請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68305完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 王翰聰(Han-Tsung Wang) | |
| dc.contributor.author | Kei Wai Ho | en |
| dc.contributor.author | 何基瑋 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:17:09Z | - |
| dc.date.available | 2020-08-24 | |
| dc.date.copyright | 2020-08-24 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-19 | |
| dc.identifier.citation | 易中華、肖世平、熊小林、劉萬平。2014。水楊酸鈉比色法與凱氏定氮法測定飼料粗蛋白質含量的比較研究。黑龍江畜牧獸醫8:26-27。 陳玉燕、蔡岱樺、郭芳瑜、廖翰柏、姜宏騰。2015。單一食性動物腸道健康狀況評估平台之建立。臺北市立動物園 104 年度動物認養計畫成果報告。 陳若菁。2006。肉雞用乳酸菌飼料之研發。嘉南藥理科技大學生物科技研究所碩士論文。 郭芳瑜。2016。小貓熊腸道健康指標之建立。臺灣大學動物科學技術學研究所學位論文。 Baba S. A., and S. A. Malik. 2015. Determination of total phenolic and flavonoid content, antimicrobial and antioxidant activity of a root extract of Arisaema jacquemontii Blume. J. Taibah. Univ. Sci. 9:449-454. Björkroth, K. J., U. Schillinger, R. Geisen, N. Weiss, B. Hoste, W. H. Holzapfel, H. J. Korkeala, and P. Vandamme. 2002. Taxonomic study of Weissella confusa and description of Weissella cibaria sp. nov., detected in food and clinical samples. Int. J. Syst. Evolut. Microbiol. 52:141-148. Blyton, M. D., R. M. Soo, D. Whisson, K. J. Marsh, J. Pascoe, M. Le Pla, W. Foley, P. Hugenholtz and B. D. Moore. 2019. Faecal inoculations alter the gastrointestinal microbiome and allow dietary expansion in a wild specialist herbivore, the koala. Anim. Microb. 1:6. Bourdichon, F., S. Casaregola, C. Farrokh, J. C. Frisvad, M. L. Gerds, W. P. Hammes, J. Harnett, G. Huys, S. Laulund, A. Ouwehand, et al. 2012. Food fermentations: microorganisms with technological beneficial use. Int. J. Food Microbiol. 154:87-97. Brice, K. L., P. Trivedi, T. C. Jeffries, M. D. J. Blyton, C. Mitchell, B. K. Singh, and B. D. Moore. 2019. The Koala (Phascolarctos cinereus) faecal microbiome differs with diet in a wild population. PeerJ 7:e6534. Buysse, J., and R. Merckx. 1993. An improved colorimetric method to quantify sugar content of plant tissue. J. Exp. Bot. 44: 1627-1629. Caggianiello, G., M. Kleerebezem, and G. Spano. 2016. Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biotechnol. 100:3877-3886. Cho, J., D. Lee, C. Yang, J. Jeon, J. Kim, and H. Han. 2006. Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiol. Lett. 257:262-267. Cork, S. J., I. D. Hume, and T. J. Dawson. 1983. Digestion and metabolism of a natural foliar diet (Eucalyptus punctata) by an arboreal marsupial, the koala (Phascolarctos cinereus). J. Comp. Physiol. 153:181-190. Cork, S. J. and W. J. Foley. 1991. Digestive and metabolic strategies of arboreal mammalian folivores in relation to chemical defenses in temperate and tropical forests. In: R. T. Palo, C. T. Robbins, editors, Plant Defenses Against Mammalian Herbivory. p. 133-166. Crous, K. Y., J. Zaragoza-Castells, D. S. Ellsworth, R. A. Duursma, M. Low, D.T. Tissue and O. K. Atkin. 2012. Light inhibition of leaf respiration in field-grown Eucalyptus saligna in whole-tree chambers under elevated atmospheric CO2 and summer drought. Plant Cell Environ. 35:966-981. Damman, C. J., S. I. Miller, C. M. Surawicz, and T. L. Zisman. 2012. The microbiome and inflammatory bowel disease: is there a therapeutic role for fecal microbiota transplantation? Am. J. Gastroenterol. 107:1452-1459. Di Cagno, R., S. Buchin, S. de Candia, M. De Angelis, P. F. Fox, M. Gobbetti. 2007. Characterization of Italian cheeses ripened under nonconventional conditions. J. Dairy Sci. 90:2689-2704. Dinev, T., G. Beev, M. Tzanova, S. Denev, D. Dermendzhieva, and A. Stoyanova. 