請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68451完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 顏家鈺 | |
| dc.contributor.author | Alexander Tseng | en |
| dc.contributor.author | 曾煥哲 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:21:28Z | - |
| dc.date.available | 2020-08-25 | |
| dc.date.copyright | 2017-08-25 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-20 | |
| dc.identifier.citation | [1] Zhang, Sheng Shui. 'The effect of the charging protocol on the cycle life of a Li-ion battery.' Journal of power sources 161.2 (2006): 1385-1391.
[2] Anseán, D., et al. 'Fast charging technique for high power lithium iron phosphate batteries: A cycle life analysis.' Journal of Power Sources 239 (2013): 9-15. [3] [Lithium-ion battery data sheet]. (n.d.). Revived from http://na.industrial.panasonic.com/sites/default/pidsa/files/ncr18650.pdf [4] [Effects of Self discharge].(n.d.). Revived from http://batteryuniversity.com/learn/article/elevating_self_discharge [5] Battery Performance Characteristics. (n.d.). Revived from http://www.mpoweruk.com/performance.htm [6] Martin, Thomas L., and Daniel P. Siewiorek. ‘’Balancing batteries, power, and performance: system issues in cpu speed-setting for mobile computing.’’ Diss. PhD thesis, Department of Electrical and Computer Engineering, Carnegie Mellon University, 1999. [7] Rao, Ravishankar, Sarma Vrudhula, and Daler N. Rakhmatov. 'Battery modeling for energy aware system design.' Computer 36.12 (2003): 77-87. [8] Broussely, M., et al. 'Main aging mechanisms in Li ion batteries.' Journal of power sources 146.1 (2005): 90-96. [9] Haifeng, Dai, Wei Xuezhe, and Sun Zechang. 'A new SOH prediction concept for the power lithium-ion battery used on HEVs.' Vehicle Power and Propulsion Conference, 2009. VPPC'09. IEEE. IEEE, 2009. [10] Dees, Dennis W., Vincent S. Battaglia, and André Bélanger. 'Electrochemical modeling of lithium polymer batteries.' Journal of power sources 110.2 (2002): 310-320. [11] Song, Li, and James W. Evans. 'Electrochemical‐Thermal Model of Lithium Polymer Batteries.' Journal of the Electrochemical Society 147.6 (2000): 2086-2095. [12] Ledovskikh, A., et al. 'Modelling of rechargeable NiMH batteries.' Journal of alloys and compounds 356 (2003): 742-745. [13] Parthiban, Thirumalai, R. Ravi, and N. Kalaiselvi. 'Exploration of artificial neural network [ANN] to predict the electrochemical characteristics of lithium-ion cells.' Electrochimica Acta 53.4 (2007): 1877-1882. [14] Shen, W. X., et al. 'Adaptive neuro-fuzzy modeling of battery residual capacity for electric vehicles.' Industrial Electronics, IEEE Transactions on 49.3 (2002): 677-684. [15] Salkind, Alvin J., et al. 'Determination of state-of-charge and state-of-health of batteries by fuzzy logic methodology.' Journal of Power Sources 80.1 (1999): 293-300. [16] Linden, David, and Thomas B. Reddy. 'Handbook of batteries.' (1865). [17] Doerffel, Dennis, and Suleiman Abu Sharkh. 'A critical review of using the Peukert equation for determining the remaining capacity of lead-acid and lithium-ion batteries.' Journal of Power Sources 155.2 (2006): 395-400. [18] Chen, Min, and Gabriel Rincón-Mora. 'Accurate electrical battery model capable of predicting runtime and IV performance.' Energy conversion, ieee transactions on 21.2 (2006): 504-511. [19] Hentunen, Ari, Teemu Lehmuspelto, and Jussi Suomela. 'Time-Domain Parameter Extraction Method for Thévenin-Equivalent Circuit Battery Models.'Energy Conversion, IEEE Transactions on 29.3 (2014): 558-566. [20] Kroeze, Ryan C., and Philip T. Krein. 'Electrical battery model for use in dynamic electric vehicle simulations.' Power Electronics Specialists Conference, 2008. PESC 2008. IEEE. IEEE, 2008 [21] Lam, Long, Pavol Bauer, and Erik Kelder. 'A practical circuit-based model for Li-ion battery cells in electric vehicle applications.' Telecommunications Energy Conference (INTELEC), 2011 IEEE 33rd International. IEEE, 2011. [22] Andre, D., et al. 'Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. I. Experimental investigation.'Journal of Power Sources 196.12 (2011): 5334-5341. [23] Andre, D., et al. 'Characterization of high-power lithium-ion batteries by electrochemical impedance spectroscopy. II: Modelling.' Journal of Power Sources 196.12 (2011): 5349-5356. [24] Schweighofer, Bernhard, Klaus M. Raab, and Georg Brasseur. 'Modeling of high power automotive batteries by the use of an automated test system.'Instrumentation and Measurement, IEEE Transactions on 52.4 (2003): 1087-1091. [25] Zhang, Hanlei, and Mo-Yuen Chow. 'Comprehensive dynamic battery modeling for PHEV applications.' Power and Energy Society General Meeting, 2010 IEEE. IEEE, 2010. [26] Hu, Y., et al. 'A technique for dynamic battery model identification in automotive applications using linear parameter varying structures.' Control Engineering Practice 17.10 (2009): 1190-1201. [27] Kumar, Praveen, and Pavol Bauer. 'Parameter extraction of battery models using multiobjective optimization genetic algorithms.' Proceedings of 14th International Power Electronics and Motion Control Conference EPE-PEMC 2010. 2010. [28] Hu, Xiaosong, Shengbo Li, and Huei Peng. 'A comparative study of equivalent circuit models for Li-ion batteries.' Journal of Power Sources 198 (2012): 359-367. [29] Manwell, James F., and Jon G. McGowan. 'Extension of the kinetic battery model for wind/hybrid power systems.' Proceedings of EWEC. 1994. [30] Jongerden, Marijn R., and Boudewijn R. Haverkort. 'Which battery model to use?.' Software, IET 3.6 (2009): 445-457. [31] Rakhmatov, Daler, Sarma Vrudhula, and Deborah Wallach. 'A model for battery lifetime analysis for organizing applications on a pocket computer.' Very Large Scale Integration (VLSI) Systems, IEEE Transactions on 11.6 (2003): 1019-1030. [32] D. Rakhmatov and S. Vrudhula, “An analytical high-level battery model for use in energy management of portable electronic systems,” in Proceedings of the International Conference on Computer Aided Design (ICCAD’01), 2001, pp. 488–493 [33] Newman, John, and William Tiedemann. 'Porous‐electrode theory with battery applications.' AIChE Journal 21.1 (1975): 25-41. [34] Doyle, Marc, Thomas F. Fuller, and John Newman. 'Modeling of galvanostatic charge and discharge of the lithium/polymer/insertion cell.' Journal of the Electrochemical Society 140.6 (1993): 1526-1533. [35] Pinson, Matthew B., and Martin Z. Bazant. 'Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction.' Journal of the Electrochemical Society 160.2 (2013): A243-A250. [36] Dao, Thanh-Son, Chandrika P. Vyasarayani, and John McPhee. 'Simplification and order reduction of lithium-ion battery model based on porous-electrode theory.' Journal of Power Sources 198 (2012): 329-337. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68451 | - |
| dc.description.abstract | 能源危機促進了電動車的相關發展,而電池作為電動車的主要能源儲存裝置,其中的控制與監測成為電動車發展中不可或缺的一部分。
在電動車的模擬階段,需要電池模型以預測電池響應,確保各控制策略的可行性,而在實車測試階段,電池模型可用於電池管理系統預測電池響應,達到監控目的。本論文利用Maplesim中的多孔電極電化學電池模型,以Curve-fitting的方式進行電池模型參數擬合,並考量放電電流大小與電量對於參數之影響,之後建立電池模型,提供電池芯的完整資訊,其模擬效果在動態負載下,誤差峰值不超過五個百分點。論文的後半部探討電池老化對電池化學參數的影響,以定溫定電流重複充放電的放式,觀察電池參數對SOH變化,以利車用電池建立模型。 | zh_TW |
| dc.description.abstract | Energy crisis promotes the development of electric vehicles. As the main energy storage device, battery plays an important part of the development of EVs. A good battery model helps stimulate and predict the voltage response of the battery, which can ensure the efficiency of other control algorithms and maintain the safe usage of the battery.
