Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 管理學院
  3. 財務金融學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6831
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor王耀輝
dc.contributor.authorHui-Yu Chenen
dc.contributor.author陳蕙妤zh_TW
dc.date.accessioned2021-05-17T09:19:03Z-
dc.date.available2012-07-18
dc.date.available2021-05-17T09:19:03Z-
dc.date.copyright2012-07-18
dc.date.issued2012
dc.date.submitted2012-07-09
dc.identifier.citationAit-Sahalia, Y. and Mancini, L., 2008, Out of sample forecasts of quadratic variation, Journal of Econometrics 147(1), 17-33.
Andersen, T. G., Bollerslev, T., Christoffersen, P. F. and Diebold, F. X., 2006, Practical Volatility and Correlation Modeling for Financial Market Risk Management, in M. Carey and R. M. Stulz (eds), The Risks of Financial Institutions, University of Chicago Press, Chicago, Illinois, chapter 17, pp. 513-548.
Andersen, T. G., Bollerslev, T., Diebold, F. X. and Labys, P., 2003, Modeling and Forecasting Realized Volatility, Econometrica 71(2), 529-626.
Bank, M., Larch, M. and Peter, G., 2011, Google search volume and its influence on liquidity and returns of German stocks, Financial Markets and Portfolio Management 25, 239-264.
Barber, B. M. and Odean, T., 2008, All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors, Review of Financial Studies 21(2), 785–818.
Berry, T. D. and Howe, K. M., 1994, Public information arrival, Journal of Finance 49(4), 1331–1346.
Bollen, B. and Inder, B., 2002, Estimating daily volatility in financial markets utilizing intraday data, Journal of Empirical Finance 9, 551-562.
Chemmanur, T. and Yan, A., 2009, Advertising, attention, and stock returns, Working paper, Boston College and Fordham University.
Choi, H. and Varian, H., 2009, Predicting the present with Google Trends, Working paper, Google Inc.
Corsi, F., 2009, A Simple Approximate Long-Memory Model of Realized Volatility, Journal of Financial Econometrics 7(2), 174-196.
Da, Z., Engelberg, J. and Gao, P., 2010a, In search of earnings predictability, Working Paper, University of Notre Dame and University of North Carolina at Chapel Hill.
Da, Z., Engelberg, J. and Gao, P., 2010, In search of fundamentals, Working paper, University of Notre Dame and University of North Carolina at Chapel Hill.
Da, Z., Engelberg, J. and Gao, P., 2011, In Search of Attention, The Journal of Finance 66(5), 1461-1499.
Dimpfl, T. and Jank, S., 2011, Can internet search queries help to predict stock market volatility?, Working Paper, University of Tubingen.
Drake, M., Roulstone, D. and Thornock, J., 2011, Investor Information Demand: Evidence from Google Searches around Earnings Announcements, Working Paper, Brigham Young University, Ohio State University and University of Washington.
Dorn, D., Huberman, G. and Sengmueller, P., 2008, Correlated trading and returns, Journal of Finance 63, 885–919.
Fang, L., and Peress,J., 2009, Media coverage and the cross-section of stock returns, Journal of Finance 64, 2023–2052.
Foucault, T., Sraer, D. and Thesmar, D. J., 2011, Individual Investors and Volatility, The Journal of Finance 66(4), 1369-1406.
Frieder, L. and Subrahmanyam, A., 2005, Brand perceptions and the market for common stock, Journal of Financial and Quantitative Analysis 40(1), 57–85.
Gervais, S., Kaniel, P. and Mingelgrin, D.H., 2001, The high-volume return premium, Journal of Finance 56, 877–919.
Ghysels, E., Santa-Clara, P. and Valkanov, R., 2006, Predicting Volatility: Getting the Most out of Return Data Sampled at Different Frequencies, Journal of Econometrics1-2, 59-95.
Ginsberg, J., Mohebbi, M.H., Patel, R.S., Brammer, L., Smolinski, M.S., and Brilliant, L., 2009, Detecting influenza epidemics using search engine query data, Nature 457, 1012–1014.
Grullon, G., Kanatas, G. and Weston, J.P., 2004, Advertising, breath of ownership, and liquidity, Review of Financial Studies 17, 439–461.
Hou, K., Peng, L., and Xiong, W., 2008, A tale of two anomalies: The implications of investor attention for price and earnings momentum, Working paper, Ohio State University and Princeton University.
Hvidkjaer, S., 2008, Small trades and the cross section of stock returns, Review of Financial Studies 21, 1123–1151.
Jayasuriya, S., Shambora, W., 2009. Oops, we should have diversified! Applied Financial Economics 19, 1779-1785.
Joseph, K., Wintoki, M.B., Zhang, Z., 2011, Forecasting abnormal stock returns and trading volume using investor sentiment: Evidence from online search, Journal of Forecasting 27, 1116-1127.
Kaniel, R., Saar, G. and Titman, S., 2008, Individual investor trading and stock returns, Journal of Finance 63, 273–310.
Kumar, A., and Lee, C.M.C.2006, Retail investor sentiment and return co movements, Journal of Finance 61, 2451–2486.
Lou, D., 2008, Attracting investor attention through advertising, Working paper, London School of Economics and Political Science.
Lux, T. and Marchesi, M., 1999, Scaling and criticality in a stochastic multi-agent model of a financial market, Nature 397(6719), 498-500.
