請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68484完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉貴生 | |
| dc.contributor.author | Shun-Wen Cheng | en |
| dc.contributor.author | 鄭舜文 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:22:35Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-19 | |
| dc.identifier.citation | Chapter 1.
1. M. J. M. Abadie, V. Y. Voytekunas and A. L. Rusanov, Iran Polym J, 2006, 15, 65. 2. D. Wilson, H. D. Stenzenberger and P. M. Hergenrother, Polyimides, New York: Blackie 1990. 3. M. W. Edwards and I. M Robinson, Polyimides of pyromellitic acid, US Patent 2,710,853, 1955. 4. M. Grundschober, Brit. Pat. 1190718, 1978. 5. K. L. Mittal, Polyimides and Other High Temperature Polymers: Synthesis, Characterization and Applications, Vol. 4, CRC Press, 2007. 6. H. R. Kricheldorf, Progress in Polyimide Chemistry, Vol. 140, Springer Science & Business Media, 1999. 7. S. Mehdipour-Ataei and N. Bahri-Laleh, Iran Polym. J. 2008, 17, 95. 8. H. J. Yen and G. S. Liou, Polym. Chem. 2012, 3, 255. 9. M. H. Woodard, M. E. Rogers, D.K. Brandom, G. L. Wilkes and J. E. McGRath, Polym. Prepr, 1992, 33, 333. 10. M. H. Brink, D. K. Brandom, G. L. Wilkes and J. E. McGrath, Polymer, 1994, 35, 5018. 11. P. M. Cotts, Polyimides: Synthesis, Characterization and Properties, Vol. 1, Plenum New York, 1984. 12. (a) S. Z. D. Cheng, F. E. Arnold, A. Zhang, S. L. C. Hsu and F. W. Harris, Macromolecules, 1991, 24, 5856. 13. S. Mehdipour-Ataei and N. Bahri-Laleh, Iranian Polymer Journal, 2008, 17, 95. 14. S. H. Hsiao, C. P. Yang and K. Y. Chu, Macromolecules, 1997, 30, 165. 15. S. H. Hsiao, C. P. Yang and S. H. Chen, J. Polym. Sci. Part A: Polym.Chem. 2000, 38, 1551. 16. S. H. Hsiao and K. H. Lin, J. Polym. Sci. Part A: Polym. Chem., 2005, 43, 31. 17. L. Cheng and X. G. Jian, J. Appl. Polym. Sci. 2004, 92, 1516. 18. B. M. Novak, Adv. Mater., 1993, 5, 422. 19. F. Mammeri, E. Le Bourhis, L. Rozes and C. Sanchez, J. Mater. Chem. 2005, 15, 3787. 20. C. Sanchez, G. J. de, A. A. Soler-Illia, F. Ribot, T. Lalot, C. R. Mayer and V. Cabuil, Chem. Mater. 2001, 13, 3061. 21. A. C. Balazs, T. Emrick and T. P. Russell, Science 2006, 314, 1107. 22. H. Althues, J. Henle and S. Kaskel, Chem. Soc. Rev., 2007, 36, 1454 23. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu, T. W. Tsai and W. C. Chen, J. Mater. Chem., 2010, 20, 531. 24. G. S. Liou, P. H. Lin, H. J. Yen, Y. Y. Yu and W. C. Chen., Polym. Sci. Part A: Polym. Chem. 2010, 48, 1433. 25. Y. Q. Rao and S. Chen, Macromolecules, 2008, 41, 4838. 26. C. Sanchez, B. Lebeau, F. Chaput and J. P. Boilot, Adv. Mater. 2003, 15, 1969. 27. B. Wang and L. Hu, Ceram. Int., 2006, 32, 7. 28. Y. Q. Rao and S. Chen, Macromolecules, 2008, 41, 4838. 29. C. M. Chang, C. L. Chang and C. C. Chang, Macromol. Mater. Eng., 2006, 291, 1521. 30. Y. H. Chou, C. L. Tsai, W. C. Chen and G.S. Liou, Polym. Chem., 2014, 5, 6718 31. W. Caseri, Macromol. Rapid Commun, 2000, 21, 705. 32. S. Lee, H. J. Shin, S. M. Yoon, D. K. Yi, J. Y. Choi and U. Paik, J. Mater. Chem., 2008, 18, 1751. 33. C. L. Tsai and G. S. Liou, Chem. Commun., 2015, 51, 13523. 34 .D. J. Gundlach, T. N. Jackson, D. G. Schlom, S. F. Nelson, Appl. Phys. Lett. 1999, 74, 3302. 35. T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Batlogg, C. Kloc, Adv. Mater. 2007, 19, 2079. 36. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett. 1996, 69, 4108. 37. L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, H. E. Katz, Science 1996, 272, 1462. 38. Y. L. Guo, G. Yu, Y. Q. Liu, Adv. Mater. 2010, 22, 4427. 39. Y. M. Sun, Y. Q. Liu, D. B. Zhu, J. Mater. Chem. 2005, 15, 53. 40. M. Muccini, Nat. Mater. 2006, 5, 605. 