請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68490完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 鄭如忠 | |
| dc.contributor.author | Ren-Yu Liao | en |
| dc.contributor.author | 廖仁煜 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:22:47Z | - |
| dc.date.available | 2017-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-19 | |
| dc.identifier.citation | 1. (a) Heyong He a, J. K. a., Michael Forster b, Anton Lerf b A new structural model for graphite oxide. Chemical Physics Letters 1998, 287, 53-56; (b) Hirata, M.; Gotou, T.; Horiuchi, S.; Fujiwara, M.; Ohba, M., Thin-film particles of graphite oxide 1. Carbon 2004, 42 (14), 2929-2937.
2. WILLIAM S. HUMMERS, J., AND RICHARD E. OFFEMAN Preparation of Graphitic Oxide Journal of the American Chemical Society 1958, 80, 1339-1339. 3. Akbar Bagri1, C. M., Muge Acik 3, Yves J. Chabal 3, Manish Chhowalla2† and Vivek B. Shenoy1*, Structural evolution during the reduction of chemically derived graphene oxide. NATURE CHEMISTRY 2010, 2, 581-587. 4. Kai Zhang; Lu Mao; Li Li Zhang; Hardy Sze On Chan; Zhao, X. S.; Wu*, a. J., Surfactant-intercalated, chemically reduced graphene oxide for high performance supercapacitor electrodes. Journal of Materials Chemistry 2011, 21, 7302–7307. 5. Mao, L.; Zhang, K.; On Chan, H. S.; Wu, J., Surfactant-stabilized graphene/polyaniline nanofiber composites for high performance supercapacitor electrode. J. Mater. Chem. 2012, 22 (1), 80-85. 6. Cai, X.; Zhang, Q.; Wang, S.; Peng, J.; Zhang, Y.; Ma, H.; Li, J.; Zhai, M., Surfactant-assisted synthesis of reduced graphene oxide/polyaniline composites by gamma irradiation for supercapacitors. Journal of Materials Science 2014, 49 (16), 5667-5675. 7. Mensing, J. P.; Wisitsoraat, A.; Phokharatkul, D.; Lomas, T.; Tuantranont, A., Novel surfactant-stabilized graphene-polyaniline composite nanofiber for supercapacitor applications. Composites Part B: Engineering 2015, 77, 93-99. 8. Wang, Z.; Ma, L.; Chen, W.; Huang, G.; Chen, D.; Wang, L.; Lee, J. Y., Facile synthesis of MoS2/graphene composites: effects of different cationic surfactants on microstructures and electrochemical properties of reversible lithium storage. RSC Advances 2013, 3 (44), 21675. 9. Ma, L.; Huang, G.; Chen, W.; Wang, Z.; Ye, J.; Li, H.; Chen, D.; Lee, J. Y., Cationic surfactant-assisted hydrothermal synthesis of few-layer molybdenum disulfide/graphene composites: Microstructure and electrochemical lithium storage. Journal of Power Sources 2014, 264, 262-271. 10. Balamurugan Devadas, S. C., Shen-Ming Chen*; Rajkumar, a. M., Investigation of morphologies and characterization of rare earth metal samarium hexacyanoferrate and its composite with surfactant intercalated graphene oxide for sensor applications†. RSC Advances 2014, 4, 45895–45902 11. Xu, J.; Cai, X.; Shen, F., Preparation and property of UV-curable polyurethane acrylate film filled with cationic surfactant treated graphene. Applied Surface Science 2016, 379, 433-439. 12. Shengyan Yin; †; Yanyan Zhang; †; Junhua Kong; †; Changji Zou; †; Chang Ming Li; ‡; Xuehong Lu; †; Jan Ma; †; Freddy Yin Chiang Boey; †; Chen, a. X.; †, Assembly of Graphene Sheets into Hierarchical Structures for High-Performance Energy Storage. ACS NANO 2011, 5, 3831–3838. 13. Shengyan Yin , Y. G., Moshe Herzberg , Lei Liu , Hang Sun , Yanyan Zhang , Fanben Meng , Xuebo Cao , Darren D. Sun , Hongyu Chen , Ariel Kushmaro , and Xiaodong Chen *, Functional Free-Standing Graphene Honeycomb Films. Adv. Funct. Mater. 2013, 23 ( 2972–2978). 14. Ke, Q.; Liu, Y.; Liu, H.; Zhang, Y.; Hu, Y.; Wang, J., Surfactant-modified chemically reduced graphene oxide for electrochemical supercapacitors. RSC Advances 2014, 4 (50), 26398. 15. Yu, P.; Li, Y.; Zhao, X.; Wu, L.; Zhang, Q., In situ growth of ordered polyaniline nanowires on surfactant stabilized exfoliated graphene as high-performance supercapacitor electrodes. Synthetic Metals 2013, 185-186, 89-95. 16. Rajagopalan, B.; Hur, S. H.; Chung, J. S., Surfactant-treated graphene covered polyaniline nanowires for supercapacitor electrode. Nanoscale Res Lett 2015, 10, 183. 17. Huang, G.; Chen, T.; Chen, W.; Wang, Z.; Chang, K.; Ma, L.; Huang, F.; Chen, D.; Lee, J. Y., Graphene-like MoS(2)/graphene composites: cationic surfactant-assisted hydrothermal synthesis and electrochemical reversible storage of lithium. Small 2013, 9 (21), 3693-703. 18. Fernández-Merino, M. J.; Paredes, J. I.; Villar-Rodil, S.; Guardia, L.; Solís-Fernández, P.; Salinas-Torres, D.; Cazorla-Amorós, D.; Morallón, E.; Martínez-Alonso, A.; Tascón, J. M. D., Investigating the influence of surfactants on the stabilization of aqueous reduced graphene oxide dispersions and the characteristics of their composite films. Carbon 2012, 50 (9), 3184-3194. 19. Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S., Three-Dimensionally Ordered Array of Air Bubbles in a Polymer Film. Science 2001, 292 (5514), 79-83. 20. Beysens, D., Dew nucleation and growth. Comptes Rendus Physique 2006, 7 (9-10), 1082-1100. 21. Muñoz-Bonilla, A.; Fernández-García, M.; Rodríguez-Hernández, J., Towards hierarchically ordered functional porous polymeric surfaces prepared by the breath figures approach. Progress in Polymer Science 2014, 39 (3), 510-554. 22. Wong, K. H.; Hernández-Guerrero, M.; Granville, A. M.; Davis, T. P.; Barner-Kowollik, C.; Stenzel, M. H., Water-assisted formation of honeycomb structured porous films. Journal of Porous Materials 2006, 13 (3-4), 213-223. 23. Stenzel, M. H.; Barner‐Kowollik, C.; Davis, T. P., Formation of honeycomb‐structured, porous films via breath figures with different polymer architectures. Journal of Polymer Science Part A: Polymer Chemistry 2006, 44 (8), 2363-2375. 24. Song, L.; Bly, R. K.; Wilson, J. N.; Bakbak, S.; Park, J. O.; Srinivasarao, M.; Bunz, U. H., Facile Microstructuring of Organic Semiconducting Polymers by the Breath Figure Method: Hexagonally Ordered Bubble Arrays in Rigid Rod‐Polymers. Advanced Materials 2004, 16 (2), 115-118. 25. Orlov, M.; Tokarev, I.; Scholl, A.; Doran, A.; Minko, S., pH-responsive thin film membranes from poly (2-vinylpyridine): water vapor-induced formation of a microporous structure. Macromolecules 2007, 40 (6), 2086-2091. 26. Roszol, L.; Lawson, T.; Koncz, V.; Noszticzius, Z. n.; Wittmann, M.; Sarkadi, T.; Koppa, P. l., Micropatterned Polyvinyl Butyral Membrane for Acid− Base Diodes. The Journal of Physical Chemistry B 2010, 114 (43), 13718-13725. 27. Stenzel-Rosenbaum, M. H.; Davis, T. P.; Fane, A. G.; Chen, V., Porous Polymer Films and Honeycomb Structures Made by the Self-Organization of Well-Defined Macromolecular Structures Created by Living Radical Polymerization Techniques. Angewandte Chemie International Edition 2001, 40 (18), 3428-3432. 28. Deepak, V. D.; Asha, S. K., Self-Organization-Induced Three-Dimensional Honeycomb Pattern in Structure-Controlled Bulky Methacrylate Polymers: Synthesis, Morphology, and Mechanism of Pore Formation. The Journal of Physical Chemistry B 2006, 110 (43), 21450-21459. 29. Grayson, S. M.; Frechet, J. M. J., Convergent Dendrons and Dendrimers: from Synthesis to Applications. Chem. Rev. 2001, 101 (12), 3819-3868. 30. Tomalia, D. A.; Baker, H.; J., D.; Hall, M.; Kallos, G.; Martin, S.; Roeck, J.; Ryder, J.; Smith, P., A New Class of Polymers: Starburst-Dendritic Macromolecules. Polym. J. 1985, 17, 117-132. 31. Newkome, G. R.; Yao, Z.; Baker, G. R.; Gupta, V. K., Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J. Org. Chem. 1985, 50 (11), 2003-2004. 32. (a) Lothian-Tomalia, M. K.; Hedstrand, D. M.; Tomalia, D. A.; Padias, A. B.; H. K. Hall Jr., A contemporary survey of covalent connectivity and complexity. The divergent synthesis of poly(thioether) dendrimers. Amplified, genealogically directed synthesis leading to the de gennes dense packed state. Tetrahedron 1997, 53 (45), 15495-15513; (b) Padias, A. B.; Hall, H. K.; Tomalia, D. A.; McConnell, J. R., Starburst polyether dendrimers J. Org. Chem. 1987, 52 (24), 5305-5312. 33. Miller, T. M.; Neenan, T. X., Convergent synthesis of monodisperse dendrimers based upon 1,3,5-trisubstituted benzenes. Chem. Mater. 1990, 2 (4), 346-349. 34. Hawker, C. J.; Frechet, J. M. J., Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc. 1990, 112 (21), 7638-7647. 35. !!! INVALID CITATION !!! 14-17. 36. (a) Schluter, A. D.; Rabe, J. P., Dendronized Polymers: Synthesis, Characterization, Assembly at Interfaces, and Manipulation. Angew. Chem. Int. Ed. 2000, 39 (5), 864-883; (b) Cheng, C.-X.; Huang, Y.; Tang, R.-P.; Chen, E.-q.; Xi, F., Molecular Architecture Effect on Self-Assembled Nanostructures of a Linear-Dendritic Rod Triblock Copolymer in Solution. Macromolecules 2005, 38 (8), 3044-3047. 37. (a) Roovers, J.; Comanita, B., Dendrimers and Dendrimer-Polymer Hybrids Adv. Polym. Sci. 1999, 142, 179-228; (b) Zhao, Y.; Shuai, X.; Chen, C.; Xi, F., Synthesis of novel dendrimer-like star block copolymers with definite numbers of arms by combination of ROP and ATRP. Chem. Commun. 2004, 1608-1609; (c) Darcos, V.; Dureault, A.; Taton, D.; Gnanou, Y.; Marchand, P.; Caminade, A.-M.; Majoral, J.-P.; Destarac, M.; Leising, F., Synthesis of hybrid dendrimer-star polymers by the RAFT process. Chem. Commun. 2004, (18), 2110-2111. 38. Matthews, O. A.; Shipway, A. N.; Stoddart, J. F., Dendrimers-branching out from curiosities into new technologies. Prog. Polym. Sci. 1998, 23 (1), 1-56. 39. de Gennes, P. G.; Hervet, H., Statistics of « starburst » polymers. J. Physique Lett. 1983, 44 (9), 351-360. 40. Mourey, T. H.; Turner, S. R.; Rubinstein, M.; Frechet, J. M. J.; Hawker, C. J.; Wooley, K. L., Unique behavior of dendritic macromolecules: intrinsic viscosity of polyether dendrimers. Macromolecules 1992, 25 (9), 2401-2406. 41. Tomalia, D. A., Architecturally Driven Properties Based on the Dendritic State High Perform. Polym. 2001, 2, S1-S10. 42. Michels, J. J.; Baars, M. W. P. L.; Meijer, E. W.; Huskens, J.; Reinhoudt, D. N., Well-defined assemblies of adamantyl-terminated poly(propylene imine) dendrimers and b-cyclodextrin in water. J. Chem. Soc., Perkin Trans. 2 2000, 2, 1914-1918. 43. Wooley, K. L.; Frechet, J. M. J.; Hawker, C. J., Influence of shape on the reactivity and properties of dendritic, hyperbranched and linear aromatic polyesters. Polymer 1994, 35 (21), 4489-4495. 44. Hawker, C. J.; Malmstrom, E. E.; Frank, C. W.; Kampf, J. P., Exact Linear Analogs of Dendritic Polyether Macromolecules: Design, Synthesis, and Unique Properties J. Am. Chem. Soc. 1997, 119 (41), 9903-9904. 45. (a) Tomalia, D. A.; Naylor, A. M.; Goddard III, W. A., Starburst Dendrimers: Molecular-Level Control of Size, Shape, Surface Chemistry, Topology, and Flexibility from Atoms to Macroscopic Matter. Angew. Chem. Int. Ed. 1990, 29 (2), 138-175; (b) de Brabander-van den Berg, E. M. M.; Meijer, E. W., Poly(propylene imine) Dendrimers: Large-Scale Synthesis by Hetereogeneously Catalyzed Hydroge. Angew. Chem. Int. Ed. 1993, 32 (9), 1308-1311. 46. (a) Hawker, C. J.; Farrington, P. J.; Mackay, M. E.; Wooley, K. L.; Frechet, J. M. J., Molecular Ball Bearings: The Unusual Melt Viscosity Behavior of Dendritic Macromolecules J. Am. Chem. Soc. 1995, 117 (15), 4409-4410; (b) Farrington, P. J.; Hawker, C. J.; Frechet, J. M. J.; Mackay, M. E., The Melt Viscosity of Dendritic Poly(benzyl ether) Macromolecules. Macromolecules 1998, 31 (15), 5043-5050. 47. (a) Dai, S. A.; Juang, T. Y.; Chen, C. P.; Chang, H. Y.; Kuo, W. J.; Su, W. C.; Jeng, R. J., Synthesis of N-aryl azetidine-2,4-diones and polymalonamides prepared from selective ring-opening reactions. J Appl Polym Sci 2007, 103 (6), 3591-3599; (b) Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Jeng, R. J., Facile approach to polyurea/malonamide dendrons via a selective ring-opening addition reaction of azetidine-2,4-dione. J Polym Sci Pol Chem 2005, 43 (3), 682-688; (c) Chen, C. P.; Dai, S. A.; Chang, H. L.; Su, W. C.; Wu, T. M.; Jeng, R. J., Polyurethane elastomers through multi-hydrogen-bonded association of dendritic structures. Polymer 2005, 46 (25), 11849-11857. 48. (a) Tsai, C. C.; Juang, T. Y.; Dai, S. H. A.; Wu, T. M.; Su, W. C.; Liu, Y. L.; Jeng, R. J., Synthesis and montmorillonite-intercalated behavior of dendritic surfactants. Journal of Materials Chemistry 2006, 16 (21), 2056-2063; (b) Chen, Y. C.; Chang, H. L.; Lee, R. H.; Dai, S. H. A.; Su, W. C.; Jeng, R. J., Nonlinear optical polyimides consisting of chromophore-containing dendrons with site-isolation effect. Polym Advan Technol 2009, 20 (5), 493-500. 49. M. FLEISCHMANN, P. J. H. a. A. J. M., RAMAN SPECTRA OF PYRIDZNE ADSORBED AT A SILVER ELECTRODE CHEMICAL PHYSICS LETTERS 1974, 26, 163-166. 50. Nie, W. E. D. a. S., Single-Molecule and Single-Nanoparticle SERS: Examining the Roles of Surface Active Sites and Chemical Enhancement. J. Phys. Chem. B 2001, 106 (311-317). 51. Emory, S. N. a. S. R., Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering SCIENCE 1996, 275, 1102-1106. 52. E. C. Le Ru, E. B., M. Meyer, and P. G. Etchegoin† Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111 (13794-13803). 53. Albrecht, M. G.; Creighton, J. A., Anomalously intense Raman spectra of pyridine at a silver electrode. Journal of the American Chemical Society 1977, 99 (15), 5215-5217. 54. (a) Campion, A.; Kambhampati, P., Surface-enhanced Raman scattering. Chemical Society Reviews 1998, 27 (4), 241-250; (b) Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. Journal of Physical Chemistry B-Condensed Phase 2003, 107 (3), 668-677; (c) Haes, A. J.; Van Duyne, R. P., A unified view of propagating and localized surface plasmon resonance biosensors. Analytical and bioanalytical chemistry 2004, 379 (7-8), 920-930. 55. García-Vidal, F. J.; Pendry, J., Collective theory for surface enhanced Raman scattering. Physical Review Letters 1996, 77 (6), 1163. 56. Nie, S.; Emory, S. R., Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. science 1997, 275 (5303), 1102-1106. 57. Hao, E.; Schatz, G. C., Electromagnetic fields around silver nanoparticles and dimers. The Journal of chemical physics 2004, 120 (1), 357-366. 58. (a) Bantz, K. C.; Meyer, A. F.; Wittenberg, N. J.; Im, H.; Kurtulus, O.; Lee, S. H.; Lindquist, N. C.; Oh, S. H.; Haynes, C. L., Recent progress in SERS biosensing. Phys Chem Chem Phys 2011, 13 (24), 11551-67; (b) Doering, W. E.; Piotti, M. E.; Natan, M. J.; Freeman, R. G., SERS as a Foundation for Nanoscale, Optically Detected Biological Labels. Advanced Materials 2007, 19 (20), 3100-3108; (c) Xie, W.; Schlucker, S., Medical applications of surface-enhanced Raman scattering. Phys Chem Chem Phys 2013, 15 (15), 5329-44; (d) Li, D.-W.; Zhai, W.-L.; Li, Y.-T.; Long, Y.-T., Recent progress in surface enhanced Raman spectroscopy for the detection of environmental pollutants. Microchimica Acta 2013, 181 (1-2), 23-43; (e) Pang, S.; Yang, T.; He, L., Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry 2016, 85, 73-82. 59. (a) Wang, H. H.; Liu, C. Y.; Wu, S. B.; Liu, N. W.; Peng, C. Y.; Chan, T. H.; Hsu, C. F.; Wang, J. K.; Wang, Y. L., Highly raman‐enhancing substrates based on silver nanoparticle arrays with tunable sub‐10 nm gaps. Advanced Materials 2006, 18 (4), 491-495; (b) Zhao, J.; Pinchuk, A. O.; McMahon, J. M.; Li, S.; Ausman, L. K.; Atkinson, A. L.; Schatz, G. C., Methods for describing the electromagnetic properties of silver and gold nanoparticles. Accounts of chemical research 2008, 41 (12), 1710-1720; (c) Bell, S. E.; McCourt, M. R., SERS enhancement by aggregated Au colloids: effect of particle size. Physical Chemistry Chemical Physics 2009, 11 (34), 7455-7462. 60. Kleinman, S. L.; Frontiera, R. R.; Henry, A.-I.; Dieringer, J. A.; Van Duyne, R. P., Creating, characterizing, and controlling chemistry with SERS hot spots. Physical Chemistry Chemical Physics 2013, 15 (1), 21-36. 61. (a) Talley, C. E.; Jackson, J. B.; Oubre, C.; Grady, N. K.; Hollars, C. W.; Lane, S. M.; Huser, T. R.; Nordlander, P.; Halas, N. J., Surface-enhanced Raman scattering from individual Au nanoparticles and nanoparticle dimer substrates. Nano letters 2005, 5 (8), 1569-1574; (b) Orendorff, C. J.; Gole, A.; Sau, T. K.; Murphy, C. J., Surface-enhanced Raman spectroscopy of self-assembled monolayers: sandwich architecture and nanoparticle shape dependence. Analytical chemistry 2005, 77 (10), 3261-3266; (c) Guerrini, L.; Graham, D., Molecularly-mediated assemblies of plasmonic nanoparticles for Surface-Enhanced Raman Spectroscopy applications. Chem Soc Rev 2012, 41 (21), 7085-107. 62. (a) Ma, H.; Hao, J., Ordered patterns and structures via interfacial self-assembly: superlattices, honeycomb structures and coffee rings. Chem Soc Rev 2011, 40 (11), 5457-71; (b) Yang, S.; Lei, Y., Recent progress on surface pattern fabrications based on monolayer colloidal crystal templates and related applications. Nanoscale 2011, 3 (7), 2768-82; (c) Yang, S.; Lapsley, M. I.; Cao, B.; Zhao, C.; Zhao, Y.; Hao, Q.; Kiraly, B.; Scott, J.; Li, W.; Wang, L.; Lei, Y.; Huang, T. J., Large-Scale Fabrication of Three-Dimensional Surface Patterns Using Template-Defined Electrochemical Deposition. Advanced Functional Materials 2013, 23 (6), 720-730. 63. Liu, G. L.; Lee, L. P., Nanowell surface enhanced Raman scattering arrays fabricated by soft-lithography for label-free biomolecular detections in integrated microfluidics. Applied Physics Letters 2005, 87 (7), 074101. 64. (a) Widawski, G.; Rawiso, M.; Francois, B., Self-organized honeycomb morphology of star-polymer polystyrene films. Nature 1994, 369 (6479), 387-389; (b) Wu, C.-H.; Ting, W.-H.; Lai, Y.-W.; Dai, S. A.; Su, W.-C.; Tung, S.-H.; Jeng, R.-J., Tailored honeycomb-like polymeric films based on amphiphilic poly(urea/malonamide) dendrons. RSC Adv. 2016, 6 (94), 91981-91990; (c) Chang, C.-C.; Juang, T.-Y.; Ting, W.-H.; Lin, M.-S.; Yeh, C.-M.; Dai, S. A.; Suen, S.-Y.; Liu, Y.-L.; Jeng, R.-J., Using a breath-figure method to self-organize honeycomb-like polymeric films from dendritic side-chain polymers. Materials Chemistry and Physics 2011, 128 (1), 157-165. 65. (a) Ma, H.; Hao, J., Evaporation-induced ordered honeycomb structures of gold nanoparticles at the air/water interface. Chemistry 2010, 16 (2), 655-60; (b) Kong, L.; Dong, R.; Ma, H.; Hao, J., Au NP honeycomb-patterned films with controllable pore size and their surface-enhanced Raman scattering. Langmuir 2013, 29 (13), 4235-41. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68490 | - |
| dc.description.abstract | 由MDI合成具有反應選擇性的IDD後進一步合成一系列poly(urea/malonamide)直線型與透過收斂法合成樹枝狀陽離子界面活性劑衍生物,之後利用electrostatic interaction與氧化石墨接枝形成複合材料,使用TGA分析其接枝率,發現由於DG-2.5分子較大故有較大的立體障礙使得接枝率最低,並將奈米銀製備在poly(urea/malonamide)與氧化石墨複合材料的羰基官能基上,以UV-Vis以及TEM觀察奈米銀的生成和其附著情形,由TEM圖得知DG-2.5對於奈米銀的分佈和大小控制最好,因為DG-2.5有較多的官能基能穩定奈米銀的大小,相反的直線型的多呈現大小不一甚至聚集的情況,接著將材料取出以breath figure法和直接揮發製成蜂窩狀孔洞膜與平膜後發現只有DG-2.5與DG-1.5有機會形成蜂窩狀孔洞,之後滴上表面增強拉曼效應的待測物R6G,比較不同製程與不同代數以及直線型與樹枝狀結構之間的效應差別,得出DG-2.5為最佳的結果,並討論得出其它組別因為奈米銀成長的大小和分佈不一以及在成膜時較難以或無法形成孔洞,使得加成效應不如DG-2.5
此研究有別於過往一般界面活性劑以及表面增強拉曼效應的應用,在成蜂窩狀孔洞膜時直接分散了奈米銀粒子在膜當中,而不是先成膜再利用化學吸附,因此使得內外都能有奈米銀均勻的分佈,並且導入了氧化石墨增加了一定程度的表面增強拉曼效應,同時也使得所製成的膜能夠承受拉曼測量時的入射光,為首次有研究將界面活性劑與氧化石墨之複合材料應用於表面增強拉曼效應。 | zh_TW |
| dc.description.abstract | A series of linear type and dentritic type poly (urea/malonamide) cationic surfactants synthesized from IDD were successfully prepared as evidenced by NMR. Then, cationic surfactants were chosen to electrostatically adsorb on the negatively charged graphene oxide (GO) to form composites and the content of surfactant can be roughly estimated from TGA results. And DG-2.5 shows the lowest content becasuse DG-2.5 molecules are larger than other derivatives and the steric hindrance effect occurs. With carbonyl group on the poly (urea/malonamide) derivatives, silver nanoparticles can be prepared on the surfactants/GO composties to form the final products and as evidenced by UV-Vis and TEM. Then, the surface-enhanced Raman scattering (SERS) films can be obtained via breath figure process, but only DG-2.5 and DG-1.5 can form honeycomb-like films.
Results show that surface enhancement factors of honeycomb-like substrates are much higher than that of flat-film substrates and DG-2.5 shows the highest enhancement factor >105 because DG-2.5 has the most carbonyl groups on the molucules. Consequetly, the SERS films have been successfully obtained and this work shows the potential of application of surfactants/GO on SERS effect. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:22:47Z (GMT). No. of bitstreams: 1 ntu-106-R02549027-1.pdf: 6818267 bytes, checksum: d6f6a2a9104e2742b3f23f92c3f4343c (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 #
誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS iv LIST OF FIGURES viii LIST OF TABLES xi Chapter 1 緒論 1 Chapter 2 文獻回顧與研究動機 2 2.1 界面活性劑 2 2.1.1 界面活性劑簡介 2 2.1.2 界面活性劑與氧化石墨 2 2.2 蜂窩狀孔洞高分子膜 11 2.2.1 蜂窩狀高分子膜簡介 11 2.2.2 Breath Figure方法簡介 11 2.2.3 Poly(urea/malonamide)dendrons應用於蜂窩狀高分子膜的策略 13 2.3 規則樹枝狀高分子 13 2.3.1 Dendrimer合成路徑 13 2.3.2 Dendrimer結構與特性 15 2.3.3 Dendrimer與線性高分子比較 16 2.3.4 反應選擇性 IDD 製備規則樹枝狀高分子 17 2.4 表面增強拉曼效應 19 2.5 研究動機 21 Chapter 3 實驗內容 22 3.1 藥品及溶劑 22 3.2 實驗儀器 24 3.3 實驗流程圖 26 3.4 異質雙官能基IDD合成及其衍生物 27 3.4.1 IDD之製備 27 3.4.2 poly(urea/malonamide)聚合物之合成 28 3.4.3 兩性型之陽離子界面活性劑合成 28 3.4.3.1 DG0.5之合成 29 3.4.3.2 DG1.0之合成 29 3.4.3.3 DG1.5之合成 29 3.4.3.4 DG2.0之合成 30 3.4.3.5 DG2.5之合成 30 3.4.3.6 LG1.0之合成 30 3.4.3.7 LG1.5之合成 31 3.4.3.8 LG2.0之合成 31 3.4.3.9 LG2.5之合成 32 3.4.3.10 LG3.0之合成 32 3.4.3.11 LG3.5之合成 32 3.4.3.12 Q-DG0.5之合成 33 3.4.3.13 Q-DG1.5之合成 33 3.4.3.14 Q-DG2.5之合成 34 3.4.3.15 Q-LG1.5之合成 34 3.4.3.16 Q-LG2.5之合成 34 3.4.3.17 Q-LG3.5之合成 35 3.5 陽離子界面活性劑與氧化石墨之複合材料製備 35 3.5.1 製備氧化石墨 35 3.5.2 製備陽離子界面活性劑與氧化石墨之複合材料 36 3.5.3 奈米銀之成核點還原 37 3.6 規則蜂窩狀高分子膜之製備 37 3.7 表面增強拉曼效應量測 38 Chapter 4 結果與討論 39 4.1兩性型之陽離子界面活性劑合成 39 4.1.1 Q-DG0.5之合成與結構鑑定 39 4.1.2 Q-DG1.5之合成與結構鑑定 40 4.1.3 Q-DG2.5之合成與結構鑑定 42 4.1.4 Q-LG1.5之合成與結構鑑定 43 4.1.5 Q-LG2.5之合成與結構鑑定 45 4.1.6 Q-LG3.5之合成與結構鑑定 46 4.2 陽離子界面活性劑與氧化石墨複合材料之合成與鑑定 48 4.2.1 陽離子界面活性劑與氧化石墨複合材料之鑑定 48 4.2.2 奈米銀之成核點還原 49 4.3 表面增強拉曼效應量測結果與討論 52 Chapter 5 結論 54 參考文獻 55 附錄 61 合成並鑑定具反應選擇性單體IDD與其衍生物 61 poly(urea/malonamide)聚合物之鑑定 64 DG-0.5之合成與結構鑑定 64 DG-1之合成與結構鑑定 66 DG-1.5之合成與結構鑑定 67 DG-2之合成與結構鑑定 70 DG-2.5之合成與結構鑑定 73 LG-1之合成與結構鑑定 75 LG-1.5之合成與結構鑑定 77 LG-2之合成與結構鑑定 79 LG-2.5之合成與結構鑑定 81 LG-3之合成與結構鑑定 83 LG-3.5之合成與結構鑑定 85 規則蜂窩狀高分子膜之製作88 | |
| dc.language.iso | zh-TW | |
| dc.subject | 氧化石墨烯 | zh_TW |
| dc.subject | 表面增強拉曼效應 | zh_TW |
| dc.subject | 奈米銀粒子 | zh_TW |
| dc.subject | 陽離子界面活性劑 | zh_TW |
| dc.subject | 蜂窩狀孔洞 | zh_TW |
| dc.subject | Cationic surfactant | en |
| dc.subject | surface-enhanced Raman scattering (SERS) | en |
| dc.subject | breath figure | en |
| dc.subject | honeycomb-like films | en |
| dc.subject | graphene oxide | en |
| dc.title | 規則樹枝狀高分子界面活性劑分散氧化石墨烯與成核奈米銀粒子應用於表面拉曼增強效應 | zh_TW |
| dc.title | Dendritic surfactants acting as graphene oxide dispersants and Ag nucleation sites for Surface Enhance Raman Scattering | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉定宇,劉英麟,童世煌,林慶炫 | |
| dc.subject.keyword | 陽離子界面活性劑,蜂窩狀孔洞,表面增強拉曼效應,氧化石墨烯,奈米銀粒子, | zh_TW |
| dc.subject.keyword | Cationic surfactant,surface-enhanced Raman scattering (SERS),breath figure,honeycomb-like films,graphene oxide, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU201703895 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 6.66 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
