請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68307完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠 | |
| dc.contributor.author | SHAOBO YANG | en |
| dc.contributor.author | 楊少波 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:17:12Z | - |
| dc.date.available | 2021-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-09-11 | |
| dc.identifier.citation | [1] R. W. Wood, 'XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum,' The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4, 396-402 (1902).
[2] J. A. Sanchez-Gil, “Localized surface-plasmon polaritons in disordered nanostructured metal surfaces: shape versus anderson-localized resonances,” Phys. Rev. B 68, 113410 (2003). [3] V. A. Markel, V. M. Shalaev, E. B. Stechel, W. Kim, and R. L. Armstrong, “Small-particle composites. I. linear optical properties,” Phys. Rev. B 53, 2425 (1996). [4] J. h. Song, T. Atay, S. Shi, H. Urabe, and A. V. Nurmikko, “Large enhancement of fluorescence efficiency from CdSe/ZnS quantum dots induced by resonant coupling to spatially controlled surface plasmons,” Nano Lett. 5, 1557 (2005). [5] K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668 (2003). [6] G. Mie, “Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen,” Ann. Phys. 25, 377 (1908). [7] V. M. Shalaev, R. Botet, J. Mercer, E. B. Stechel, “Optical properties of self-affine thin films,” Phys. Rev. B 54, 8235 (1996). [8] M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783 (1985). [9] Y. Ohko, T. Tatsuma, T. Fujii, K. Naoi, C. Niwa, Y. Kubota, and A. Fujishima, 'Multicolour photochromism of TiO2 films loaded with silver nanoparticles,' Nature Materials 2, 29-31 (2003). [10] K. Matsubara and T. Tatsuma, 'Morphological Changes and Multicolor Photochromism of Ag Nanoparticles Deposited on Single‐crystalline TiO2 Surfaces,' Advanced Materials 19, 2802-2806 (2007). [11] K. Matsubara, K. L. Kelly, N. Sakai, and T. Tatsuma, 'Effects of adsorbed water on plasmon-based dissolution, redeposition and resulting spectral changes of Ag nanoparticles on single-crystalline TiO 2,' Physical Chemistry Chemical Physics 10, 2263-2269 (2008). [12] I. Tanabe, K. Matsubara, N. Sakai, and T. Tatsuma, 'Photoelectrochemical and optical behavior of single upright Ag nanoplates on a TiO2 film,' The Journal of Physical Chemistry C 115, 1695-1701 (2010). [13] Y. Sakai, I. Tanabe, and T. Tatsuma, 'Orientation-selective removal of upright Ag nanoplates from a TiO 2 film,' Nanoscale 3, 4101-4103 (2011). [14] E. Kazuma, N. Sakai, and T. Tatsuma, 'Nanoimaging of localized plasmon-induced charge separation,' Chemical Communications 47, 5777-5779 (2011). [15] E. Kazuma and T. Tatsuma, 'Photoinduced reversible changes in morphology of plasmonic Ag nanorods on TiO 2 and application to versatile photochromism,' Chemical Communications 48, 1733-1735 (2012). [16] I. Tanabe and T. Tatsuma, 'Plasmonic manipulation of color and morphology of single silver nanospheres,' Nano letters 12, 5418-5421 (2012). [17] K. Saito, I. Tanabe, and T. Tatsuma, 'Site-Selective Plasmonic Etching of Silver Nanocubes,' The journal of physical chemistry letters 7, 4363-4368 (2016). [18] K. Saito, K. Setoura, S. Ito, H. Miyasaka, Y. Mitsuda, and T. Tatsuma, 'Plasmonic Control and Stabilization of Asymmetric Light Scattering from Ag Nanocubes on TiO2,' ACS Applied Materials & Interfaces 9, 11064-11072 (2017). [19] H. Nishi and T. Tatsuma, 'Photoregulated Nanopore Formation via Plasmon-Induced Dealloying of Au–Ag Alloy Nanoparticles,' The Journal of Physical Chemistry C 121, 2473-2480 (2017). [20] E. Kazuma and T. Tatsuma, 'Localized surface plasmon resonance sensors based on wavelength-tunable spectral dips,' Nanoscale 6, 2397-2405 (2014). [21] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room- temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature 432, 488-492 (2004). [22] H.Liu,V.Avrutin,N.Izyumskaya,Ü.Özgür,andH.Morkoç,“Transparentconducting oxides for electrode applications in light emitting and absorbing devices,” Superlattices and Microstructures 48, 458-484 (2010). [23] M. Tadatsugu, “Transparent conducting oxide semiconductors for transparent electrodes,” Sci. Technol. 20, S35 (2005). [24] G.J.Exarhos,andX.D.Zhou,“Discovery-based design of transparent conducting oxide films,” Thin Solid Films 515, 7025-7052 (2007). [25] C. Y. Cho, K. S. Kim, S. J. Lee, M. K. Kwon, H. Ko, S. T. Kim, G. Y. Jung, and S. J. Park, “Surface Plasmon-enhanced light-emitting diodes with silver nanoparticles and SiO2 nano-disks embedded in p-GaN,” Appl. Phys. Lett. 99(4), 041107 (2011). [26] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao, and D. C. Look, “Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett. 77, 3761-3763 (2000). [27] J. K. Sheu, Y. S. Lu, M. L. Lee, W. C. Lai, C. H. Kuo, and C. J. Tun, “Enhanced efficiency of GaN-based light-emitting diodes with periodic textured Ga-doped ZnO transparent contact layer,” Appl. Phys. Lett. 90, 263511 (2007). [28] J. K. Sheu, M. L. Lee, Y. S. Lu, and K. W. Shu, “Ga-doped ZnO transparent conductive oxide films applied to GaN-based light-emitting diodes for improving light extraction efficiency,” IEEE J. Quantum Electron. 44, 1211-1218 (2008). [29] Z. Liu, X. Wang, H. Yang, Y. Duan, and Y. Zeng, “A Ga-doped ZnO transparent conduct layer for GaN-based LEDs,” J. Semiconductors 31, 094002 (2010). [30] J. H. Lim, K. H. Lee, and D. C. Lim, “Enhanced performance in GaN light emitting diode by patterned ZnO transparent conducting oxide,” J. Korean Phys. Soc. 57, 1229-1232 (2010). [31] T. Y. Park, Y. S. Choi, J. W. Kang, J. H. Jeong, S. J. Park, D. M. Jeon, J. W. Kim, and Y. C. Kim, “Enhanced optical power and low forward voltage of GaN-based light-emitting diodes with Ga-doped ZnO transparent conducting layer,” Appl. Phys. Lett. 96, 051124 (2010). [32] H. Y. Liu, X. Li, S. Liu, X. Ni, M. Wu, V. Avrutin, N. Izyumskaya, Ü. Özgür, A. B. Yankovich, A. V. Kvit, P. M. Voyles, and H. Morkoç, “InGaN based light emitting diodes utilizing Ga doped ZnO as a highly transparent contact to p-GaN,” Phys. Status Solidi C 8, 1548-1551 (2011). [33] K. Y. Yen, C. H. Chiu, C. W. Li, C. H. Chou, P. S. Lin, T. P. Chen, T. Y. Lin, and J. R. Gong, “Performance of InGaN/GaN MQW LEDs using Ga-doped ZnO TCLs prepared by ALD,” IEEE Photon. Technol. Lett. 24, 2105-2108 (2012). [34] W. L. Bi, C. L. Ho, and M. C. Wu, “Ga-doped ZnO grown by atomic layer deposition and the application to blue light-emitting diodes as a current spreading layer,” ECS Solid State Lett. 2, Q98-Q100 (2013). [35] R. H. Horng, K. C. Shen, C. Y. Yin, C. Y. Huang, and D. S. Wuu, “High performance of Ga-doped ZnO transparent conductive layers using MOCVD for GaN LED applications,” Opt. Express 21, 14452-14457 (2013). [36] H. S. Shin, J. H. Lee, J. S. Kwak, H. H. Lee, and H. K. Kim, “Linear facing target sputtering of the epitaxial Ga-doped ZnO transparent contact layer on GaN-based light- emitting diodes,” J. Phys. D: Appl. Phys. 46, 415301 (2013). [37] K. Y. Yen, C. H. Chiu, C. Y. Hsiao, C. W. Li, C. H. Chou, K. Y. Lo, T. P. Chen, C. H. Lin, T. Y. Lin, and J. R. Gong, “Characteristics of GaN-based LEDs using Ga-doped or In-doped ZnO transparent conductive layers grown by atomic layer deposition,” J. Cryst. Growth 387, 91-95 (2014). [38] M. S. Oh and I. Seo, “Enhanced performance of GaN-based green light-emitting diodes with gallium-doped ZnO transparent conducting oxide,” J. Electron. Mat. 43, 1232-1236 (2014). [39] H. S. Chen, Y. F. Yao, C. H. Liao, C. G. Tu, C. Y. Su, W. M. Chang, Y. W. Kiang, and C. C. Yang, “Light-emitting device with regularly patterned growth of an InGaN/GaN quantum-well nanorod light-emitting diode array,” Opt. Lett. 38, 3370-3373 (2013). [40] C. G. Tu, C. H. Liao, Y. F. Yao, H. S. Chen, C. H. Lin, C. Y. Su, P. Y. Shih, W. H. Chen, E. Zhu, Y. W. Kiang, and C. C. Yang, “Regularly patterned non-polar InGaN/GaN quantum-well nanorod light-emitting diode array,” Opt. Express 22, A1799-A1809 (2014). [41] H. Han, N. Theodore, and T. Alford, 'Improved conductivity and mechanism of carrier transport in zinc oxide with embedded silver layer,' Journal of Applied Physics 103, 013708 (2008). [42] A. Kim, Y. Won, K. Woo, C.-H. Kim, and J. Moon, 'Highly transparent low resistance ZnO/Ag nanowire/ZnO composite electrode for thin film solar cells,' ACS nano 7, 1081-1091 (2013). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68307 | - |
| dc.description.abstract | 在本論文中,我們展示了銀奈米顆粒在不同基板上的重組行為。這種銀奈米顆粒的重組行為使得銀奈米顆粒聚集形成更大的顆粒或者形成雪花形狀的網路圖案。這種現象是由銀奈米顆粒內熱電子產生並遷移進入基板後形成銀離子並溶於吸附的水層擴散引起的。當銀離子和基板內的電子復合,沈積形成一顆新的銀奈米顆粒或連結周圍的銀奈米顆粒。這個重組的過程需要滿足的關鍵因素包括:(1)入射光的光子能量要足夠高使銀奈米顆粒內銀原子的電子發生帶間躍遷或者帶內躍遷以產生熱電子;(2)銀奈米顆粒和基板之間的位能障要足夠低以使熱電子能夠穿越;(3)基板要能導電,使電子可以橫向移動;(4)在銀奈米顆粒和基板表面要存在吸附的水氣。為了測試上述因素,我們分別使用鎵極性和氮極性的氮化鎵基板,矽極性和碳極性的碳化矽基板來觀察不同的銀奈米顆粒的重組現象,也使用兩種不同波長的光源照射以理解在銀奈米顆粒內的電子激發效果。 | zh_TW |
| dc.description.abstract | The behaviors of Ag nanoparticle (NP) reorganization on various templates are demonstrated. The reorganization of Ag NPs may lead to the clustering of Ag NPs to form larger particles or the formation of a networked snowflake-like Ag pattern. Such a phenomenon is caused by the generation of hot electrons in Ag NPs and their migration into the template such that Ag+ ions are formed and dissolved in the adsorbed water for diffusing around. When the Ag+ ions combine with the electrons in the template, it can settle for forming a new Ag NP or connecting neighboring Ag NPs. Therefore, this reorganization process requires the critical factors of (1) the illumination of photons with energy higher than the interband or intraband transition energy of Ag for generating hot electrons in an Ag NP; (2) low enough potential barrier between an Ag NP and the substrate for hot electrons to overcome; (3) conductive substrate for lateral electron transport; and (4) available water vapor around the Ag NP for being adsorbed onto the Ag NP and the template surface. For testing these required factors, we use Ga- and N-face GaN, Si- and C-face SiC templates for observing different Ag NP reorganization behaviors. Two emission wavelengths are used for understanding the effects of electron excitations in Ag NP and template. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:17:12Z (GMT). No. of bitstreams: 1 ntu-106-R03941105-1.pdf: 2896410 bytes, checksum: fd37769642e0564105c607863ccc450e (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 誌謝 i
中文摘要 ii Abstract iii Contents iv Figure captions v Chapter1 Introduction 1 1.1 Surface Plasmons 1 1.2 Introduction of Ionization and Dissolution of Ag Nanoparticles and Its Applications 3 1.3 Highly Transparent Conductor 5 1.4 Motivations 7 1.5 Thesis organization 8 Chapter 2 Sample Fabrication and Characterization Methods 9 Chapter 3 Reorganization Behaviors of Ag Nanoparticles under Different Conditions 10 Chapter 4 Discussions - Mechanisms behind the Reorganization Behaviors of Ag Nanoparticles 45 Chapter 5 Conclusions 51 References 52 | |
| dc.language.iso | en | |
| dc.subject | 位能障 | zh_TW |
| dc.subject | 熱電子 | zh_TW |
| dc.subject | 銀原子遷移 | zh_TW |
| dc.subject | Hot Electron | en |
| dc.subject | Silver Atom Migration | en |
| dc.subject | Potential Barrier | en |
| dc.title | 由熱電子引發銀原子遷移所造成的表面銀奈米顆粒之重組行為 | zh_TW |
| dc.title | Reorganization Behaviors of Surface Silver Nanoparticles through Hot Electron Induced Silver Atom Migration | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 江衍偉,黃建璋,陳奕君,吳肇欣 | |
| dc.subject.keyword | 熱電子,銀原子遷移,位能障, | zh_TW |
| dc.subject.keyword | Hot Electron,Silver Atom Migration,Potential Barrier, | en |
| dc.relation.page | 57 | |
| dc.identifier.doi | 10.6342/NTU201702126 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-09-12 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