41. Q. D. Ling, D. J. Liaw, C. X. Zhu, D. S. H. Chan, E. T. Kang, K. G. Neoh, Prog. Polym. Sci. 2008, 33, 917. 42. H. E. Katz, X. M. Hong, A. Dodabalapur, R. Sarpeshkar, J. Appl. Phys. 2002, 91, 1572. 43. J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao, W. C. Chen, J. Mater. Chem. 2012, 22, 5820. 44. K. J. Baeg, M. Caironi, Y. Y. Noh, Adv. Mater. 2013, 25, 4210. 45. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem. Mater. 2011, 23, 341. 46. A. Facchetti, M. H. Yoon, T. J. Marks, Adv. Mater. 2005, 17, 1705. 47. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem. Mater. 2011, 23, 341. 48. K. Muller, I. Paloumpa, K. Henkel, D. Schmeisser, J. Appl. Phys. 2005, 98. 49. J. Veres, S. Ogier, G. Lloyd, D. De Leeuw, Chem. Mater. 2004, 16, 4543. 50. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, Nature, 1998, 395, 257. 51. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev. 2007, 107, 1324. 52. C. L. Liu, W. C. Chen, Polymer Chemistry 2011, 2, 2169. 53. J. R. Platt, J. Chem. Phys. 1961, 34, 862 54. V. Goulle, A. Harriman, J.-M. Lehn, J. Chem. Soc., Chem. Commun. 1993, 1034. 55. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612. 56. S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert, E. Kim, Adv. Funct. Mater. 2012, 22, 3556. 57. Y. X. Yuan, Y. Chen, Y. C. Wang, C. Y. Su, S. M. Liang, H. Chao, L. N. Ji, Inorg. Chem. Commun. 2008, 11, 1048 58. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797. 59. P. Audebert, F. Miomandre, Chem. Sci. 2013, 4, 575. 60. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612. 61. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797. 62. T. Sekitani, T. Yokota, U. Zschieschang, H. Klauk, S. Bauer, K. Takeuchi, M. Takamiya, T. Sakurai, and T. Someya, Science, 2009, 326, 1516. 63. T. Someya, Y. Kato, T. Sekitani, S. Iba, Y. Noguchi, Y. Murase, H. Kawaguchi, and T. Sakurai, Proc. Natl. Acad. Sci. U.S.A., 2005, 102, 12321. 64. K. J. Baeg, Y. Y. Noh, J. Ghim, S. J. Kang, H. Lee, and D. Y. Kim, Adv. Mater., 2006, 18, 3179. 65. W. L. Leong, P. S. Lee, A. Lohani, Y. M. Lam, T. Chen, S. Zhang, A. Dodabalapur, and S. G. Mhaisalkar, Adv. Mater., 2008, 20, 2325. 66. S. M. Wang, C. W. Leung, and P. K. L. Chan, Org. Electron. 2010, 11, 990. 67. K. J. Baeg, Y. Y. Noh, J. Ghim, B. Lim, and D. Y. Kim, Adv. Funct. Mater. 2008, 18, 3678. 68. K. J. Baeg, Y. Y. Noh, and D. Y. Kim, Solid-State Electron., 2009, 53, 1165. 69. J. C. Hsu, W. Y. Lee, H. C. Wu, K. Sugiyama, A. Hirao, and W. C. Chen, J. Mater. Chem., 2012, 22, 5820. 70. Y. H. Chou, H. J. Yen, C. L. Tsai, W. Y. Lee, G. S. Liou, and W. C. Chen, J. Mater. Chem. C., 2013, 1, 3235. 71. Y. L. Guo, J. Zhang, G. Yu, J. Zheng, L. Zhang, Y. Zhao, Y. G. Wen, and Y. Q. Liu, Org. Electron., 2012, 13, 1969. 72. Han, S. T. et al. Adv. Mater., 2012, 24, 3556. 73. Zhou, Y. et al. Sci. Rep., 2013, 3, 3093. 74. Lee, J. S. J. Mater. Chem., 2011, 21, 14097. 75. Debucquoy, M., Rockele, M., Genoe, J., Gelinck, G. H. & Heremans, P. Org. Electron., 2009, 10, 1252. 76. Kim, S. J. & Lee, J. S. Nano Lett., 2010, 10, 2884. 77. Han, S. T. et al. ACS Nano., 2014, 8, 1923. 78. Han, S. T., Zhou, Y., Xu, Z. X., Roy, V. A. L. & Hung, T. F. J. Mater. Chem., 2011, 21, 14575. 79. Zhuang, J. Q., Han, S. T., Zhou, Y. & Roy, V. A. L. J. Mater. Chem. C., 2014, 2, 4233. 80. Hong, A. J. et al. ACS Nano., 2011, 5, 7812. 81. Burkhardt, M. et al. Adv. Mater., 2010, 22, 2525. 82. Chiu, Y. C. et al. ACS Appl. Mater. Interfaces., 2014, 6, 12780. 83. Pan, T. M. & Yeh, W.W. Appl. Phys. Lett., 2008, 92, 173506. 84. Gao, X. et al. Org. Electron., 2014, 15, 2486. 85. Han, S. T., Zhou, Y., Yang, Q. D., Lee, C. S. & Roy, V. A. L. Part. Syst. Char. 2013, 30, 599. 86. Dutta, S. & Narayan, K. S. Adv. Mater., 2004, 16, 2151. 87. Feng, C. G., Mei, T., Hu, X. A. & Pavel, N. Org. Electron. 2010, 11, 1713. 88. Hu, Y., Dong, G. F., Liu, C., Wang, L. D. & Qiu, Y. Appl. Phys. Lett., 2006, 89, 072108. 89. Wang, H. et al. Org. Electron., 2011, 12, 1236. 90. Tang, Q. X. et al. Adv. Mater., 2007, 19, 2624. 91. Narayan, K. S. & Kumar, N. Appl. Phys. Lett., 2001, 79, 1891. 92. Wang, L. P. et al. J. Mater. Chem. C., 2014, 2, 6484. 93. Han, S. T. et al. J. Mater. Chem. C., 2015, 3, 3173. 94. Guo, Y. L. et al. Adv. Mater., 2009, 21, 1954. 95. Zhou, Y. et al. Nat. Commun., 2014, 5, 4720. Chapter 2. 1. T. Siegrist, C. Besnard, S. Haas, M. Schiltz, P. Pattison, D. Chernyshov, B. Batlogg, C. Kloc, Adv. Mater., 2007, 19, 2079. 2. Z. Bao, A. Dodabalapur, A. J. Lovinger, Appl. Phys. Lett., 1996, 69, 4108. 3. L. Torsi, A. Dodabalapur, L. J. Rothberg, A. W. P. Fung, H. E. Katz, Science., 1996, 272, 1462. 4. Y. L. Guo, G. Yu, Y. Q. Liu, Adv. Mater., 2010, 22, 4427. 5. Y. M. Sun, Y. Q. Liu, D. B. Zhu, J. Mater. Chem., 2005, 15, 53. 6. M. Muccini, Nat. Mater., 2006, 5, 605. 7. M. Granstrom, K. Petritsch, A. C. Arias, A. Lux, M. R. Andersson, R. H. Friend, Nature., 1998, 395, 257. 8. S. Gunes, H. Neugebauer, N. S. Sariciftci, Chem. Rev., 2007, 107, 1324. 9. C. L. Liu, W. C. Chen, Polymer Chemistry., 2011, 2, 2169. 10. C. J. Chen, H. J. Yen, W. C. Chen, and G. S. Liou. J. Polym. Sci. Part A: Polym. Chem., 2011, 49, 3709. 11. C. J. Chen, Y. C. Hu, and G. S. Liou. Chem. Commun., 2013, 49, 2536. 12. Y. L. Liu, K. L. Wang, G. S. Huang, C. X. Zhu, E. S. Tok, K. G. Neoh, E. T. Kang, Chem. Mater., 2009, 21, 3391. 13. P. Heremans, G. H. Gelinck, R. Muller, K. J. Baeg, D. Y. Kim, Y. Y. Noh, Chem. Mater., 2011, 23, 341. 14. Z. N. Bao, Y. Feng, A. Dodabalapur, V. R. Raju, A. J. Lovinger, Chem. Mater., 1997, 9, 1299. 15. H. T. Yi, M. M. Payne, J. E. Anthony, V. Podzorov, Nat. Commun., 2012, 3. 16. S. J. Kim, J. S. Lee, Nano Letters., 2010, 10, 2884. 17. Y. C. Lai, K. Ohshimizu, W. Y. Lee, J. C. Hsu, T. Higashihara, M. Ueda, W. C. Chen, J. Mater. Chem., 2011, 21, 14502. 18. L. A. Majewski, R. Schroeder, M. Grell, Adv. Mater., 2005, 17, 192. 19. T. Kurosawa, Y. C. Lai, T. Higashihara, M. Ueda, C. L. Liu, W. C. Chen, Macromolecules., 2012, 45, 4556. 20. T. Kurosawa, T. Higashihara, M. Ueda, Polymer Chemistry., 2013, 4, 16. 21. K. Muller, I. Paloumpa, K. Henkel, D. Schmeisser, J. Appl. Phys., 2005, 98. 22. J. Veres, S. Ogier, G. Lloyd, D. De Leeuw, Chem. Mater., 2004, 16, 4543. 23. G. S. Liou, M. A. Kakimoto and Y. Imai* J. Polym. Sci. Part A: Polym. Chem., 1992, 30, 2195. Chapter 3. 1. J. R. Platt, J. Chem. Phys. 1961, 34, 862 2. V. Goulle, A. Harriman, J.-M. Lehn, J. Chem. Soc., Chem. Commun. 1993, 1034. 3. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612. 4. S. Seo, Y. Kim, Q. Zhou, G. Clavier, P. Audebert, E. Kim, Adv. Funct. Mater. 2012, 22, 3556. 5. Y. X. Yuan, Y. Chen, Y. C. Wang, C. Y. Su, S. M. Liang, H. Chao, L. N. Ji, Inorg. Chem. Commun. 2008, 11, 1048 6. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797. 7. P. Audebert, F. Miomandre, Chem. Sci. 2013, 4, 575. 8. Y. Kim, E. Kim, G. Clavier, P. Audebert, Chem. Commun. 2006, 3612. 9. H. J. Yen, G. S. Liou, Chem. Commun. 2013, 49, 9797. 10. Klauk, H. Chem. Soc. Rev., 2010, 39, 2643. 11. Wen, Y., Liu, Y., Guo, Y., Yu, G. & Hu, W. Chem. Rev., 2011, 111, 3358. 12. Chen, F. C., Chu, C. W., He, J., Yang, Y. & Lin, J. L. Appl. Phys. Lett., 2004, 85, 3295. 13. Zilberberg, K., Meyer, J. & Riedl, T. J. Mater. Chem. C., 2013, 1, 4796. 14. Han, S. T., Zhou, Y. & Roy, V. A. Adv. Mater., 2013, 25, 5425. 15. Leong, W. L. et al. J. Mater. Chem., 2011, 21, 5203. 16. Gwinner, M. C. et al. Adv. Mater., 2012, 24, 2728. 17. Loi, A., Manunza, I. & Bonfglio, A. Appl. Phys. Lett., 2005, 86, 103512. 18. Yu, H., Bao, Z. A. & Oh, J. H. Adv. Funct. Mater., 2013, 23, 629. 19. Wakayama, Y., Hayakawa, R. & Seo, H. S. Sci. Technol. Adv. Mater., 2014, 15, 024202. 20. Han, S. T. et al. Adv. Mater., 2012, 24, 3556. 21. Zhou, Y. et al. Sci. Rep., 2013, 3, 3093. 22. Lee, J. S. J. Mater. Chem., 2011, 21, 14097. 23. Debucquoy, M., Rockele, M., Genoe, J., Gelinck, G. H. & Heremans, P. Org. Electron., 2009, 10, 1252. 24. Kim, S. J. & Lee, J. S. Nano Lett., 2010, 10, 2884. 25. Han, S. T. et al. ACS Nano., 2014, 8, 1923. 26. Han, S. T., Zhou, Y., Xu, Z. X., Roy, V. A. L. & Hung, T. F. J. Mater. Chem., 2011, 21, 14575. 27. Zhuang, J. Q., Han, S. T., Zhou, Y. & Roy, V. A. L. J. Mater. Chem. C., 2014, 2, 4233. 28. Hong, A. J. et al. ACS Nano., 2011, 5, 7812. 29. Burkhardt, M. et al. Adv. Mater., 2010, 22, 2525. 30. Chiu, Y. C. et al. ACS Appl. Mater. Interfaces., 2014, 6, 12780. 31. Pan, T. M. & Yeh, W.W. Appl. Phys. Lett., 2008, 92, 173506. 32. Gao, X. et al. Org. Electron., 2014, 15, 2486. 33. Han, S. T., Zhou, Y., Yang, Q. D., Lee, C. S. & Roy, V. A. L. Part. Syst. Char., 2013, 30, 599. 34. Dutta, S. & Narayan, K. S. Adv. Mater., 2004, 16, 2151. 35. Feng, C. G., Mei, T., Hu, X. A. & Pavel, N. Org. Electron., 2010, 11, 1713. 36. Hu, Y., Dong, G. F., Liu, C., Wang, L. D. & Qiu, Y. Appl. Phys. Lett., 2006, 89, 072108. 37. Wang, H. et al. Org. Electron., 2011, 12, 1236. 38. Tang, Q. X. et al. Adv. Mater., 2007, 19, 2624. 39. Narayan, K. S. & Kumar, N. Appl. Phys. Lett., 2001, 79, 1891. 40. Wang, L. P. et al. J. Mater. Chem. C., 2014, 2, 6484. 41. Han, S. T. et al. J. Mater. Chem. C., 2015, 3, 3173. 42. Guo, Y. L. et al. Adv. Mater., 2009, 21, 1954. 43. Zhou, Y. et al. Nat. Commun., 2014, 5, 4720. 44. H. J. Yen, C. J. Chen and G. S. Liou. Chem. Commun., 2013, 49, 630. 45. C. W. Chang, G. S. Liou, and S. H. Hsiao. J. Mater. Chem., 2007, 17, 1007. 46. Ben Zhong Tang, Yuning Hong, Sijie Chen and Ryan Tsz Kin Kwok. Water-soluble AIE Luminogen for Monitoring and Retardation of Amyloid Fibrillation of Insulin. US 20120172296 A1 (2012). 47. Ben Zhong Tang, Wing Yip Lam, Jianzhao Liu and Faisal Mahtab. Silica Nanoparticles with Aggregation Induced Emission Characteristics as Fluorescent Bioprobe for Intracellular Imaging and Protein Carrier. US 20130210047 A1 (2013). 48. X. R. Tong and S. R. Forrest, Org. Electron., 2011, 12, 1822. 49. K. J. Baeg, M. Binda, D. Natali, M. Caironi, and Y. Y. Noh, Adv. Mater., 2013, 25, 4267. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68484 | - |
| dc.description.abstract | 本論文分為四個章節,第一章為總體序論,簡述高性能高分子、有機-無機複合材料及高分子複合材料記憶體元件的應用及發展。第二章中,以SiO2/Si為基底,接著以旋轉塗佈法沉積一層駐極體用來捕捉電洞與電子,駐極體分別是TPA-PIS、TPA-PES與TPA-PETS,它們擁有相同的施體與受體但不同的連接結構,探討由於結構能階等特性導致分別擁有的不同電性特徵。第三章中,藉由合成出具發光效應之高分子,第一步將其製備為電變色發光元件,探討由於不同結構導致不同的發光效應以及元件穩定性;第二步將具有發光性質的高分子製備成光電晶體式記憶體,未來亦能將其應用於紫外光感測器。第四章為結論。 | zh_TW |
| dc.description.abstract | This study has been separated into four chapters. Chapter 1 is general introduction of high performance polymer, organic-inorganic hybrid materials, and polymer hybrid memory. In chapter 2, aromatic sulfonyl-containing polyether (TPA-PES), polyester (TPA-PETS) and polyimide (TPA-PIS) have been prepared successfully for investigating the relationship between structure of these high-performance polymers with different linkage groups but the same donor and acceptor units and memory properties, and exploring the effects of linkages on memory behaviors of the obtained devices. The different linkages of the three polymers are expected to have distinct dipole moment, linkage