Merton, R. C., 1987, A simple model of capital market equilibrium with incomplete information, Journal of Finance 42(3), 483–510.
Mincer, J. A. and Zarnowitz, V., 1969, The Evaluation of Economic Forecasts, in J. A. Mincer (ed.), Economic Forecasts and Expectations: Analysis of Forecasting Behavior and Performance, Studies in Business Cycles, NBER.
Mitchell, M. L. and Mulherin, J. H., 1994, The impact of public information on the stock market, Journal of Finance 49(3), 923–950.
Patton, A. J., 2011, Volatility forecast comparison using imperfect volatility proxies, Journal of Econometrics 160(1), 246-256.
Seasholes, M.S., and Wu, G., 2007, Predictable behavior, profits, and attention, Journal of Empirical Finance 14, 590–610.
Vlastakis, N. and Markellos, R. N., 2010, Information demand and stock market volatility, SSRN eLibrary.
Yuan, Y., 2008, Attention and trading, Working paper, University of Iowa.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6831-
dc.description.abstract在這篇論文中,我們使用Google搜尋量作為測量散戶投資者注意的媒介,來探討在不同的國家中,搜尋量和股票市場波動率之間的動態關係,以及檢驗搜尋量是否可以幫助預測波動率。我們發現搜尋量對預測未來實現波動率(realized volatility)一般是有用的。當有一個正的搜尋量衝擊,波動率並不會立即的反應而是在之後有正向的移動,但是波動率卻可以立即地影響搜尋量。當建立波動率預測的模型,搜尋量增加了有價值的信息,並且正面地影響未來的波動率。它還可以顯著地增進預測波動率的預測能力在樣本內,樣本外也可以但比較不顯著。在新興市場(emerging markets) 和新領域市場(frontier markets),搜尋量可以增進預測波動率的現象變得較不明顯。而在我們的實證當中,有些國家沒有這個現象的可能原因除了市場的開發程度,還有較低頻率的資料、意義較不明確單一的搜尋關鍵字、較低的Google市佔率、國家的所在位置、較低的網路使用者普及率和較低的散戶投資者的比例。zh_TW
dc.description.abstractIn this paper, we use Google search volume as proxy of retail investors’ attention to study the dynamic relationship with stock market volatility and examine if it can help to forecast volatility in different countries. We find search volume is useful to predict future realized volatility generally. When there is a positive shock of search volume, realized volatility wouldn’t react immediately but have positive movement later, while volatility can affect search volume immediately. Search volume adds valuable information for modeling volatility and influences future volatility positively. Search volume also can improve volatility forecasting in- and out-of-sample. But it becomes much more insignificantly in out-of-sample forecast evaluation. The phenomenon that search volume can improve volatility forecasting becomes more unobvious when turning to emerging markets and frontier markets. Besides the developed level of markets, there are some possible reasons, like lower frequency of data, less univocal search terms, lower market shares of Google, locations of countries, smaller penetration rate of internet users and lesser market shares of retail investors, can explain why this phenomenon becomes unobvious for some countries from our empirical results.en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:19:03Z (GMT). No. of bitstreams: 1
ntu-101-R99723033-1.pdf: 732634 bytes, checksum: 43fd23a88279da8b335e50c42789b338 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsContents
誌謝 II
摘要 III
ABSTRACT IV
1. INTRODUCTION 1
2. DATA 6
2.1 STOCK INDEX VOLATILITY 6
2.2 INTERNET SEARCH VOLUME 10
2.3 SUMMARY STATISTICS 17
3. METHODS 27
3.1 VECTOR AUTOREGRESSIVE MODEL (VAR MODEL) 27
3.1.1 Granger causality test 28
3.1.2 Impulse response function (IRF) 28
3.1.3 Variance decomposition 29
3.2 REGRESSION MODELS 29
3.3 VOLATILITY FORECASTS 30
4. EMPIRICAL RESULTS 32
4.1 DYNAMICS OF SEARCH VOLUME AND VOLATILITY (VAR MODEL) 32
4.1.1 Whether search volume is useful in forecasting volatility? 33
4.1.2 How volatility reacts over time to shock of search volume and vice versa? 36
4.1.3 How much of volatility can be explained by search volume? 38
4.2 WHETHER SEARCH VOLUME HAS VALUABLE INFORMATION FOR MODELING VOLATILITY? 40
4.3 DOES SEARCH VOLUME HELP TO IMPROVE VOLATILITY FORECASTS? 43
4.3.1 In-sample forecast evaluation 43
4.3.2 Out-of-sample forecast evaluation 50
4.4 WHY SEARCH VOLUME CAN’T HELP TO FORECASTING VOLATILITIES IN SOME COUNTRIES? 57
5. CONCLUSION 60
REFERENCE 62
dc.language.isozh-TW
dc.title網路搜尋量是否可以增進股票市場波動率的預測?國際實證zh_TW
dc.titleCan internet search volume improve volatility forecasting for the stock markets? International Evidenceen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張森林,徐之強
dc.subject.keyword實現波動率,預測,散戶投資者,網路搜尋量,zh_TW
dc.subject.keywordrealized volatility,forecasting,retail investor,internet search volume,en
dc.relation.page64
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-09
dc.contributor.author-college管理學院zh_TW
dc.contributor.author-dept財務金融學研究所zh_TW
Appears in Collections:財務金融學系

Files in This Item:
File SizeFormat 
ntu-101-1.pdf715.46 kBAdobe PDFView/Open
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved