Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68482
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊馥菱
dc.contributor.authorKuan-Yu Chenen
dc.contributor.author陳冠宇zh_TW
dc.date.accessioned2021-06-17T02:22:31Z-
dc.date.available2017-08-25
dc.date.copyright2017-08-25
dc.date.issued2017
dc.date.submitted2017-08-19
dc.identifier.citation[1] A. B. Basset. On the motion of two spheres in a liquid, and allied problems. Proceedings of the London Mathematical Society, 18:369–377, 1887.
[2] R. Chen and Y. Lu. The flow characteristics of an interactive particle at low reynolds number. International Journal of Multiphase Flow, 25:1645–1655, 1999.
[3] I. G. Currie. Fundamental Mechanics of Fluids. CRC Press, 2002.
[4] R. Folkersma et al. Hydrodynamic interactions between two identical spheres held fixed side by side against a uniform stream directed perpendicular to the line connecting the spheres’ centres. International Journal of Multiphase Flow,26:877–887, 2000.
[5] C.-N. Huang. Theoretical investigation of the hydrodynamics force experienced by two approaching spheres immersed in a slightly viscous fluid. Master’s thesis,
National Taiwan University, 2014.
[6] I. Kim et al. Three-dimensional flow over two spheres placed side by side. Journal of Fluid Mechanics, 246:465–488, 1993.
[7] S. H. Lamb. Hydrodynamics. Dover Publications, 1945.
[8] L. M. Milne-Thomson. Theoretical Hydrodynamics. Dover Publications, 2011.
[9] T. Miloh. Hydrodynamics of deformable contiguous spherical shapes in an incompressible inviscid fluid. Journal of Engineering Mathematics, 11(4):349–372, 1977.
[10] H. Schlichting. Boundary Layer Theory. Springer, 2000.
[11] T. Tsuji et al. Unsteady three-dimensional simulation of interaction between flow and two particles. International Journal of Multiphase Flow, 29:1431–1450, 2003.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68482-
dc.description.abstract本論文結合勢流理論與邊界層理論來探討兩顆不可變形的球在無限大流域中以等速沿垂直球心連線方向的運動時,不同間距下球所受到的力。首先用勢流理論推導出在不考慮黏性的情況下球的形狀阻力,結果顯示兩球會互相吸引,另外還可以觀察到停滯點因為第二顆球的存在而從球的最前端和最後端往兩球間空隙偏移。接著將勢流理論求得的壓力場,與邊界層理論結合來計算球所受到的摩擦阻力,進而與形狀阻力相加求得總阻力。由於流場的不對稱性,本論文提出一個基於 Blasius series method 的近似方法來估計總阻力係數。此方法計算結果顯示在單球雷諾數為 100 時,阻力係數會隨兩球間距的增加而下降,這點和許多實驗與數值模擬觀察到的結果一致,不過計算出的阻力係數的值是有差距的,這方面的問題將會在最後作探討。zh_TW
dc.description.abstractThis thesis integrates potential flow theory and boundary layer theory to derive an approximate flow solution when two rigid spheres move constantly and perpendicularly to the line connecting their centers in an incompressible fluid of infinite extent. Particular interest is to derive the hydrodynamic force when the two spheres are kept at various separation distances. Potential flow theory is first applied to derive the inviscid force experienced by the spheres and the spheres are shown to attract each other when moving side-by-side. Furthermore, the phenomenon of the stagnation points shifting away from the foremost and the rearmost points of the spheres due to the presence of a second sphere is observed. Viscous force acting on the spheres is approximated by the boundary layer theory using the pressure field solved from the inviscid problem. Due to flow asymmetry from the foremost sphere point, an approximation based on Blasius series method is proposed to estimate the drag coefficient. The approach successfully captures the trend of decreasing drag coefficient with increasing gap between the spheres, observed in experiments and simulations, at single sphere Reynolds number of 100. However, quantitative discrepancy is found and will be discussed together with the model limitations and implementation issues.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:22:31Z (GMT). No. of bitstreams: 1
ntu-106-R04522102-1.pdf: 744598 bytes, checksum: 423a8c9a42968d80d2f5a500c69f52cb (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 iii
Abstract v
1 Introduction 1
1.1 Background and Objective . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Inviscid Theory 5
2.1 Velocity Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 Problem Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Velocity Potential . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.3 Determination of Coefficients . . . . . . . . . . . . . . . . . . 9
2.2 Convergence Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Flow around the Spheres . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Tangential velocity . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Stagnation Points . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Kinetic Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.1 Expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.2 Comparison with Solutions in Literature . . . . . . . . . . . . 21
2.4.3 Spheres of Different Sizes . . . . . . . . . . . . . . . . . . . . 23
2.5 Inviscid Force Acting on the Spheres . . . . . . . . . . . . . . . . . . 23
2.5.1 Pressure Field . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.2 Inviscid Force . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.6 Lift Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3 Viscous Theory 37
3.1 Boundary Layer Equations for Steady Axisymmetric flow over an
Axisymmetric Body . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.1.1 Blasius Series Method . . . . . . . . . . . . . . . . . . . . . . 38
3.2 Viscous Force Acting on the Spheres . . . . . . . . . . . . . . . . . . 40
3.2.1 Approximation Method . . . . . . . . . . . . . . . . . . . . . 40
3.2.2 Tangential Velocity . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2.3 Evaluation of Flow Asymmetry . . . . . . . . . . . . . . . . . 42
3.2.4 Friction Drag for Two Identical Spheres . . . . . . . . . . . . 43
4 Summary and Future Work 49
4.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Bibliography 51
dc.language.isoen
dc.title兩球沿連心線垂直方向等速運動下流體力之理論分析zh_TW
dc.titleTheoretical Investigation of Hydrodynamic Force when Dual Spheres Move Constantly and Perpendicularly to the Line of Centersen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡協澄,周逸儒
dc.subject.keyword勢流理論,邊界層理論,阻力係數,zh_TW
dc.subject.keywordtwo spheres,potential flow,boundary layer,drag coefficient,en
dc.relation.page52
dc.identifier.doi10.6342/NTU201703952
dc.rights.note有償授權
dc.date.accepted2017-08-20
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
727.15 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved