請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68318完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳靜宜(Ching-Yi Chen) | |
| dc.contributor.author | Twin-Way Wu | en |
| dc.contributor.author | 伍廷偉 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:17:30Z | - |
| dc.date.available | 2018-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-08-08 | |
| dc.identifier.citation | 鄭位明、王佩華、章浩宏與宋永義。1999。小耳種李宋系迷你豬乳齒萌發順序之研究。中國畜牧會誌。28:347-358。
Alman A. C., S. R. Smith, R. H. Eckel, J. E. Hokanson, and B. R. Burkhardt, P. R. Sudini, Y. Wu, I. E. Schauer, R. I. Pereira, J. K. Snell-Bergeor. 2017. The ratio of pericardial to subcutaneous adipose tissues is associated with insulin resistance. Obesity. 25:1284–1291. doi:10.1002/oby.21875. Antonopoulos A. S., and C. Antoniades. 2017. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J. Physiol. 15;595:3907-3917. doi:10.1113JP273049. Arita Y, S. Kihara, N. Ouchi, M. Takahashi, K. Maeda, and J. Miyagawa. 1999. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257:79–83. Bantle J. P., S. K. Raatz, W. Thomas, and A. Georgopoulos. 2000. Effects of dietary fructose on plasma lipids in healthy subjects. Am. J. Clin. Nutr. 72:1128–1134. Bellinger D. A., E. P. Merricks, and T. C. Nichols. 2006. Swine models of type 2 diabetes mellitus: Insulin resistance, glucose tolerance, and cardiovascular complications. ILAR J. 47:243-258. doi: 10.1093/ilar.47.3.243. Bray G. A., S.J. Nielsen, and B. M. Popkin. 2004. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity. Am. J. Clin. Nutr. 79:537–543. Boustany C. M., K. Bharadwaj, A. Daugherty, D. R. Brown, D. C. Randall, and L. A. Cassis. 2004. Activation of the systemic and adipose renin-angiotensin system in rats with diet-induced obesity and hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 287:R943–949. doi: 10.1152/ajpregu.00265.2004. Bruun J. M., A. S. Lihn , S. B. Pedersen, and B. Richelsen. 2005. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue (AT): implication of macrophages resident in the AT. J. Clin. Endocrinol. Metab. 90:2282–2289. doi: 10.1210/jc.2004-1696. Briones A. M., A. N. D. Cat, G. E. Callera, A. Yogi, D. Burger, and Y. He, A. M. Gagnon, C. E. Gomez-Sanchez, E. P. Gomez-Sanchez, A. Sorisky, T. C. Ooi, M. Ruzicka, K. D. Burns, and R. M. Touyz. 2012. Adipocytes produce aldosterone through calcineurin-dependent signaling pathways: Implications in diabetes mellitus-associated obesity and vascular dysfunction. Hypertension. 59:1069–1078. doi: 10.1161/HYPERTENSIONAHA.111.190223. Carlyle M, O. B. Jones, J. J. Kuo, and J. E. Hall. 2002. Chronic cardiovascular and renal actions of leptin. Hypertension. 39:496-501. Chhabra L, and N. G. Kowlgi . 2015. Cardiac adipose tissue: Distinction between epicardial and pericardial fat remains important!. Int. J. Cardiol. 201:274-275. doi: 10.1016/j.ijcard.2015.08.068. Christoffersen B. O., N. Grand, V. Golozoubova, O. Svendsen, and K. Raun. 2007. Gender-associated differences in metabolic syndrome-related parameters in Göttingen minipigs. Comp. Med. 57:493-504. Cordain L, S. B. Eaton, A. Sebastian, N. Mann, S. Lindeberg, B. A. Watkins, J. H. O’Keefe, and J. Brand-Miller. 2005. Origins and evolution of the Western diet: health implications for the 21st century. Am. J. Clin. Nutr. 81:341–354. Company J. M., F. W. Booth, M. H. Laughlin, A. A. Arce-Esquivel, H. S. Sack, S. W. Bauouth, and J. N. Fain. 2010. Epicardial fat gene expression after aerobic exercise training in pigs with coronary atherosclerosis: relationship to visceral and subcutaneous fat. J. Appl. Physiol. 109:1904-1912. doi: 10.1152/japplphysiol.00621.2010. Defronzo R. A. 1987. The triumvirate: beta-cell, muscle, liver. A collusion responsible for NIDDM. Diabetes. 37(6):667–687. doi: 10.2237/diab.37.6.667. Dolphin P. J. 1981. Serum and hepatic nascent lipoproteins in normal and hypercholesterolemic rats. J. Lipid. Res. 22:971–989. Dyson M. C., M. Allosh, J. P. Vuchetich, E. A. Mokelke, and M. Sturek. 2006. Components of metabolic syndrome and coronary artery disease in female Ossabaw swine fed excess atherogenic diet. Comp. Med. 56:35-45. Egan B. M., K. Stepniakowski, and T. L. Goodfriend. 1994. Renin and aldosterone are higher and the hyperinsulinemic effect of salt restriction greater in subjects with risk factors clustering. Am. J. Hypertens. 7:886-893. doi: 10.1016/0895-7061(94)P1710-H. Eroglu S, S. Z. Sade, A. Yildirir, U. Bal, S. Ozbicer, A. S. Ozgul, H. Bozbas, A. Aydinalp, and H. Muderrisoglu. 2009. Epicardial adipose tissue thickness by echocardiography is a marker for the presence and severity of coronary artery disease. Nutr. Metab. Cardiovasc. Dis. 19:211–217. doi: 10.1016/j.numecd.2008.05.002. Fried S. K., D. A. Bunkin, and A. S. Greenberg. 1998. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J. Clin. Endocrinol. Metab. 83:847–850. doi: 10.1210/jcem.83.3.4660. Fain J. N., A. K. Madan, M. L. Hiler, P. Cheema, and S. W. Bahouth. 2004. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 145:2273–2282. doi: 10.1210/en.2003-1336. Garbarino J. and S. L. Starley. 2009. Saturated with fat: new perspectives on lipotoxicity. Curr. Opin. Clin. Nutr. Metab. Care. 12:110-116. doi: 10.1097/MCO.0b013e32832182ee. Gerrity R. G., R. Natarajan, J. L. Nadler, and T. Kimsey. 2001. Diabetes-induced accelerated atherosclerosis in swine. Diabetes. 50: 1654-1665. Grassi G, R. Dell’Oro, A. Facchini, and F. Q. Trevano, G. B. Bolla, and G. Mancia. 2004. Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J. Hypertens. 22:2363-2369. Grundy S.M., J. I. Cleeman, S. R. Daniels, K. A. Donato, R. H. Eckel, B. A. Franklin, D. J. Gordon, R. M. Krauss, P. J. Savage, S. C. Smith, J. A. Spertus, and F. Costa. 2005. Diagnosis and management of the metabolic syndrome. Circulation. 112:2735-2752. doi:10.1161/CIRCULATIONAHA.105.169404. Grundy S. M., B.R. Jr. Brewer, J. I. Cleeman, S.C. Jr. Smith, C. Lenfant. 2004. Definition of metabolic syndrome. Circulation. 27;109:433-438. doi: 10.1161/01.CIR.0000111245.75752.C6. Guilherme A, J. V. Virbasius, V. Puri, and M. P. Czech. 2008. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell. Biol. 9:367-377. doi:10.1038/nrm2391. Haffar T, F. A. Bérubé-Simard, and N. Bousette. 2015. Cardiomyocyte lipotoxicity is mediated by Il-6 and causes down-regulation of PPARs. Biochem. Biophys. Res. Commun. 459:54–59. doi: 10.1016/j.bbrc.2015.02.062. Harmancey R, C. R. Wilson, N. R. Wright, and H. Taegtmeyer. 2010. Western diet changes cardiac acyl-CoA composition in obese rats: a potential role for hepatic lipogenesis. J. Lipid. Res. 51:1380-1393. doi: 10.1194/jlr.M001230. Hansen L. L., Y. Ikeda, G. S. Olsen, A. K. Busch, and L. Mosthaf. 1999. Insulin signaling is inhibited by micromolar concentrations of H(2)O(2). Evidence for a role of H(2)O(2) in tumorN necrosis factor alpha-mediated insulin resistance. J. Biol. Chem. 274:25078–25084. Henrichot E, C. E. Juge-Aubry, A. Pernin, J. C. Pache, V. Velebit, J. M. Dayer, P. Meda, C. Chizzolini, C. A. Meier. 2005. Production of Chemokines by Perivascular Adipose Tissue A Role in the Pathogenesis of Atherosclerosis?. Arteriosclerosis Thrombosis Vasc Biol. 25:2594–2599. doi: 10.1161/01.ATV.0000188508.40052.35. Iacobellis G, D. Corradi, and A. M. Sharma. 2005. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat. Clin. Pract. Cardiovasc. Med. 2:536–543. doi: 10.1038/ncpcardio0319. Iacobellis G, M. C. Ribaudo, F. Assael, E. Vecci, C. Tiberti, A. Zappaterreno, U. D. Mario, and F. Leonetti. 2003. Echocardiographic epicardial adipose tissue is related to anthropometric and clinical parameters of metabolic syndrome: a new indicator of cardiovascular risk. J. Clin. Endocrinol. Metab. 88:5163–5168. doi: 10.1210/jc.2003-030698. Ibrahim M. M. 2010. Subcutaneous and visceral adipose tissue: structural and functional differences. Obes. Rev. 11:11–18. doi: 10.1111/j.1467-789X.2009.00623.x. Vries J. E., M. M. Vork, T. H. M. Roemen, Y. F. de Jong, J. P. M. Cleutjens, G. J. V. der Vusse, and M. V. Binsen. 1997. Saturated but not mono-unsaturated fatty acids induce apoptotic cell death in neonatal rat ventricular myocytes. J. lipid. Res. 38:1384–1394. Kahn S. E., R. L. Prigeon, D. K. McCulloch, E. J. Boyko, R. N. Bergman, M. W. Schwartz, J. L. Neifing, W. K. Ward, J. C. Beard, and J. P. Palmer. 1993. Quantification of the relationship between insulin sensitivity and β-cell function in human subjects: evidence for a hyperbolic function. Diabetes. 42:1663-1672. doi: 10.2337/diab.42.11.1663. Kahn S. E., R. L. Hull, and K. M. Utzschneider. 2006. Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 444:840–846. doi: 10.1038/nature05482. Kelley D. E., and J. A. Simoneau. 1994. Impaired free fatty acid utilization by skeletal muscle in non-insulin-dependent diabetes mellitus. Journal of Clinical Investigation. J. Clin. Invest. 94:2349–2356. doi: 10.1172/JCI117600. Kopelman P. G. 2000. Obesity as a medical problem. Nature. 2000. 404:635–643. Kennedy A, K. Martinez, C. C. Chuang, K. LaPoint, and M. McIntosh. 2009. Saturated fatty acid-mediated inflammation and insulin resistance in adipose tissue: mechanisms of action and implications. J .Nutr. 139:1–4. doi: 10.3945/jn.108.098269. Lage R, I. Moscoso, Á. Fernández-Trasancos, M. Cebro, M. Couselo, and R. Fandiño-Vaquero, S. B. Bravo, J. Sierra, J. R. Gonzalez-Juanatey, and S. Eiras. 2015. Differential behaviour of epicardial adipose tissue-secretomes with high and low orosomucoid levels from patients with cardiovascular disease in H9C2 cells. Mol. Cell. Endocrinol. 15;416:77-87. doi: 10.1016/j.mce.2015.08.025. Lafontan M. 2013. Differences between subcutaneous and visceral adipose tissues. Physiology and physiopathology of adipose tissue. 329–349. doi: 10.1007/978-2-8178-0343-2_23. Langheim S, L. Dreas, L. Veschini, F. Maisano, C. Foglieni, S. Ferrarello, G Sinagra, B Zingone, O Alfieri, E. Ferrero, A. Maseri, G. Ruotolo. 2010. Increased expression and secretion of resistin in epicardial adipose tissue of patients with acute coronary syndrome. Am. J. Physiol. Heart. Circ. 298:H746–H753. doi: 10.1152/ajpheart.00617.2009. Larsen M. O., B. Rolin, M. Wilken, R. D. Carr, and O. Svendsen. 2002. High-fat high-energy feeding impairs fasting glucose and increases fasting insulin levels in the Göttingen minipigs: results from a pilot study. Ann. N. Y. Acad. Sci. 967:414-423. Lewis G. F., K. D. Uffelman, and L. W. Szeto, B. Weller, and G. Setiner. 1995. Interaction between free fatty acids and insulin in the acute control of very low density lipoprotein production in humans. J. Clin. Invest. 95:158-166. doi: 10.1172/JCI117633. Litten-Brown J. C., A. M. Corson, and L. Clarke. 2010. Porcine models for the metabolic syndrome, digestive and bone disorders: a general overview. Animal. 4:899-920. doi:10.1017S1751731110000200. Li S. J., S. T. Ding, H. J. Mersmann, C. H. Chu, C. D. Hsu, and C. Y. Chen. 2016. A nutritional nonalcoholic steatohepatitis minipig model. J. Nutr. Biochem. 28:51–60. doi: 10.1016/j.jnutbio.2015.09.029. Li Z. L., J. R. Woollard, B. Ebrahimi, J. A. Crane, K. L. Jordan, A. Lerman, S. M. Wang, and L. O. Lerman. 2012. Transition from obesity to Metabolic syndrome is associated with altered myocardial autophagy and apoptosis. Arterioscler. Thromb. Vasc. Biol. 32:1132-1141. doi: 10.1161/ATVBAHA.111.244061. Lopaschuk G. D., J. R. Ussher, C. D. L. Folmes, J.S. Jaswal, and W. C. Stanley. 2010. Myocardial fatty acid metabolism in health and disease. Physiol. Rev. 90:207–258. doi:10.1152/physrev.00015.2009. Marsh A. J., M. A. P. Fontes, S. Killinger, D. B. Pawlak, J. W. Polson, and R. A. L. Dampney. 2003. Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension. 42:488-493. doi: 10.1161/01.HYP.0000090097.22678.0A. Martin M. L., and M. D. Jensen. 1991. Effects of body fat distribution on regional lipolysis in obesity. J. Clin. Invest. 88:609-613. doi: 10.1172/JCI115345. Mazurek T, L. Zhang, A. Zalewski, J. D. Mannion, J. T. Diehl, H. Arafat, L. Sarov-Blat, S. O’Brien, E. A. Keiper, A. G. Johnson, J. Martin, B. J. Goldstein, and Y. Shi. 2003. Human Epicardial Adipose Tissue Is a Source of Inflammatory Mediators. Circulation. 108:2460–2466. doi: 10.1161/01.CIR.0000099542.57313.C5. Moller D. E.. 2001. New drug targets for type 2 diabetes and the metabolic syndrome. Nature. 13;414:821-827. doi: 10.1038/414821a. Mozumdar A, and G. Liguori. 2011. Persistent increase of prevalence of metabolic syndrome among US adults: NHANES III to NHANES 1999–2006. Diabetes Care. 34:216-219. doi: 10.2337/dc10-0879. Neeb Z. P., J. M. Edwards, M. Alloosh, X. Long, E. A. Mokelke, and M. Sturek. 2010. Metabolic syndrome and coronary artery disease in Ossabaw compared with Yucatan swine. Comp. Med. 60: 300–315. Nielsen S, Z. Guo, C, M. Johnson, D. D. Hensrud, and M. D. Jensen. 2004. Splanchnic lipolysis in human obesity. J. Clin. Invest. 113:1582–1588. doi: 10.1172/JCI200421047. Nyman K, M. Granér, M. O. Pentikäinen, J. Lundbom, A. Hakkarainen, R. Sirén, M. S. Nieminen, M. R. Taskinen, N. Lundbom and K. Lauerma. 2013. Cardiac steatosis and left ventricular function in men with metabolic syndrome. J. Cardiovasc. Magn. Reson. 14;15:103. doi: 10.1186/1532-429X-15-103. Orellana C, F. Parra, and R. Brito. 2014. Hypertension in Metabolic Syndrome. Advances in hypertension research. 227-241. Ouchi N, J. L. Parker, J. J. Lugus, and K. Walsh. 2011. Adipokines in inflammation and metabolic disease. Nat. Rev. Immunol. 11:85–97. doi: 10.1038/nri2921. Park M, A. Sabetski, Y. K. Chan, S. Turdi, and G. Sweeney. 2015. Palmitate induces ER stress and autophagy in H9c2 cells: implications for apoptosis and adiponectin resistance. J. Cell. Physiol. 230:630–639. doi: 10.1002/jcp.24781 Raher M. J., H. B. Thibault, E. S. Buys, D. Kuruppu, N. Shimizu, A. L. Brownell, S. L. Blake, J. Rieusset, M. Kaneki, G. Derumeaux, M. H. Picard, K. D. Bolch, and M. Sherrer-Crosbie . 2008. A short duration of high-fat diet induces insulin resistance and predisposes to adverse left ventricular remodeling after pressure overload. Am. J. Physiol. Heart. Circ. Physiol. 295:H2495–H2502. doi: 10.1152/ajpheart.00139.2008. Rani V., G. Deep, R. K. Smith, K. Palle, and U. C. S. Yadav. 2016. Oxidative stress and metabolic disorders: Pathogenesis and therapeutic strategies. Life. Sci. 1;148:183-193. doi: 10.1016/j.lfs.2016.02.002 Rosito G. A., J. M. Massaro, U. Hoffmann, F. L. Ruberg, A. A. Mahabadi, and R. S. Vasan. 2008. Pericardial Fat, Visceral Abdominal Fat, Cardiovascular Disease Risk Factors, and Vascular Calcification in a Community-Based Sample. Circulation. 117:605-613. doi: 10.1161/CIRCULATIONAHA.107.743062. Randle P. J., P. B. Garland, C. N. Hales, and E. A. Newsholme. 1963. The Glucose Fatty-acid cycle its role in insulin sentitivity and the metabolic disturbance of diabetes millitus. Lancet. 281:785–789. Roden M., T. B. Price, G. Perseghin, K. F. Petersen, D. L. Rothman, G. W. Cline, and G. I. Shelman. 1996. Mechanism of free fatty acid-induced insulin resistance in humans. J. Clin. Invest. 97:2859–2865. doi: 10.1172/JCI118742. Ruberg F. L., Z, chen, N. Hua, S. Bigornia, Z. Guo, K. Hallock, H. Jara, M. LaValley, A. Phinikaridou, Y. Qiao, J. Viereck, C. M. Apovian, and J. A. Hammlton. 2010. The Relationship of Ectopic Lipid Accumulation to Cardiac and Vascular Function in Obesity and Metabolic Syndrome. Obesity. 18: 1116-1121. doi: 10.1038/oby.2009.363. Russell J. C., and S. D. Proctor. 2006. Small animal models of cardiovascular disease: tools for the study of the roles of metabolic syndrome, dyslipidemia, and atherosclerosis. Cardiovasc. Pathol. 15:318–330. doi: 10.1016/j.carpath.2006.09.001. Sacks H. S., and J. N. Fain. 2007. Human epicardial adipose tissue: A review. Am. Heart. J. 153:907–917. doi: 10.1016/j.ahj.2007.03.019. Schaffer J. E. 2003. Lipotoxicity: when tissues overeat. Curr. Opin. Lipidol. 14:281–287. doi: 10.1097/01.mol.0000073508.41685.7f. Schwarz J. M., Y. Schutz, F. Froidevaux, K. J. Acheson, N. Jeanprêtre, H. Schneider, J. P. Felber, and E. Jequier. 1989. Thermogenesis in men and women induced by fructose vs glucose added to a meal. Am. J. Clin. Nutr. 49:667–674. Shoelson S. E., L. Herrero, and A. Naaz. 2007. Obesity, inflammation, and insulin resistance. Gastroenterology. 132:2169-2180. doi: 10.1053/j.gastro.2007.03.059. Shulman G. I. 2000. Cellular mechanisms of insulin resistance. J. Clin. Invest. 106:171–176. doi: 10.1172/JCI10583. Stanley W. C., E. R. Dabkowski, R. F. Ribeiro, and K. A. O’Connell. 2012. Dietary fat and heart failure: moving from lipotoxicity to lipoprotection. Circ. Res. 110:764–776. doi: 10.1161/CIRCRESAHA.111.253104. Taguchi R, J. Takasu, Y. Itani, R. Yamamoto, K. Yokoyama, S. Watanabe, and Y. Dasuda. 2001. Pericardial fat accumulation in men as a risk factor for coronary artery disease. Atherosclerosis. 157:203-209. Tan B, Y. Yin, Z. Liu, W. Tang, H. Xu, X. Kong, X. Li, K. Yao, W. Gu, S. B. Smith, and G. Wu. 2011. Dietary L-arginine supplementation differentially regulates expression of lipid-metabolic genes in porcine adipose tissue and skeletal muscle. J. Nutr. Biochem. 22:441–445. doi: 10.1016/j.nutbio.2010.03.012. Tchernof A, and J. P. Després. 2013. Pathophysiology of human visceral obesity: an update. Physiol. Rev. 93:359–404. doi: 10.1152/physrev.00033.2011. Vague J. 1947. La différenciation sexuelle: facteur déterminant des formes de l’obesité. Presse. Med. 30: 339 –340. Wajchenberg B. L. 2000. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr. Rev. 21:697-738. doi: 10.1210/edrv.21.6.0415. Wang C. C. L., L. Lu, J. W. Leitner, M. Sarraf, R. Gianani, B. Draznin, C. R. Greyson, J. E. B. Reusch, and G. G. Schwartz. 2013. J. Diabetes. Complicat. 27: 307-315 doi: 10.1016/j.jdiacomp.2013.02.009. Wellen K. E., and G. S. Hotamisligil. 2005. Inflammation, stress, and diabetes. J. Clin. Invest. 115:1111–1119. doi: 10.1172/JCI200525102. Williams L. 2002. Third report of the National Cholesterol Education Program (NCEP) expert panel on detection, evaluation, and treatment of high blood cholesterol in adults (adulttreatment panel III) final report. Circulation. 17;106:3143-421. Xi S., W. Win, Z. Wang, M. Kusunoki, X. Lian, T. Koike, J. Fan, and Q. Zhang. 2004. A minipig model of high-fat/high-sucrose diet-induced diabetes and atherosclerosis. Int. J. Exp. Pathol. 85:223-231. Xu H, G. T. Barnes, Q. Yang, G. Tan, D. Yang, C. J. Chou, J. Sole, A. Nichols, J. S. Ross, L.A. Tartaglia, and H. Chen. 2003. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J. Clin. Invest. 2003;112:1821–1830. doi: 10.1172/JCI19451. Yamaguchi Y, S. Cavallero, M. Patterson, H. Shen, J. Xu, S. R. Kumar, and H. M. Sucov. 2015. Adipogenesis and epicardial adipose tissue: A novel fate of the epicardium induced by mesenchymal transformation and PPARγ activation. Proc. Natl. Acad. Sci. 112:2070–2075. doi: 101073/pnas.1417232112. Yasuda Y., H. Hidaka, and Y. Tanioka. 1983. Preparation of experimental hypertension in mini-pigs. Jikken. Dobutsu. 32:185-189. Yin W., D. Liao, Z. Wang, S. Xi, K. Tsutumi, T. Koike, J. Fan, G. Yi, Q. Zhang, Z. Yuan, and K. Tang. 2004. NO-1886inhibits size of adipocytes, suppresses plasma levels of tumor necrosis factor-α and free fatty acids, improves glucose metabolism in high fat/high-sucrose-fed miniature pigs. Pharmacol. Res. 49:199-206. doi: 10.1016/j.phrs.2003.09.008 Zao S., J. Wang, X. Song, X. Zhang, C. Ge, and S. Gao. 2010. Impact of dietary protein on lipid metabolism-related gene expression in porcine adipose tissue. Nutr. Metab. 21;7:6. doi: 10.1186/1743-7075-7-6 Ziegler E. 1967. Secular changes in the stature of adults and the secular trend of the modern sugar consumption. Z. Kinderheilkd. 199:146–166. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68318 | - |
| dc.description.abstract | 白色脂肪組織主要作為儲存身體能量的地方,近年來文獻指出內臟脂肪組織 (Visceral adipose tissue, VAT)具有較高的代謝活性,可以藉釋出 Adiponectin 以及 Interleukin-6 (IL-6)等因子藉由旁分泌或是血管分泌影響周邊組織。內臟脂肪相較於皮下脂肪具有較高的代謝活性,在肥胖患者中內臟脂肪釋放更多的發炎因子進入血液循環中。Epicardial adipose tissue (EAT) 及 Pericardial adipose tissue (PAT)為貼附於心臟周圍及位在心包膜內之脂肪組織。許多文獻指出,EAT及 PAT具有內臟脂肪之特性,且心臟油脂與心血管疾病、血管鈣化及區域發炎反應呈現正相關。因此,在本實驗中會利用飼料誘導李宋豬產生肥胖,並探討健康及肥胖患者中EAT、PAT及 VAT 之特性。
使用來自台大牧場六月齡李宋豬進行實驗,隨機分配成 Control diet (C)及Western diet (W)共 2 組,並進行 6 個月飼料誘導。實驗結束後,W 組相較於 C 組出現血脂異常及心臟纖維化。W組有較多 VAT 及 PAT ; 而 EAT 在兩組之間無明顯差異。 W 組豬隻 VAT 及 PAT 脂肪顆粒主要分佈在大於 10000 μm2,而 C 及 W組之 EAT 則主要分佈在小於 10000 μm2。分析組織脂肪酸組成發現, W 組之 VAT 及 PAT 中 MUFA 增加, EAT 則無。利用脂質過氧化作為氧化壓力之指標, W 組 PAT 及血液相較於 C 組高, EAT 在兩組間則無差異。在 W 組不同脂肪組織中,脂質過氧化程度呈現: PAT> VAT> EAT 之情況。由此可知W組出現循環系統及 PAT 誘導區域性之氧化壓力。以 IL-6 作為發炎之指標, W 組之血液、PAT 及 VAT 顯著高於 C 組。由上述結果得知,餵飼李宋豬高油脂飼料 6 個月後,VAT 及 PAT 會產生功能異常。 豬隻犧牲後取 VAT 及 PAT 進行體外培養並收取培養後之 Conditional medium (CM) 進行後續分析。結果顯示脂質過氧化程度及 IL-6 濃度在 CMPW (W組PAT之CM)及 CMVW (W 組 VAT 之 CM)相較於各自 C 組高。總抗氧化能力分析上,CMP (PAT 之 CM )相較 CMV 低,而 Control 組總抗氧化能力又高於 Western 組。最後,我們進行不同 CM 處理心肌細胞則發現,相較於 Complete medium,不論是Control 或是 Western 組皆會造成心肌細胞凋亡。 綜合以上結果,長期餵飼李宋豬西方飼糧成功誘導肥胖及心臟纖維化產生。分析不同脂肪組織則發現 VAT 及 PAT 產生功能異常,EAT 則無此現象。在 CM分析上則發現,Western 組相較 Control 組含有較高氧化壓力以及 IL-6。分析細胞存活率試驗則發現,相較於 Complete medium ,所有 CM 皆會使細胞存活率降低。 | zh_TW |
| dc.description.abstract | White adipose tissue has been regarded as energy storage tissue. Recently, several studies reported that white adipose tissue exhibits metabolic active properties and secretes bioactive factors, including adiponectin and Interleukin 6 (IL-6), for a crosstalk with other organs by vasocrine or paracrine. Compared with subcutaneous adipose tissue, visceral adipose tissue (VAT) owns highly lipolytic activity and secrets a great amount of pro-inflammatory factors with enhanced adiposity. Epicardial adipose tissue (EAT) and pericardial adipose tissue (PAT) are fat next to heart and share similar characteristics with VAT. Numbers results have proved that excess of PAT and EAT highly is highly associated with cardiovascular disease, artery calicification and local inflammation. To elucidate the link between adipose tissue and cardiac injury induced by obesity, the characteristics of adipose tissues (VAT, PAT and EAT) via our obesity-induced cardiomyopathy minipig model.
Six-month-old Lee-Sung minipigs were randomly assigned into two groups: control diet (C) and Western diet (W), for a 6-month experimental period. Compared with C group, W pigs exhibited dyslipidemia and cardiac fibrosis. W pigs had more VAT and PAT than C group, while C and W pigs had a similar amount of EAT. Bigger adipocyte size were observed in PAT and VAT of W pigs (> 10000 μm2) , whereas smaller adipocyte size was found in EAT (< 10000 μm2) . Similar fatty acid composition of VAT and PAT was observed in which monounsaturated fatty acid (MUFA) fraction was upregulated in W pigs, and no difference were observed in EAT between C and W pigs. In TBARS analyzed, an oxidative stress marker defined by lipid per-oxidation, W pigs exhibited higher levels of TBARS in the blood and PAT than C pigs, while no differences were found in the EAT. In W pigs, the TBARS levels were PAT> VAT > EAT, suggesting that systemic and local oxidative stress were induced in W pigs, and the local effect by PAT should considered. IL-6 was applied as the inflammatory marker. Greater IL6 levels were found in the plasma, PAT and VAT of W pigs than those in C pigs. In our results suggesting that high fat diet feeding for 6-month may influence PAT and VAT dysfunction in Lee-Sung minipigs. Adipocytes of VAT and PAT were isolated and cultured in vitro, the conditional medium (CM) were collected for further in vitro study. The composition of CM were analyzed. Higher levels of TBARS and IL-6 were observed in CM from PAT and VAT of W pigs. Compared with complete medium, all CM treatments for 24 hr decreased H9c2 survival rate. CM from PAT exhibited less total antioxidative capacity than that from VAT, and higher antioxidative capacity was observed in C groups. We treated H9c2 with different CM. Compared to complete medium, both C and W groups induced H9c2 cell death. Taken together, long term consumption of Western diet induced obesity and cardiac fibrosis in Lee-Sung minipig. VAT and PAT dysfunction, but not in EAT, were observed in this study. In CM analysis, higher amount of oxidative stress and IL-6 were observed in VAT and PAT of W groups. Comparing with complete medium, all groups of CM decreased cell survival rate. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:17:30Z (GMT). No. of bitstreams: 1 ntu-106-R04626017-1.pdf: 1998291 bytes, checksum: 9b67e9e788bd4636a537a2a999ef49b1 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝................................................................................................................I
中文摘要.........................................................................................................II 英文摘要.........................................................................................................IV 目錄.................................................................................................................V 圖目錄.............................................................................................................X 表目錄.............................................................................................................XI 第壹章、文獻回顧......................................................................................................1 1.1 脂肪組織特性之介紹......................................................................................1 1.2 肥胖 (Obesity)與代謝症候群(Metabolic syndrome, MetS)介紹......................2 1.2.1 腹部肥胖 (Abdominal obesity)....................................................3 1.2.2 血液游離脂肪酸 (Free fatty acid, FFA)........................................4 1.2.3 高血壓 (Hypertension)...............................................................4 1.2.4 發炎因子 (Pro-inflammatory factor )..........................................5 1.2.5 胰島素阻抗 (Insulin resistance)..................................................6 1.3 西方飲食......................................................................................................7 1.4 心臟油脂......................................................................................................9 1.4.1 EAT 之基本特性..........................................................................9 1.4.2 PAT 之基本特性........................................................................10 1.5 代謝症候群模式動物....................................................................................12 1.5.1 嚙齒類......................................................................................12 1.5.2 迷你豬......................................................................................13 1.6 實驗目的....................................................................................................13 第貳章、材料與方法................................................................................................14 2.1 實驗設計....................................................................................................14 2.2 實驗飼料....................................................................................................15 2.3 樣品採集....................................................................................................17 2.4 血液生化值................................................................................................18 2.4.1 血糖.................................................................................................18 2.4.2 三酸甘油酯......................................................................................18 2.4.3 總膽固醇.........................................................................................19 2.4.4 高密度脂蛋白..................................................................................19 2.4.5 低密度脂蛋白...................................................................................19 2.5 蛋白質濃度測定.........................................................................................20 2.6 發炎因子濃度之測定..................................................................................20 2.6.1 脂肪組織蛋白質萃取.................................................................20 2.6.2 心臟組織蛋白質萃取................................................................20 2.6.3 組織發炎因子濃度測定.............................................................20 2.7 游離脂肪酸測定..........................................................................................21 2.8 脂肪組織顆粒大小及左心室纖維化之分析.....................................................21 2.9 基因表現分析.............................................................................................21 2.9.1 抽取脂肪組織RNA及cDNA合成.........................................................21 2.9.2 Real-Time PCR (qPCR)...................................................................22 2.9.3 基因表現量分析...............................................................................22 2.10 抗氧化能力檢測 (Oxygen Radical Absorbance capacity, ORAC).............25 2.11 硫代巴比妥酸反應測試 (2-thiobarbituric acid reacting substances test, TBARS assay)..........................................................................26 2.11.1 脂肪組織樣品萃取方法....................................................................26 2.11.2 心臟組織樣品萃取方法....................................................................26 2.12 脂肪酸組成份分析.....................................................................................27 2.12.1 樣品製備........................................................................................27 2.12.2 脂肪酸組成份分析..........................................................................27 2.13 細胞培養及存活率試驗..............................................................................28 2.13.1 Conditional medium (CM)製備.......................................................28 2.13.2 心肌細胞培養.................................................................................29 2.13.3 細胞存活率試驗 (MTT assay).........................................................29 2.14 統計分析..................................................................................................29 第參章、 試驗結果..................................................................................................30 3.1 西方飼糧誘導李宋豬心肌病.........................................................................30 3.1.1 西方飼糧誘導李送豬肥胖及血脂異常.................................................30 3.1.2 西方飼糧誘導心肌病及脂質過氧化....................................................30 3.2 西方飼糧對於脂肪組織之影響.....................................................................34 3.2.1 西方飼糧誘導VAT及PAT脂肪細胞肥大及脂肪酸組成改變....................34 3.2.2 西方飼糧誘導VAT及PAT游離脂肪酸降低及脂肪酸生合成基 因改變...................................................................................34 3.2.3 西方飼糧誘導VAT及PAT脂質過氧化及發炎因子表現增加...................35 3.3 Conditional medium (CM) 特性分析及細胞存活率試驗...............................46 3.3.1 CMPW及CMVW中游離脂肪酸及脂肪酸組成份之影 響............................................................................................46 3.3.2 Western組之PAT及VAT對於CM中脂質過氧化及發炎因子表現 量之影響...............................................................................................46 3.3.3 CM對於細胞存活率之影響...............................................................47 第肆章、結果討論....................................................................................................51 4.1 西方飼糧誘導李宋豬肥胖且造成心臟纖維化..................................................51 4.2 西方飼糧對於李宋豬不同脂肪組織之影響....................................................53 4.2.1 西方飼糧對於EAT之影響..................................................................53 4.2.2 西方飼糧誘導VAT及PAT功能異常....................................................54 4.3 不同脂肪組分泌的培養液成分.....................................................................55 4.3.1 CMVW釋放高比例之Plamitic acid 可能引發心肌細胞產生脂毒 性..............................................................................................55 4.3.2 CMVW及CMPW含有高量脂質過氧化及IL-6......................................55 4.3.3 CM對於心肌細胞存活率之影響........................................................56 第伍章、結論..........................................................................................................58 第陸章、參考文獻...................................................................................................59 | |
| dc.language.iso | zh-TW | |
| dc.subject | 心臟 | zh_TW |
| dc.subject | 脂肪組織 | zh_TW |
| dc.subject | 李宋豬 | zh_TW |
| dc.subject | 纖維化 | zh_TW |
| dc.subject | 脂質過氧化 | zh_TW |
| dc.subject | 發炎因子 | zh_TW |
| dc.subject | Inflammatory factor | en |
| dc.subject | Adipose tissue | en |
| dc.subject | Cardiac | en |
| dc.subject | Lee-Sung minipig | en |
| dc.subject | Fibrosis | en |
| dc.subject | Lipid peroxidation | en |
| dc.title | 飼糧誘發肥胖迷你豬的心包油特徵 | zh_TW |
| dc.title | The characterization of cardiac adipose tissue in dietary-induced obese minipigs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 丁詩同(Shih-Torng Ding) | |
| dc.contributor.oralexamcommittee | 王佩華,陳洵一,林原佑 | |
| dc.subject.keyword | 心臟,脂肪組織,李宋豬,纖維化,脂質過氧化,發炎因子, | zh_TW |
| dc.subject.keyword | Cardiac,Adipose tissue,Lee-Sung minipig,Fibrosis,Lipid peroxidation,Inflammatory factor, | en |
| dc.relation.page | 65 | |
| dc.identifier.doi | 10.6342/NTU201702259 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-08-08 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 1.95 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
