Sci., Part A: Polym. Chem,. 2012, 50, 2111-2120. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68514 | - |
| dc.description.abstract | 本論文分為四個章節,第一章為總體序論。第二章中以2種具有矽醚保護基的三芳香胺衍生單體TPA-2P及BDATA-2P與不同二氟單體合成二系列之新型芳香族聚醚。第三章節中將第二章節中所合成的具有矽醚保護基的三芳香胺衍生單體BDATA-2P及TDATA-2P,進行脫去矽醚保護基反應生成BDATA-2OH及TDATA-2OH。 單體上的羫基提供有效的有機-無機物鍵結位置,以sol-gel的方法來製備獲得三芳香安衍生單體/ZrO2混合膜。第五章為結論。
這些含三芳香胺結構之高分子及混成材料的合成、基本特性、電化學急電致變色性質皆被研究。所有的高分子具有良好的溶解性、出色的薄膜形成能力、良好的熱性質。在利用電化學與光譜電化學的方法下,這些含三芳香胺結構之高分子及混成材料展現良好的電致變色能力,隨著N中心數目的增長,並具有多段變色的能力。 | zh_TW |
| dc.description.abstract | This study has been separated into five chapters. Chapter 1 is general introduction. Chapter 2 includes two series of novel aromatic polyether derived from two kinds of triarylamine-based compounds TPA-2P, BDATA-2P and two kinds of difluoride. Chapter 3 describes two novel compounds BDATA-2OH and TDATA-2OH were prepared by using deprotection reaction from BDATA-2P and TDATA-2P. These triphenylamine derivatives via hydroxyl groups as the reaction sites to be introduced into the hybrid network by sol gel reaction. Chapter 4 is conclusions. The synthesis, basic characterization, electrochemical and electrochromic properties of these novel triarylamine-based functional polyethers and hybrid materials were investigated. All polymers revealed good solubility in many solvent with excellent thin-film-forming ability. These polymers also showed good thermal stability with the glass-transition temperature higher than 200 oC. All polymers and hybrid materials revealed good electrochromic characteristics and some electroactive films (BDATA-PES, TDATA-hybrid) showed multicolor electrochromic behavior by the electrochemical and spectroelectrochemical. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:23:39Z (GMT). No. of bitstreams: 1 ntu-106-R04549008-1.pdf: 11580958 bytes, checksum: 72c331252e89f24a322f7d83fe247826 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ACKNOWLEDGEMENTS......................I ABSTRACT(in English).................II ABSTRACT(in Chinese)................III TABLE OF CONTENTS....................IV LIST OF SCHEMES....................VIII LIST OF TABLES........................X LIST OF FIGURES......................XI CHAPTER 1.............................1 CHAPTER 2............................36 CHAPTER 3............................88 CHAPTER 4...........................111 APPENDIX............................114 CHAPTER 1 General Introduction 1.1 DEVELOPMENT OF ELECTROCHROMISM............................2 1.2 ELECTROCHROMIC SYSTEMS....................................6 1.2.1 Transition-metal Oxides.................................6 1.2.2 Coordination Complexes..................................8 1.2.3 Organic Molecules......................................11 1.2.4 Conductive Polymers....................................13 1.2.5 Arylamine-Based Polymers...............................16 1.3 FUNCTIONAL HYBRID ORGANIC-INOGRANIC NANOCOMPOSITES.......21 1.3.1 Hybrid Nanocomposites with physical interactions.......22 1.3.2 Hybrid Nanocomposites with Chemical Bond...............24 1.3.3 Synthetic method of Organic-Inorganic Nanocomposites...26 1.4 RESEARCH MOTIVATION......................................31 REFERENCES AND NOTES.........................................32 CHAPTER 2 Synthesis and Electrochromism of Triarylamine-based Polyether ABSTRACT..........................................37 2.1 Introduction..................................38 2.2 Experimental section..........................40 2.2.1 Materials...................................40 2.2.2 Measurement.................................42 2.2.3 Monomer Synthesis...........................43 2.2.4 Polymer synthesis...........................51 2.2.5 Preparation of the films....................53 2.3 Results and discussion........................54 2.3.1 Monomer Synthesis and Characterization......54 2.3.2 Polymer synthesis and characterization......62 2.3.3 Electrochromic Properties of the monomer....71 2.3.4 Electrochromic Properties of the polyether..76 2.4 Summary.......................................85 REFERENCES AND NOTES..............................86 CHAPTER 3 Synthesis, Preparation, and Electrochromism of Triarylamine/ Zirconia Hybrid Materials ABSTRACT..........................................88 3.1 Introduction..................................89 3.2 Experimental section..........................90 3.2.1 Materials...................................90 3.2.2 Measurement.................................90 3.2.3 Monomer Synthesis...........................92 3.2.4 Preparation of hybrid film..................94 3.3 Results and discussion........................96 3.3.1 Monomer and hybrid synthesis................96 3.3.2 Electrochromic Properties of the hybrid....101 3.4 Summary......................................107 REFERENCES AND NOTES.............................108 CHAPTER 4 Conclusion CONCLUSIONS......................................112 LIST OF SCHEMES CHAPTER 1 Scheme 1.1..........................2 Scheme 1.2..........................7 Scheme 1.3..........................8 Scheme 1.4..........................8 Scheme 1.5..........................8 Scheme 1.6..........................9 Scheme 1.7..........................9 Scheme 1.8..........................9 Scheme 1.9 Metallophthalocyanine (Pc)..........................11 Scheme 1.10 4,4’-bipyridinium ion structure..........................12 Scheme 1.11 The redox states of viologen...........................12 Scheme 1.12 The typical conducting polymers..........................14 Scheme 1.13..........................17 Scheme 1.14..........................18 Scheme 1.15..........................18 Scheme 1.15..........................20 Scheme 1.16..........................20 Scheme 1.17 Sol-gel synthesis of organic-inorganic nanocomposites..........................26 CHAPTER 2 Scheme 2.1 The mechanism of silyl method4...........................39 Scheme 2.2 Synthetic route to target compound TPA-2P, BDATA-2P and TDATA-2P...........................55 Scheme 2.3 Preparation of polyether...........................63 CHAPTER 3 Scheme 3.1 Synthetic route to target compound BDATA-2OH and TDATA-2OH...........................97 Scheme 3.2 Synthetic route to target hybrid BDATA-hybrid and TDATA-hybrid...........................98 LIST OF TABLES CHAPTER 1 Table 1.1 Color of viologens based on different substituted structure..........................12 Table 1.2 Color of polymers derived from electropolymerization of arylamines..........................17 Table 1.3 Electronegativity (χ), coordination number (N), and degree of unsaturation (N - Z) of some metals (Z=4)...........................29 Table 1.4 The reaction constant K of tetralkoxysilane in acid hydrolysis...........................29 CHAPTER 2 Table 2.1 Brand and purity of the materials used in this chapter..........................40 Table 2.2 Inherent viscosity and GPC data of polyether...........................64 Table 2.3 The solubility behavior of polyether...........................64 Table 2.4 Thermal properties of polyethe..........................66 Table 2.5 Electrochemical properties of polyether...........................79 CHAPTER 3 Table 3.1 Brand and purity of the materials used in this chapter..........................90 LIST OF FIGURESS CHAPTER 1 Fig. 1.1 Photographs of (a) Anti-glare back mirrors and (b) E-papers (c) smart windows...........................4 Fig. 1.2 Swittching sequence of the electrochromic glass..........................5 Fig. 1.3 Chemical structures of all polymers characterized with colors corresponding to the doped state (D), neutral state (N), and intermediate state (I)...........................15 Fig. 1.4..........................21 Fig. 1.5 (a) EC cell at switched off and switched on stated. (b) Transmittance spectra of ECD in bleached state and colored state. (c) Chemical structure of the viologen and triphenylamine derivatives...........................24 Fig. 1.6 Synthesis route for the PANI-TiO2 hybrid...........................25 Fig. 1.7 