請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68467完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝銘鈞(Ming-Jium Shieh) | |
| dc.contributor.author | Wan-Yun Lien | en |
| dc.contributor.author | 連婉蘊 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:22:00Z | - |
| dc.date.available | 2022-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-20 | |
| dc.identifier.citation | 1. Davis, M.E. and D.M. Shin, Nanoparticle therapeutics: an emerging treatment modality for cancer. Nature reviews. Drug discovery, 2008. 7(9): p. 771.
2. Cho, K., et al., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research, 2008. 14(5): p. 1310-1316. 3. Fang, J., H. Nakamura, and H. Maeda, The EPR effect: unique features of tumor blood vessels for drug delivery, factors involved, and limitations and augmentation of the effect. Advanced drug delivery reviews, 2011. 63(3): p. 136-151. 4. Torchilin, V., Tumor delivery of macromolecular drugs based on the EPR effect. Advanced drug delivery reviews, 2011. 63(3): p. 131-135. 5. Brannon-Peppas, L. and J.O. Blanchette, Nanoparticle and targeted systems for cancer therapy. Advanced drug delivery reviews, 2004. 56(11): p. 1649-1659. 6. Pirollo, K.F. and E.H. Chang, Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends in biotechnology, 2008. 26(10): p. 552-558. 7. Cooper, G.M. and R.E. Hausman, The cell. Vol. 85. 2000: Sinauer Associates Sunderland. 8. Bourguignon, L.Y., et al., CD44 interaction with tiam1 promotes Rac1 signaling and hyaluronic acid-mediated breast tumor cell migration. Journal of Biological Chemistry, 2000. 275(3): p. 1829-1838. 9. Gomes, J., et al., Sodium hyaluronate (hyaluronic acid) promotes migration of human corneal epithelial cells in vitro. British journal of ophthalmology, 2004. 88(6): p. 821-825. 10. Lesley, J., et al., Hyaluronan binding by cell surface CD44. Journal of Biological Chemistry, 2000. 275(35): p. 26967-26975. 11. Isacke, C.M. and H. Yarwood, The hyaluronan receptor, CD44. The international journal of biochemistry & cell biology, 2002. 34(7): p. 718-721. 12. Li, C., et al., Identification of pancreatic cancer stem cells. Cancer research, 2007. 67(3): p. 1030-1037. 13. Ricardo, S., et al., Breast cancer stem cell markers CD44, CD24 and ALDH1: expression distribution within intrinsic molecular subtype. Journal of clinical pathology, 2011. 64(11): p. 937-946. 14. Takaishi, S., et al., Identification of gastric cancer stem cells using the cell surface marker CD44. Stem cells, 2009. 27(5): p. 1006-1020. 15. Luo, Y., M.R. Ziebell, and G.D. Prestwich, A hyaluronic acid− taxol antitumor bioconjugate targeted to cancer cells. Biomacromolecules, 2000. 1(2): p. 208-218. 16. Choi, K.Y., et al., Smart nanocarrier based on PEGylated hyaluronic acid for cancer therapy. ACS nano, 2011. 5(11): p. 8591-8599. 17. Momparler, R.L., et al., Effect of Adriamycin on DNA, RNA, and Protein Synthesis in Cell-free Systems and Intact Cells. Cancer Research, 1976. 36(8): p. 2891-2895. 18. Chatterjee, K., et al., Doxorubicin Cardiomyopathy. Cardiology, 2010. 115(2): p. 155-162. 19. Barenholz, Y.C., Doxil®—the first FDA-approved nano-drug: lessons learned. Journal of controlled release, 2012. 160(2): p. 117-134. 20. Yang, K., et al., Graphene in mice: ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano letters, 2010. 10(9): p. 3318-3323. 21. Zheng, M., et al., Single-step assembly of DOX/ICG loaded lipid–polymer nanoparticles for highly effective chemo-photothermal combination therapy. ACS nano, 2013. 7(3): p. 2056-2067. 22. Zheng, M., et al., Robust ICG theranostic nanoparticles for folate targeted cancer imaging and highly effective photothermal therapy. ACS applied materials & interfaces, 2014. 6(9): p. 6709-6716. 23. Huang, X., et al., Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. Journal of the American Chemical Society, 2006. 128(6): p. 2115-2120. 24. Demchenko, A.P., Advanced fluorescence reporters in chemistry and biology I: Fundamentals and molecular design. Vol. 8. 2010: Springer Science & Business Media. 25. Weissleder, R., A clearer vision for in vivo imaging. Nature biotechnology, 2001. 19(4): p. 316-316. 26. Peng, C.-L., et al., Multimodal image-guided photothermal therapy mediated by 188Re-labeled micelles containing a cyanine-type photosensitizer. ACS nano, 2011. 5(7): p. 5594-5607. 27. Chou, T. and N. Martin, CompuSyn for drug combinations: PC software and user’s guide: a computer program for quantitation of synergism and antagonism in drug combinations, and the determination of IC50 and ED50 and LD50 values. ComboSyn, Paramus, NJ, 2005. 28. Chou, T.-C. and P. Talalay, Quantitative analysis of dose-effect relationships: the combined effects of multiple drugs or enzyme inhibitors. Advances in enzyme regulation, 1984. 22: p. 27-55. 29. Aulton, M.E. and K.M.G. Taylor, Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines. 2017: Elsevier Health Sciences. 154-155. 30. Engel, E., et al., Light-induced decomposition of indocyanine green. Investigative ophthalmology & visual science, 2008. 49(5): p. 1777-1783. 31. Chekhun, S., et al., Expression of biomarkers related to cell adhesion, metastasis and invasion of breast cancer cell lines of different molecular subtype. Experimental oncology, 2013(35,№ 3): p. 174-179. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68467 | - |