conformation, energy band gaps and memory properties. In chapter 3, novel electrochromism (EC) and photoluminescence (PL)-active TPA-CN-CH, TPA-CN-TPE and TPA-OMe-TPE were prepared by direct polymerization. Furthermore, by introducing viologen into electrolyte as a counter EC layer for charge balance, the resulted EFC exhibited notable improvement in reducing oxidation potential and switching recovery time with enhanced fluorescent contrast ratio during pulse on/off multi-cyclic scanning. An OFET memory containing a novel organic polymer TPA-CN-TPE, in which the photo-induced charges can be successfully trapped and detrapped. The luminescent polymer emits intense green emission upon ultraviolet (UV) light excitation and serves as a trapping element of charges injected from the pentacene semiconductor layer. The present study on photo-assisted novel memory may motivate the research on a new type of light tunable charge trapping photo-reactive memory devices. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:22:35Z (GMT). No. of bitstreams: 1 ntu-106-R04549022-1.pdf: 5329947 bytes, checksum: 3c713e9dce28be8eaf32ad6ad2aab130 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | TABLE OF CONTENTS
ACKNOWLEDGEMENTS......i ABSTRACT (in English)......ii ABSTRACT (in Chinese)......iii TABLE OF CONTENTS......iv LIST OF TABLES......viii LIST OF FIGURES......ix LIST OF SCHEMES......xiv CHAPTER 1......1 CHAPTER 2......40 CHAPTER 3......87 CHAPTER 4......138 CHPATER 1 General Introduction 1.1 High Performance Polymers......2 1.1.1 Preparation of Aromatic Polyimides......4 1.1.2 Modification of Aromatic Polyimides......6 1.1.3 Functional Hybrid Organic-Inorganic Nanocomposites......7 1.1.4 Polyimides with Hydroxyl Group......8 1.1.5 Synthetic method of Organic-Inorganic Nanocomposites......9 1.1.6 Titania-Polyimide Hybrids......11 1.1.7 Zirconia-Polyimide Hybrids......14 1.2 Polymer Memory Devices......17 1.2.1 Categories of Polymer Memory......18 1.2.2 Mechanisms of Transistor type Polymeric Memory......21 1.2.3 Development of Polymeric Memory......24 1.3 Aggregation-Induced Emission and Electrofluorochromic Devices......26 1.3.1 Brief History and General Concept......26 1.3.2 Fluorescent Switching Mechanism......26 1.3.3 Electrofluorochromic Molecules and Materials......28 1.4 Phototansistor......30 1.4 Research Motivation......33 REFERENCES AND NOTES......34 CHPATER 2 Linkage Effect of Triphenylamine-Based Aromatic Polymers on Diverse Memory Behavior ABSTRACT......41 2.1 Introduction......42 2.2.1 Materials......45 2.2.2 Polymer Synthesis......46 2.2.3 Polymer Properties Measurements......47 2.2.4 Device Fabrication and Measurement......48 2.2.5 Morphology characterization......49 2.2.6 Computational......49 2.3 Results and discussion......50 2.3.1 Polymer synthesis and characterization......50 2.3.2 Thermal Properties and Solubility Behavior of the Polymers......53 2.3.3 Optical and electrochemical properties......55 2.3.4 Surface characterization......60 2.3.5 OFET memory characteristics......62 2.3.6 Operation Mechanism......80 2.4 Conclusions......84 REFERENCES AND NOTES......85 CHPATER 3 High Performance Electrofluorochromic Devices and Phototransistor Based on TPA-based polymers and characterization between various structures ABSTRACT......88 3.1 Introduction......89 3.2 Experimental Section......93 3.2.1 Materials......93 3.2.2 Polymer Synthesis......94 3.2.3 Polymer Properties Measurements......95 3.2.4 Device Fabrication and Measurement......96 3.3 Results and Discussion......99 3.3.1 Polymer Synthesis and Characterization......99 3.3.2 Electrochemical and Electrochromic Properties of the EFC Devices......103 3.3.3 Electrofluorochromic Properties of the EFC Devices......104 3.3.4 The Effect of HV as Counter Layer on Charge Balance......109 3.3.5 Phototransistor type memory device characteristics......117 3.3.6 Electronic properties of charge trapping memory......118 3.3.7 Operation Mechanism under UV......128 3.3.8 DR value, photo-responsibility and photo-sensitivity of photosensor......129 3.4 Conclusions......133 REFERENCES AND NOTES......135 LIST OF TABLES CHAPTER 1 Table 1.1 Comparisons of Optical Materials.......7 CHAPTER 2 Table 2.1 Inherent Viscosity and Molecular Weights of Polymers......51 Table 2.2 Thermal Properties of Polymers......54 Table 2.3 Solubility Behavior of Polymers......54 Table 2.4 Optical and electrochemical properties of the synthesized polymers......57 Table 2.5 Electrical properties of transistor type memory devices......64 CHAPTER 3 Table 3.1 Inherent Viscosity and Molecular Weights of Polymers......101 Table 3.2 Solubility Behavior of Polymers......106 LIST OF FIGURES CHAPTER 1 Figure 1.1 The structures of commercially available high-performance polymers......3 Figure 1.2 Process of in situ method of metal nanoparticles in the polymer matrix......11 Figure 1.3 Thickness and refractive index of the sol-gel TiO2 film at various annealing temperatures......12 Figure 1.4 Top: The reaction route for polyimide and titania precursors; Bottom: Transmittance UV-visible spectra of 6FPI hybrid (a) thin films (thickness: 150–650 nm) and (b) thick films (thickness: 20–30 mm)......13 Figure 1.5 (a) Structure of the BPE-PTCDI based OFET memory device. (b) Structures of the polyimide which are used as dielectric layer......13 Figure 1.6 Dispersion strategies to obtain a highly transparent nanocomposite of high refractive index......14 Figure 1.7 Optical transmission spectra of F-6FTiX hybrid thick films (a) and (c) (thickness: ~ 19 μm); and thin films (b) and (d) (thickness: 500–600 nm). The inset figure shows the transmission spectra of hybrid thick and thin films in 450–700 nm of wavelength......16 Figure 1.8 Variation of the refractive index of the (a) F-6FTiX, (b) F-6FZrX hybrid films with wavelength. The inset figure shows the variation of the refractive index at 633 nm with different titania and ziconia content......17 Figure 1.9 OFET configurations: (a) top contact device and (b) bottom contact device, with various dielectric layers, (c) floating gate OFET, (d) charge trapping OFET and (e) ferroelectric OFET, for showing memory effects......19 Figure 1.10 (a) top contact OFET memory device. (b) An example of the shift in ID - VG curves at VD = -15 V towards the positive direction collected from the device......21 Figure 1.11 Schematic configuration and operational mechanism of p-type organic transistor memory devices with (a) polymer electret, (b) nano floating-gate or (c) ferroelectric material as charge storage or polarization layer......23 Figure 1.12 (a) Switchable dyad system, and (b) direct electrochemical switch of the fliuorescence......27 Figure 1.13 Switchable dyad though (a) electron transfer or (b) energy transfer......28 Figure 1.14 The first example of electrofluorochromic devices......29 Figure 1.15 Fluorescence intensity changes, and electrochromic and electrofluorochromic behavior of the EFC device using CN-PI and CN-PA......30 CHAPTER 2 Figure 2.1 Schematic configuration of the transistor type memory device and the chemical structures of charge-trapping layer......50 Figure 2.2 IR spectra of polymer TPA-PES......51 Figure 2.3 IR spectra of polymer TPA-PETS......51 Figure 2.4 IR spectra of polymer TPA-PIS......52 Figure 2.5 UV-vis absorption spectra of three polymers......56 Figure 2.6 (a) Oxidation from cyclic voltammograms. (b) Reduction from cyclic voltammograms. (c) Energy band gap diagram of semiconductor layer and charge-trapping layer......58 Figure 2.7 Molecular simulation estimated by Gaussian......59 Figure 2.8 Water contact angle for polymer electrets of TPA-PES, TPA-PETS and TPA-PIS......61 Figure 2.9 AFM images of pentacene atop charge-trapping layer and polymer electrets of TPA-PES, TPA-PETS and TPA-PIS......61 Figure 2.10 Transfer curves of TPA-PIS-based p-type memory devices for different writing and erasing processes......66 Figure 2.11 Transfer curves of TPA-PES-based p-type memory devices for different writing and erasing processes......67 Figure 2.12 Transfer curves of TPA-PETS-based p-type memory devices for different writing and erasing processes......68 Figure 2.13 Drain current 1/2 (A1/2) vs. Gate voltage (V) diagrams of TPA-PIS-based p-type memory devices for different writing and erasing processes......70 Figure 2.14 Drain current 1/2 (A1/2) vs. Gate voltage (V) diagrams of TPA-PES-based p-type memory devices for different writing and erasing processes......71 Figure 2.15 Drain current 1/2 (A1/2) vs. Gate voltage (V) diagrams of TPA-PES-based p-type memory devices for different writing and erasing processes......72 Figure 2.16 Volatile memory properties of devices prepared from polymer electrets of TPA-PIS......74 Figure 2.17 Volatile memory properties of devices prepared from polymer electrets of TPA-PES......75 Figure 2.18 Volatile memory properties of devices prepared from polymer electrets of TPA-PETS......76 Figure 2.19 Retention time (a) TPA-PIS, Vg = -5 V (b) Corresponding transfer curves......77 Figure 2.20 Retention time (a) TPA-PES, Vg = -10 V (b) Corresponding transfer curves......78 Figure 2.21 Retention time (a) TPA-PETS, Vg = -10 V (b) Corresponding transfer curves......79 Figure 2.22 WRER cycles and endurance diagram of TPA-PIS......81 Figure 2.23 WRER cycles and endurance diagram of TPA-PETS......82 CHAPTER 3 Figure 3.1 IR spectrum of polymer TPA-CN-CH......100 Figure 3.2 IR spectrum of polymer TPA-CN-TPE......100 Figure 3.3 IR spectrum of polymer TPA-OMe-TPE......101 Figure 3.4 NMR spectrum of polymer TPA-CN-CH......101 Figure 3.5 NMR spectrum of polymer TPA-CN-TPE......102 Figure 3.6 NMR spectrum of polymer TPA-OMe-TPE......102 Figure 3.7 The electrochemical behaviors of (a) TPA-CN-CH, (b) TPA-CN-TPE and (c) TPA-OMe-TPE devices......105 Figure 3.8 (a) UV-Vis spectra (b) EC behavior of TPA-CN-CH, TPA-CN-TPE and TPA-OMe-TPE device (polymer film 200±10 nm in thickness)......106 Figure 3.9 (a) Photographs under irradiation at 365 nm UV light and absorption and photoluminescence (PL) spectra of (a) TPA-CN-CH (b) TPA-CN-TPE (c) TPA-OMe-TPE......107 Figure 3.10 (a) applied voltage v.s. PL intensity and contrast diagram and (b) EFC behavior of EFC devices (polymer film 200±10 nm in thickness)......108 Figure 3.11 Estimation of fluorescence switching time at different step cycle times of 360, 60, 30, 20, and 10 sec of (a) TPA-CN-CH between 2.0V and -2.1 V monitored at 471 nm (λex=315 nm), (b) TPA-CN-TPE between 2.1 V and -2.2 V monitored at 510 nm (λex=343 nm) and (c) TPA-OMe-TPE between 1.75 V and -1.85 V monitored at 554 nm (λex=353 nm)......111 Figure 3.12 Cyclic voltammetry diagrams of TPA-CN-CH/HV, TPA-CN-TPE/HV and TPA-OMe-TPE/HV devices at a scan rate of 50mV/sec......112 Figure 3.13 UV-Vis spectra of (a) TPA-CN-CH/HV, (b) TPA-CN-TPE/HV and (c) TPA-OMe-TPE/HV......113 Figure 3.14 (a) applied voltage v.s. PL intensity and contrast diagrams of (a) TPA-CN-CH/HV, (b) TPA-CN-TPE/HV and (c) TPA-OMe-TPE/HV......115 Figure 3.15 Estimation of fluorescence switching time at different step cycle times of 360, 60, 30, 20, and 10 sec of (a) TPA-CN-CH/HV between 1.5V and -1.6 V monitored at 471 nm (λex=315 nm), (b) TPA-CN-TPE/HV between 1.5 V and -1.6 V monitored at 510 nm (λex=343 nm) and (c) TPA-OMe-TPE/HV between 1.4 V and -1.5 V monitored at 554 nm (λex=353 nm)......116 Figure 3.16 Typical transfer characteristics of devices using TPA-CN-TPE film as charge trapping layer with different writing and erasing processes......119 Figure 3.17 Transfer characteristics of device with TPA-CN-TPE film measured in dark and under UV irradiation with a power density ~720μW/cm2......121 Figure 3.18 The transfer curves of device with TPA-CN-TPE film programmed and erased at various bias voltages for 15 s with and without assistance of UV light......122 Figure 3.19 Measured retention time of TPA-CN-TPE based transistor memory device......124 Figure 3.20 Mechanism of retention time of TPA-CN-TPE based transistor memory device (Photo-induced memory property)......126 Figure 3.21 Transfer I-V of TPA-CN-TPE based device writing without applied gate bias and different incident light intensities, the dotted line is plotted at VG = 40 V in Fig 3.21. The device was erased by -100 V gate bias for 10 s after each measurement to guarantee the same starting state for each measurement......125 Figure 3.22 Drain-source current value at VG = 40 V obtained from Figure 3.20 plotted against UV power intensity, the leftmost point represents the current measured in the dark......126 Figure 3.23 WRER cycles of TPA-CN-TPE-based phototransistor devices......126 Figure 3.24 Transfer characteristics of device with TPA-PIS film measured in dark and under UV irradiation with a power density ~720 μW/cm2......127 Figure 3.25 The transfer curves of device with TPA-PIS film programmed and erased at various bias voltages for 15 s with and without assistance of UV light......128 Figure 3.26 Photo-responsibility and photo-sensitivity under different applied voltage......131 Figure 3.27 Photo-responsibility under different UV intensities......132 Figure 3.28 Photo-sensitivity under different UV intensities......132 LIST OF SCHEMES CHAPTER 1 Scheme 1.1 Two-step polymerization method of aromatic polyimides synthesis......6 Scheme 1.2 The sol-gel reaction of the hybrid synthesis......9 Scheme 1.3 Sol-gel synthesis of organic-inorganic nanocomposites......10 Scheme 1.4 Structures of the polyimides with hydroxyl groups and schemes of PI/ZrO2 hybrids......15 CHAPTER 2 Scheme 2.1. Synthesis methods of TPA-PES, TPA-PETS and TPA-PIS......47 CHAPTER 3 Scheme 3.1 Synthesis methods of TPA-CN-CH, TPA-CN-TPE and TPA-OMe-TPE......94 Scheme 3.2 EFC devices based on TPA-CN-CH, TPA-CN-TPE and TPA-OMe-TPE......97 Scheme 3.3 Phototransistor devices based on TPA-CN-TPE and TPA-PIS......99 | |
| dc.language.iso | en | |
| dc.subject | 電變色發光元件 | zh_TW |
| dc.subject | 連接結構效應 | zh_TW |
| dc.subject | (光)電晶體式記憶體 | zh_TW |
| dc.subject | phototransistor | en |
| dc.subject | linkage effect | en |
| dc.subject | transistive memory | en |
| dc.subject | electrofluorochromic device | en |
| dc.title | 高性能高分子合成及電晶體式記憶體與電變色發光元件之應用研究 | zh_TW |
| dc.title | Preparation of High Performance Polymers for the Applications of Transistor-Type Memory and Electrofluorochromic Devices | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 劉振良,呂奇明,龔宇睿,蕭勝輝 | |
| dc.subject.keyword | 連接結構效應,(光)電晶體式記憶體,電變色發光元件, | zh_TW |
| dc.subject.keyword | linkage effect,transistive memory,electrofluorochromic device,phototransistor, | en |
| dc.relation.page | 141 | |
| dc.identifier.doi | 10.6342/NTU201703861 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