Schematic of in situ synthesis of metal nanoparticles in a polymer matrix...........................27 Fig. 1.8 Ex situ synthesis schemes for the preparation of nanocomposites from blending route and in situ polymerization process...........................28 Fig. 1.9 Polymerization behavior of aqueous silica...........................30 CHAPTER 2 Fig. 2.1 (a) 1H NMR and (b) H-H COSY spectra of TPA-2P in THF-d8...........................56 Fig. 2.2 (a) 13C NMR and (b) C-H HMQC spectra of TPA-2P in THF-d8...........................57 Fig. 2.3 (a) 1H NMR and (b) H-H COSY spectra of BDATA-2P in THF-d8...........................58 Fig. 2.4 (a) 13C NMR and (b) C-H HMQC spectra of BDATA-2P in THF-d8...........................59 Fig. 2.5 (a) 1H NMR and (b) H-H COSY spectra of TDATA-2P in THF-d8...........................60 Fig. 2.6 (a) 13C NMR and (b) C-H HMQC spectra of TDATA-2P in THF-d8...........................61 Fig. 2.7 The photographs of polyether film (a) TPA-PES (film thickness : 41 ± 1 μm)..........................63 ), (b) BDATA-PES (film thickness : 34 ± 5 μm) and (c) TPA-PEO (film thickness : 31 ± 1 μm)...........................63 Fig. 2.8 TGA thermograms of polyether under (a) N2 and (b) air at a heating rate of 20 oC/min...........................65 Fig. 2.9 DSC traces of the polyethers under N2 at a heating rate of 20 oC/min...........................66 Fig. 2.10 Comparison of FT-IR spectrum for bis(4-fluorophenyl) sulfone, TPA-2P and TPA-PES...........................67 Fig. 2.11 Comparison of FT-IR spectrum for 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole, TPA-2P and TPA-PEO...........................67 Fig. 2.12 Comparison of FT-IR spectrum for bis(4-fluorophenyl) sulfone, BDATA-2P and BDATA-PES...........................68 Fig. 2.13 Comparison of 1H NMR spectrum for bis(4-fluorophenyl) sulfone, TPA-2P and TPA-PES...........................69 Fig. 2.14 Comparison of 1H NMR spectrum for bis(4-fluorophenyl) sulfone, 2,5-bis(4-fluorophenyl)-1,3,4-oxadiazole, TPA-2P and TPA-PEO...........................69 Fig. 2.15 Comparison of 1H NMR spectrum for bis(4-fluorophenyl) sulfone, BDATA-2P and BDATA-PES...........................70 Fig. 2.16 Differential pulse voltammetry diagram of 0.001 M TPA-2P in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................72 Fig. 2.17 Differential pulse voltammetry diagram of 0.001 M BDATA-2P in NMP containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................72 Fig. 2.18 (a) Photo display of the electrochromic color change. (b) Absorbance spectrum at applied potentials of 0.00, 0.75 (V vs Ag/ AgCl). (c) Absorbance spectral change at various applied potentials between 0.00 and 0.80 (V vs Ag/ AgCl) for the electron oxidation of TPA-2P. (0.001 M TPA-2P was dissolved in CH3CN containing 0.1 M TBABF4)..........................74 Fig. 2.19 (a) Photo display of the electrochromic color change. (b) Absorbance spectrum at applied potentials of 0.00, 0.60, 0.85 and 1.25 (V vs Ag/ AgCl). (c) Absorbance spectral change at various applied potentials between 0.00 and 0.65 (V vs Ag/ AgCl) for the first electron oxidation of BDATA-2P. (d) Absorbance spectral change at various applied potentials between 0.65 and 0.90 (V vs Ag/ AgCl) for the second electron oxidation of BDATA-2P. (e) Absorbance spectral change at various applied potentials between 0.90 and 1.30 (V vs Ag/ AgCl) for the third electron oxidation of BDATA-2P. (0.001 M BDATA-2P was dissolved in NMP containing 0.1 M TBABF4)..........................75 Fig. 2.20 Differential pulse voltammetry diagram of TPA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................77 Fig. 2.21 Differential pulse voltammetry diagram of BDATA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................77 Fig. 2.22 Differential pulse voltammetry diagram of TPA-PEO film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................78 Fig. 2.23 Cyclic voltammogram of TPA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 at the scan rate of 50 mV/s...........................79 Fig. 2.24 Cyclic voltammogram of BDATA-PES film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 at the scan rate of 25 mV/s...........................80 Fig. 2.25 Cyclic voltammogram of TPA-PEO film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 at the scan rate of 50 mV/s...........................80 Fig. 2.26 (a) Photo display of the electrochromic color change. Absorbance spectra for TPA-PES film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.00, 1.00 (V vs Ag/ AgCl) and (c) at various applied potentials between 0.00 and 1.05 (V vs Ag/ AgCl) for the electron oxidation. (Thickness : 431 ± 105 nm)...........................82 Fig. 2.27 (a) Photo display of the electrochromic color change. Absorbance spectra for BDATA-PES film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.00, 0.65, 0.85 and 1.25 (V vs Ag/ AgCl), (c) at various applied potentials between 0.00 and 0.70 (V vs Ag/ AgCl) for the first electron oxidation, (d) at various applied potentials between 0.70 and 0.95 (V vs Ag/ AgCl) for the second electron oxidation and (e) at various applied potentials between 0.95 and 1.35 (V vs Ag/ AgCl) for the third electron oxidation. (Thickness : 484 ± 53 nm)...........................83 Fig. 2.28 Absorbance spectra for TPA-PEO film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (a) at applied potentials of 0.00, 0.95 (V vs Ag/ AgCl) and (b) at various applied potentials between 0.00 and 1.00 (V vs Ag/ AgCl) for the electron oxidation. (Thickness : 224 ± 30 nm)...........................84 CHAPTER 3 Fig. 3.1 (a) 1H NMR and (b) H-H COSY spectra of BDATA-2OH in THF-d8..........................99 Fig. 3.2 (a) 13C NMR and (b) C-H HMQC spectra of BDATA-2OH in THF-d8...........................100 Fig. 3.3 Differential pulse voltammetry diagram of TDATA-hybrid film onto an ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4. Scan rate: 2 mV/s; pulse amplitude: 50 mV; pulse width: 25 ms; pulse period: 0.2 s...........................102 Fig. 3.4 (a) Photo display of the electrochromic color change. Absorbance spectra for BDATA-hybrid film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.00, 0.55 (V vs Ag/ AgCl) and (c) at various applied potentials between 0.00 and 0.60 (V vs Ag/ AgCl) for the electron oxidation. (Thickness : 851 ± 81 nm)...........................104 Fig. 3.5 (a) Photo display of the electrochromic color change. Absorbance spectra for TDATA-hybrid film onto ITO-coated glass substrate in CH3CN containing 0.1 M TBABF4 (b) at applied potentials of 0.0, 0.5, 0.8, 1.1 and 1.4 (V vs Ag/ AgCl), (c) at various applied potentials between 0.0 and 0.6 (V vs Ag/ AgCl) for the first electron oxidation, (d) at various applied potentials between 0.6 and 0.9 (V vs Ag/ AgCl) for the second electron oxidation, (e) at various applied potentials between 0.9 and 1.2 (V vs Ag/ AgCl) for the third electron oxidation and (f) at various applied potentials between 1.2 and 1.5 (V vs Ag/ AgCl) for the fourth electron oxidation. (Thickness : 823 ± 67 nm)...........................105 | |
| dc.language.iso | en | |
| dc.subject | 三芳胺 | zh_TW |
| dc.subject | 聚醚 | zh_TW |
| dc.subject | 混成材料 | zh_TW |
| dc.subject | sol-gel | zh_TW |
| dc.subject | 電致變色 | zh_TW |
| dc.subject | electrochromic | en |
| dc.subject | sol-gel | en |
| dc.subject | hybrid materials | en |
| dc.subject | triarylamine | en |
| dc.subject | polyether | en |
| dc.title | 新型含芳香胺結構功能性高分子及其混成材料之合成與電致變色性質研究 | zh_TW |
| dc.title | Synthesis and Electrochromic Properties of Novel Triarylamine-based Functional Polymers and Hybrid Materials. | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 蕭勝輝,陳志堅,呂奇明,龔宇睿 | |
| dc.subject.keyword | 三芳胺,聚醚,混成材料,sol-gel,電致變色, | zh_TW |
| dc.subject.keyword | triarylamine,polyether,hybrid materials,sol-gel,electrochromic, | en |
| dc.relation.page | 112 | |
| dc.identifier.doi | 10.6342/NTU201703867 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 11.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