In the first part of this thesis, MapleSim is used to build an electrochemical battery model of battery cell. The battery model considers the influences of magnitude of discharge current and state of charge on the parameters of the battery model. It can predict the voltage response within 5 % of voltage error under dynamic load. In the second part of this thesis, the influence of SOH on the battery parameters were discussed by charging and discharging the battery cell. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:21:28Z (GMT). No. of bitstreams: 1 ntu-106-R04522836-1.pdf: 2438575 bytes, checksum: b78390dd7471b83ff6b1357086c03d09 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 圖目錄 VII
表目錄 IX 第 1 章 導論 1 1.1 研究動機 1 1.2 鋰離子電池 1 1.3 二次電池性質總覽 2 1.3.1 電池容量 (Capacity) 2 1.3.2 放電C數 (C rate) 3 1.3.3 荷電狀態 (State-Of-Charge;SOC) 3 1.3.4 非線性容量效應 (Nonlinear Capacity Effects) 4 1.3.5 溫度影響 5 1.3.6 自放電效應 6 1.3.7 電池老化效應 7 1.3.8 State of Health 8 1.4 文獻回顧 9 1.4.1 電池模型 9 1.4.1.1 智慧型演算模型 9 1.4.1.2 分析型模型 10 1.4.1.3 電路模型 14 1.4.1.4 電化學模型 17 1.5 論文架構 18 第 2 章 電池架構與理論基礎 19 2.1 電池模型架構 19 2.1.1 Li+離子在固相中的移動 20 2.1.2 Li+離子在液相中的移動 21 2.1.3 電荷守恆 21 2.1.4 Butler–Volmer 動力學 23 2.1.5 總結 23 2.2 模型簡化[36] 24 2.2.1 Li+離子在固相中的濃度 24 2.2.2 Li+離子在液相中的濃度 25 2.2.3 固相中的電位 26 2.2.4 液相中的電位 27 2.2.5 電擊材料開路電壓的簡化 28 2.2.6 得出電池方程式 28 第 3 章 SOC模擬與實驗結果 32 3.1 測試設備與電池規格 32 3.2 電池參數提取與模型建立 35 3.3 模擬結果 37 3.3.1 定電流脈衝模擬 38 3.3.2 車用負載模擬 40 第 4 章 電池老化參數變化 42 4.1 電池老化原因 42 4.2 實驗方式與電池參數提取 43 4.3 實驗結果 46 第 5 章 結論 52 參考文獻 53 圖目錄 圖1- 1不同電流下定電流放電曲線[3] 5 圖1- 2 定電流放電、在不同溫度下的放電情形[3] 6 圖1- 3不同電池使用歷史對電池自放電率的影響[4] 7 圖1- 4不同溫度下電池的自放電情形[5] 7 圖1- 5電池的老化效應[3] 8 圖1- 6 ANFIS演算法模型架構[14] 10 圖1- 7 KIBAM模型[30] 11 圖1- 8 擴散模型概念圖[30] 13 圖1- 9基本戴維斯等效模型[18] 14 圖1- 10 CHEN提出之電路模型[18] 15 圖1- 11 鋰離子電池之響應奈氏圖[23] 16 圖2.1多孔電極電化學模型示意圖[34] 19 圖3- 1 電池測試設備 33 圖3-2 軟體介面圖 35 圖3-3 模型方塊圖 36 圖3-4參數ID示意圖 37 圖3-5 參數擬合實驗值 38 圖3-6 1C放電圖 39 圖3-7 2C放電圖 39 圖3-8 車用負載模擬電流 40 圖3-9 車用負載模擬結果 41 圖4-1 電池CYCLE容量特性 43 圖4-2 電池CYCLE實驗圖 44 圖4-3 曲線擬合輸入實驗圖 44 圖4-4曲線擬合結果 45 圖4-5 電池主要ID參數 45 圖4-6 SOH對循環次數 46 圖4-7 - SOH 46 圖4-8 - SOH 47 圖4-9 -SOH 47 圖4-10 -SOH 48 圖4-11 - SOH 48 圖4-12 -SOH 49 圖4-13 -SOH 49 圖4-14 -SOH 50 圖4-15 -SOH 50 表目錄 2- 1 電池電化學參數 29 3- 1 電池測試設備規格 32 3- 2 電池DATA SHEET 34 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鋰離子電池 | zh_TW |
| dc.subject | 電化學電池模型 | zh_TW |
| dc.subject | 電池模型參數 | zh_TW |
| dc.subject | SOC | zh_TW |
| dc.subject | SOH | zh_TW |
| dc.subject | Lithium-ion Battery | en |
| dc.subject | Electrochemical Model | en |
| dc.subject | Parameter Estimation | en |
| dc.subject | SOC | en |
| dc.subject | SOH | en |
| dc.title | 鋰離子電池電化學特性之線上參數鑑別 | zh_TW |
| dc.title | On-line identification of the electrochemical properties of a lithium-ion battery | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 呂百修,傅增隸 | |
| dc.subject.keyword | 鋰離子電池,電化學電池模型,電池模型參數,SOC,SOH, | zh_TW |
| dc.subject.keyword | Lithium-ion Battery,Electrochemical Model,Parameter Estimation,SOC,SOH, | en |
| dc.relation.page | 56 | |
| dc.identifier.doi | 10.6342/NTU201703886 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-21 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 機械工程學研究所 | zh_TW |
| 顯示於系所單位: | 機械工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.38 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