| dc.description.abstract | 本作將光感藥物IR-780與化療藥物阿黴素(doxorubicin)分別接枝在親水的天然高分子玻尿酸上,形成親疏水兩性的高分子:HA-IR與HA-DOX。藉由親疏水的特性,HA-IR與HA-DOX可形成奈米等級的顆粒,本作中稱為HA-IR/DOX NP。根據不同的HA-IR與HA-DOX比例,HA-IR/DOX NP平均粒徑介於120到170奈米不等,其粒徑具有相對狹窄的分佈。由穩定性測試,此奈米顆粒在保存環境下具有一定的穩定性。由細胞測試,HA-IR/DOX NP可以標靶到CD44過度表現的乳癌細胞MDA-MB-231。而光熱測試則可見HA-IR/DOX NP仍具有光熱升溫的效果。此外HA-IR的螢光,可進行小鼠體內造影。由造影結果顯示HA-IR/DOX NP在尾靜脈注射後會累積至腫瘤。由小鼠抗腫瘤試驗,HA-IR/DOX NP在近紅外光雷射照射下,可達到良好的抗腫瘤效果。 | zh_TW |
| dc.description.abstract | In this study, a photothermal drug, IR-780, and a chemotherapy drug, doxorubicin, were conjugated to hyaluronic acid respectively to form two kinds of amphiphilic polymers, HA-IR and HA-DOX. Based on the amphiphilic property, the HA-IR and HA-DOX mixture can self-assembly to nanoparticles, HA-IR/DOX NP. With different HA-IR/HA-DOX ratios, HA-IR/DOX NPs exhibited particle size from 120 to 170 nm with relatively narrow size distribution. The stability test showed that the HA-IR/DOX NP were stable in 4°C storage condition. From in vitro test, HA-IR/DOX NP targeted to CD44-overexpression cancer cell line, MDA-MB-231. The HA-IR/DOX NP showed photothermal effect and phototoxicity both in vitro and in vivo. On the other hand, the fluorescent property of IR-780 provide a function of in vivo imaging, which shows that the HA-IR/DOX NP accumulated to the tumor via EPR effect and CD44-targeting ligand. The antitumor effect showed that the HA-IR/DOX NP combined the chemo-therapy and the photo-thermal therapy. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:22:00Z (GMT). No. of bitstreams: 1 ntu-106-R04548038-1.pdf: 3015374 bytes, checksum: 4be5ebfd355a127010fec26b59940e1b (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Nanomedicine 1 1.2 Hyaluronic Acid and CD44 1 1.3 Chemotherapy of Doxorubicin 2 1.4 Photothermal Therapy and IR-780 2 1.5 Nanoparticle Design 3 Chapter 2 Materials and Methods 4 2.1 Materials 4 2.2 Synthesis of HA-IR and HA-DOX 4 2.3 Characteristics of HA-IR and HA-DOX 5 2.4 Preparation of HA-IR/DOX NP 6 2.5 Characteristics of HA-IR/DOX NP 6 2.6 Photothermal Properties of HA-IR/DOX NP 7 2.7 Drug Release of HA-IR/DOX NPs 8 2.8 Cell Culture 8 2.9 Expression of CD44 in Different Cancer Cell Lines 9 2.10 Cytotoxicity 10 2.11 Cellular Uptake 11 2.12 Binding Affinity 11 2.13 Animal Tumor Model 12 2.14 In Vivo Image 13 2.15 Statistical Analysis 13 Chapter 3 Result and Discussion 14 3.1 Characteristics of HA-IR and HA-DOX 14 3.2 Properties of HA-DOX, HA-IR, and HA-IR/DOX NPs 15 3.3 Photothermal Effect of HA-IR/DOX NP 16 3.4 Stability of HA-IR/DOX NP 17 3.5 Drug Release of HA-IR/DOX NP 17 3.6 Expression of CD44 in Different Cancer Cell Lines 17 3.7 Cytotoxicity 18 3.8 Cellular Uptake 19 3.9 Binding Affinity 19 3.10 In Vivo Image of HA-IR/DOX NP 20 3.11 In Vivo Photothermal Effect 20 3.12 In Vivo Antitumor Effect 21 Chapter 4 Conclusion 22 References 23 Schemes 28 Tables 30 Figures 32 | |
| dc.language.iso | en | |
| dc.subject | 奈米顆粒 | zh_TW |
| dc.subject | 玻尿酸 | zh_TW |
| dc.subject | CD44 | zh_TW |
| dc.subject | 光熱治療 | zh_TW |
| dc.subject | 阿黴素 | zh_TW |
| dc.subject | Doxorubicin | en |
| dc.subject | Photothermal Therapy | en |
| dc.subject | Hyaluronic Acid | en |
| dc.subject | CD44 | en |
| dc.subject | Nanoparticle | en |
| dc.title | 玻尿酸接枝阿黴素及近紅外光染料作為CD44標靶之奈米載體以結合光熱與化學治療 | zh_TW |
| dc.title | CD44 targeted delivery of hyaluronic acid-Doxorubicin/NIR dye conjugates as nanocarrier for the photothermal/chemotherapy | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊台鴻(Tai-Horng Young),林文澧(Win-Li Lin),駱俊良(Chun-Liang Lo) | |
| dc.subject.keyword | 阿黴素,光熱治療,玻尿酸,CD44,奈米顆粒, | zh_TW |
| dc.subject.keyword | Doxorubicin,Photothermal Therapy,Hyaluronic Acid,CD44,Nanoparticle, | en |
| dc.relation.page | 41 | |
| dc.identifier.doi | 10.6342/NTU201703079 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-20 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 醫學工程學研究所 | zh_TW |
| 顯示於系所單位: | 醫學工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.94 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