2017. Antimicrobial activity of Lactobacillus plantarum against pathogenic and food spoilage microorganisms: a review. Bulg. J. Vet. Med. 21:253-268. Du Bois, M., K. A. Gilles, J. K. Rebers, and F. Smith. 1956. Colorimetric method for the determination of sugar and related substances. Anal. Chem. 28:350-356. Ellis W., A. Melzer, I. Clifton, and F. Carrick. 2010. Climate change and the koala Phascolarctos cinereus: water and energy. Aust. Zool. 35:369-377. Ellis, W. A. H., A. Melzer, B. Green, K. Newgrain, M. A. Hindell and F. N. Carrick. 1995. Seasonal variation in water flux, field metabolic rate and food consumption of free-ranging koalas (Phascolarctos cinereus). Aust. J. Zool. 43:59-68. Endo A., Y. Endo-Futagama and L. M. T. Dicks. 2010. Diversity of Lactobacillus and Bifidobacterium in feces of herbivores, omnivores and carnivores. Anaerobe 16:590-596. Fessard, A. and F. Remize. 2017. Why are Weissella spp. not used as commercial starter cultures for food fermentation? Fermentation 3:1-31. Foley W. J., and I. D. Hume. 1987. Digestion and metabolism of high-tannin Eucalyptus foliage by the brushtail possum (Trichosurus vulpecula) (Marsupialia: Phalangeridae). J. Comp. Physiol. B. 157:67-76. Goering, H. K., and P. J. Van Soest. 1970. Forage fiber analyses (apparatus, reagents, procedures, and some applications). Agric. Handbook No. 379. ARS-USDA, Washington, DC. Hamilton, M. J., A. R. Weingarden, M. J. Sadowsky, and A. Khoruts. 2012. Standardized frozen preparation for transplantation of fecal microbiota for recurrent Clostridium difficile infection. Am. J. Gastroenterol. 107:761-767. Hume, I. D. and C. Esson. 1993. Nutrients, antinutrients and leaf selection by captive koalas (Phascolarctos cinereus). Aust. J. Zool. 41:379-392. Isono, Y., I. Shingu, and S. Shimizu. 1994. Identification and characteristics of lactic acid bacteria isolated from Masai fermented milk in northern Tanzania. Biosci. Biotechnol. Biochem. 58:660-664. Jin, L. Z., Y. W. Ho, N. Abdullah, and S. Jalaludin. 1998. Acid and bile tolerance of Lactobacillus isolated from chicken intestine. Lett. Appl. Microbiol. 27:183-185. Jin, C., R. L. Ciochon, W. Dong, R. M. Hunt, Jr., J. Liu, M. Jaeger, and Q. Zhu. 2007. The first skull of the earliest giant panda. Proc. Natl. Acad. Sci. USA 104:10932-10937. Johnson, R. N., D. O’Meally, Z. Chen, G. J. Etherington, S. Y. W. Ho, W. J. Nash, C. E. Grueber, Y. Cheng, C. M. Whittington, and S. Dennison. 2018. Adaptation and conservation insights from the koala genome. Nat. Genet. 50:1102-1111. Kohl K. D., R. B. Weiss, J. Cox, C. Dale, and M. D. Dearing. 2014. Gut microbes of mammalian herbivores facilitate intake of plant toxins. Ecol. Lett. 17:1238-1246. Larsen, C., S. Nielsen, P. Kæstel, E. Brockmann, M. Bennedsen, H. R. Christensen, D. C. Eskesen, B. L. Jacobsen, and K. F. Michaelsen. 2006. Dose–response study of probiotic bacteria Bifidobacterium animalis subsp lactis BB-12 and Lactobacillus paracasei subsp paracasei CRL-341 in healthy young adults. Eur. J. Clin. Nutr. 60:1284-1293. Lawler, I., W. Foley, G. Pass, and B. M. Eschler. 1998. Administration of a 5HT3 receptor antagonist increases the intake of diets containing Eucalyptus secondary metabolites by marsupials. J. Comp. Physiol. B. 168:611-618. Lawley, T. D., S. Clare, A. W. Walker, M. D. Stares, T. R. Connor, C. Raisen, D. Goulding, R. Rad, F. Schreiber, C. Brandt, and G. Dougan. 2012. Targeted restoration of the intestinal microbiota with a simple, defined bacteriotherapy resolves relapsing Clostridium difficile disease in mice. PLoS Pathog. 8:e1002995. Li, M., P. Liang, Z. Li, Y. Wang, G. Zhang, H. Gao, S. Wen, and L. Tang. 2015. Fecal microbiota transplantation and bacterial consortium transplantation have comparable effects on the re-establishment of mucosal barrier function in mice with intestinal dysbiosis. Front. Microbiol. 6:692. Liu, Q., X. Ni, Q. Wang, Z. Peng, L. Niu, H. Wang, Y. Zhou, H. Sun, K. Pan, B. Jing, and D. Zeng. 2017. Lactobacillus plantarum BSGP201683 Isolated from giant panda feces attenuated inflammation and improved gut microflora in mice challenged with enterotoxigenic Escherichia coli. Front. Microbiol. 8:1885. Liu, Q., X. Ni, Q. Wang, Z. Peng, L. Niu, M. Xie, Y. Lin, Y. Zhou. H. Sun, and K. Pan. 2019. Investigation of lactic acid bacteria isolated from giant panda feces for potential probiotics in vitro. Probiotics Antimicro. Prot. 11:85-91. Macauley, B. J. and L. R. Fox. 1980. Variations in total phenols and condensed tannins in Eucalyptus: leaf phenology and insect grazing. Aust. J. Ecol. 5:31-35. Marsh K. J., W. J. Foley, A. Cowling, and I. R. Wallis. 2003. Differential susceptibility to Eucalyptus secondary compounds explains feeding by the common ringtail (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula). J. Comp. Physiol. B. 173:69-78. Martin R. W. and K. A. Handasyde. 1999. The koala: natural history, conservation, and management. In: Australian Natural History Series. UNSW Press, Sydney, Australia. p. 41-50. Merchant, A., S. K. Arndt, , D. M. Rowell, S. Posch. A. Callister, M. Tausz, and M. A. Adams. 2010. Seasonal changes in carbohydrates, cyclitols, and water relations of 3 field grown Eucalyptus species from contrasting taxonomy on a common site. Ann. For. Sci. 67:104. Nagy, K. A. 1987. Field metabolic rate and food requirement scaling in mammals and birds. Ecol. Monogr. 57:111-128. Nigatu, A., S. Ahrne´, and G. Molin. 2000. Temperature-dependent variation in API 50 CH fermentation profiles of Lactobacillus species. Curr. Microbiol. 41:21-26. Osawa R. O. 1990. Formation of a clear zone on tannin-treated brain heart infusion agar by a Streptococcus sp. isolated from faeces of koalas. Appl. Environ. Microbiol. 56:829-831. Osawa R. O. 1992. Tannin-protein complex-degrading enterobacteria isolated from the alimentary tracts of koalas and a selective medium for their enumeration. Appl. Environ. Microbiol. 58:1754-1759. Patel, A., J. B. Prajapati, O. Holst, and A. Ljungh. 2014. Determining probiotic potential of exopolysaccharide producing lactic acid bacteria isolated from vegetables and traditional Indian fermented food products. Food Biosci. 5:27-33. Quattrini, M., D. Korcari, G. Ricci, and M. Fortina. 2020. A polyphasic approach to characterize Weissella cibaria and Weissella confusa strains. J. Appl. Microbiol. 128:500-512. Ray, R. C. and M. Didier. 2014. Fermented foods: past, present and future. In: Microorganisms and fermentation of traditional foods. CRC Press, Boca Raton, USA. p. 1-6. Sánchez, B., S. Delgado, A. Blanco‐Míguez, A. Lourenço, M. Gueimonde, and A. Margolles. 2016. Probiotics, gut microbiota, and their influence on host health and disease. Mol. Nutr. Food Res. 61:1600240. Santos, A., M. San Mauro, A. Sanchez, J. M. Torres, and D. Marquina. 2003. The antimicrobial properties of different strains of Lactobacillus spp. isolated from kefir. Syst. Appl. Microbiol. 26:434-437. Sbahi, H., and J. A. Di Palma. 2016. Faecal microbiota transplantation: applications and limitations in treating gastrointestinal disorders. BMJ Open Gastroenterol. 3:e000087. Sommer, F., and F. Backhed. 2013. The gut microbiota - masters of host development and physiology. Nat. Rev. Microbiol. 11:227-238. Sturino, J. M. 2018. Literature‐based safety assessment of an agriculture‐ and animal‐associated microorganism: Weissella confusa. Regul. Toxicol. Pharmacol. 95:142-152. Suez, J., N. Zmora, G. Zilberman-Schapira, U. Mor, M. Dori-Bachash, S. Bashiardes, M. Zur, D. Regev-Lehavi, R. Ben-Zeev Brik, and S. Federici. 2018. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell 174:1406-1423. Ulrey, D. E., P. T. Robinson, and P. A. Whetter. 1981. Composition of preferred and rejected browse offered to captive koalas, Phascolarctos cinereus (Marsupialia). Aust. J. Zool. 29:83946. Van Soest P. J., J. B. Robertson, and B. A. Lewis. 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74:3583-3597. Wang, H., H. Zhong, R. Hou, J. Ayala, G. Liu, S. Yuan, Z. Yan, W. Zhang, Y. Liu, K. Cai, Z. Cai, H. Huang, Z. Zhang, and D. Wu. 2017. A diet diverse in bamboo parts is important for giant panda (Ailuropoda melanoleuca) metabolism and health. Sci. Rep. 7:3377. Williams, C. L., S. Willard, A. Kouba, D. Sparks, W. Holmes, J. Falcone, C. H. Williams, and A. Brown. 2013. Dietary shifts affect the gastrointestinal microflora of the giant panda (Ailuropoda melanoleuca). J. Anim. Physiol. Anim. Nutr. 97:577-585. Williams, C. L., K. A. Dill-McFarland, M. W. Vandewege, D. L. Sparks, S. T. Willard, A. J. Kouba, G. Suen, and A. E. Brown. 2016. Dietary shifts may trigger dysbiosis and mucous stools in giant pandas (Ailuropoda melanoleuca). Front. Microbiol. 7:661. Willis, R. B., M. E. Montgomery, and P. R. Allen. 1996. Improved method for manual, calorimetric determination of total Kjeldahl nitrogen using salicylate. J. Agric. Food Chem. 44:1804-1807. Xia, X., C. Ran, X. Ye, G. Li, J. Kan and J. Zheng. 2017. Monitoring of the bacterial communities of bamboo shoots (Dendrocalamus latiflorus) during pickling process. Int. J. Food Sci. Technol. 52:1101-1110. Xiong L., X. Ni, L. Niu, Y. Zhou, Q. Wang, A. Khalique, Q. Liu, Y. Zeng, G. Shu, K. Pan, and B. Jing. 2019. Isolation and preliminary screening of a Weissella confusa strain from giant panda (Ailuropoda melanoleuca). Probiotics Antimicro. Prot. 11:535-544. Xue, Z., W. Zhang, L. Wang, R. Hou, M. Zhang, L. Fei, X. Zhang, H. Huang, L. C. Bridgewater, Y. Jiang, C. Jiang, L. Zhao, X. Pang, and Z. Zhang. 2015. The bamboo-eating giant panda harbors a carnivore-like gut microbiota, with excessive seasonal variations. mBio 6:e00022-00015. Zhang, A. Y., H. N. Wang, G. B. Tian, Y. Zhang, X. Yang, Q. Q. Xia, J. N. Tang, and L. K. Zou. 2009. Phenotypic and genotypic characterisation of antimicrobial resistance in faecal bacteria from 30 giant pandas. Int. J. Antimicrob. Agents 33:456-460. Zhang F., B. Cui, X. He, Y. Nie, K. Wu, and D. Fan. 2018a. Microbiota transplantation: concept, methodology and strategy for its modernization. Protein Cell 9:462-473. Zhang, W., W. Liu, R. Hou, L. Zhang, S. Schmitz-Esser, H. Sun, J. Xie, Y. Zhang, C. Wang, L. Li, B. Yue, H. Huang, H. Wang, F. Shen, and Z. Zhang. 2018b. Age-associated microbiome shows the giant panda lives on hemicelluloses, not on cellulose. ISME J. 12:1319-1328. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68305 | - |
| dc.description.abstract | 本研究以兩種食性較為特殊的食葉性哺乳類動物為研究對象,分別探討大貓熊(Ailuropoda melanoleuca)糞源乳酸菌篩選應用之可能性,並以過去大貓熊之腸道健康探討模式,嘗試建立無尾熊(Phascolarctos cinereus)腸道健康評估之可能指標。 大貓熊部分參考選擇性糞菌移殖(selective microbiota transplantation, SMT)的概念,利用選擇性培養基中加入竹葉萃取物,從腸道健康狀況較佳的大貓熊個體四種類型糞便中,分離出可以耐受竹葉萃取物的優勢乳酸菌菌株,以作為將來具有消化障礙之大貓熊改善腸道健康時使用。經過乳酸菌選擇性培養基與竹葉萃取物篩選後,再以API 50 CHL進行初步菌種鑑定,並配合16s rDNA定序進行確認菌株。大貓熊菌株篩選結果顯示,在此篩選條件下,從大貓熊糞便所分離出的乳酸菌主要為Weissella confusa。推估此種菌可能為於較高濃度竹葉萃取物環境下較為強勢的乳酸菌。 無尾熊部分參照過去大貓熊腸道健康評估的建立方法,以台北市立動物園內四隻個體為對象,連續收集一整年的菌相、糞便狀況、採食評分等資料作基礎,並參考園內個體的採食習慣及採食評分標準,分成三級採集其所食之桉樹葉進行成分分析,以評估其採食狀況與葉子成分變化間之關聯性。由無尾熊菌相監測結果發現,Enterococcus、E. coli、Coliform佔總好氧菌的比例隨著時間變化較大,Clostridium與乳酸菌佔總厭氧菌的比例則較穩定。而當菌相波動較大時,糞便狀況也較容易出現不正常。因10到11月為秋冬季節轉換時期,糞便不正常狀況較多,糞便菌相波動明顯,且糞便與桉樹葉樣本收集較完整,故進一步取其中兩個時間區段分析葉子成分。分析結果發現,園內無尾熊對具有較高水分、粗蛋白及較低總酚單寧的葉子採食意願有較高的趨勢,桉樹葉中的總酚及單寧含量較高時對園內無尾熊採食偏好可能仍具有負面影響。 本研究分離出的W. confusa菌株於大貓熊利用上,由於此菌種目前並不在動物益生菌可添加的菌種正面列表上,實際使用仍需要進行體外模擬試驗及安全性評估等程序。而所建立的無尾熊採食偏好與全年期間食物來源對採食與糞便菌相狀況資料及監控指標,可有效提供長期圈養無尾熊之腸道健康監控使用。 | zh_TW |
| dc.description.abstract | Two mammalian folivores, the giant panda and the koala, were used as research subjects in this study, to explore the application possibility of isolating the fecal lactic acid bacteria (LAB) from giant panda, and referring to previous research, to establish the possible methods and index for intestinal health assessment of koala. The first part of this study referred to the concept of selective microbiota transplantation (SMT) and used bamboo leaf extracts in a selective medium to isolate LAB from four types of feces from a healthy giant panda in the Taipei Zoo. The dominant LAB species that could tolerate the bamboo leaf extract were selected for future use, to help other giant pandas with digestive tract disorders improve their intestinal health. After the selection, API 50 CHL was used for the preliminary strain identification, while 16s rDNA sequencing was used for confirmation. The second part referred to the method of intestinal health assessment established in the past with giant pandas as research subjects, taking four individual koalas in the Taipei Zoo as subjects of research, continuously collecting the fecal microbiota, fecal conditions, dietary score and other data as basis information for a whole year, while collecting Eucalyptus leaves for nutritional analysis, to assess the correlation between dietary conditions of the koalas and changes in Eucalyptus leaf composition. The results showed that under this selecting condition, the LAB species isolated from feces of the giant panda were mainly Weissella confusa. It’s estimated that W. confusa might be a dominant LAB species in the environment with a higher concentration of bamboo leaf extracts. The microbial monitoring results of the koalas showed that the ratio of Enterococcus, E. coli and Coliform in aerobes varied widely over time, but the ratios of Clostridium and LAB in anaerobes were relatively stable. When the fluctuations of the fecal microbiota were larger, more abnormal fecal conditions were observed. The four main species of Eucalyptus leaves that were consumed by the subjects, were collected in 3 gradations corresponding to the dietary score for evaluations. Considering that October and November marks the change from Autumn to winter, more abnormal fecal conditions and significant fluctuations in fecal microbiota were observed. The collection of feces and eucalyptus leaf samples during this period was also more complete, therefore, the samples collected were then used for further analysis. The results showed that koalas in this research had a higher preference to consume Eucalyptus leaves containing higher water, crude protein, lower total phenols and tannins content. Higher total phenols and tannins content in the leaves could had a negative effect on the preferences of the koalas in this study. Since W. confusa is currently not regarded as a safe species of animal probiotic, the strains isolated during this study still require further investigations for their characteristics and safety assessments in regards to the giant panda. The established data and index of koala’s dietary preference and conditions, fecal conditions and microbiota collected throughout the year can effectively provide a long-term basis on health monitoring work for captive koalas in the Taipei Zoo. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:17:09Z (GMT). No. of bitstreams: 1 U0001-1708202015115600.pdf: 4147023 bytes, checksum: 97fa1f27fed0276aafd00403509e35a6 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 口試委員會審定書...................................................I 謝誌.............................................................II 摘要............................................................III Abstract.........................................................V 目錄............................................................VII 圖次.............................................................XI 表次...........................................................XIII 緒言..............................................................1 壹、 文獻探討..................................................2 一、 大貓熊之糞源乳酸菌篩選鑑定..................................2 (一) 大貓熊之簡介..............................................2 (二) 大貓熊之攝食變化...........................................2 (三) 腸道健康問題的解決方法.....................................3 (四) 大貓熊糞源乳酸菌的相關研究..................................4 (五) 大貓熊部分之研究背景.......................................5 二、 無尾熊腸道健康監控方法及指標建立............................6 (一) 無尾熊之食性與特性.........................................6 (二) 影響無尾熊採食意願的可能因素及相關研究.......................7 (三) 無尾熊部分之研究背景.......................................8 三、 綜合研究目的..............................................10 貳、 材料與方法................................................12 一、 大貓熊糞源乳酸菌之篩選鑑定.................................12 (一) 採集健康個體的新鮮糞便.....................................12 (二) 分離培養乳酸桿菌..........................................12 (三) 竹葉萃取物與二次篩選......................................13 (四) 乳酸菌生長表現測試........................................13 I. 生長曲線.................................................13 II. 耐酸與耐膽鹽測試(冷凍菌液需先活化兩次)....................14 (五) 四種糞便來源乳酸菌之菌種鑑定...............................15 I. 四種糞便來源乳酸菌菌株挑選.................................15 II. API 50 CHL初步菌種推估(冷凍菌液需先活化兩次)..............16 III. 16S rDNA定序.............................................17 IV. 乳酸生產測試..............................................18 二、 無尾熊腸道健康監控方法與指標建立............................19 (一) 糞便樣本收集..............................................19 (二) 糞便菌相測定..............................................19 I. 平板培養.................................................19 II. 測試片培養...............................................20 (三) 桉樹葉樣本收集............................................20 (四) 桉樹葉成分分析............................................22 I. 水分(water content, wt%)...............................22 II. 總酚類與單寧(Total phenols and tannins, TP TA)........22 III. 水溶性碳水化合物(Water soluble carbohydrate, WSC)........24 IV. 纖維組成含量測定..........................................25 V. 粗蛋白質測定(crude protein, CP).........................27 三、 統計.....................................................29 參、 結果.....................................................30 一、 大貓熊糞源乳酸菌之篩選鑑定.................................30 (一) 生長曲線.................................................30 (二) 耐酸耐膽鹽測試............................................31 (三) 菌種鑑定.................................................34 I. API 50 CHL初步菌種推估....................................34 II. 16s rDNA 定序結果........................................35 (四) 挑選為第一次定序菌株之產乳酸狀況...........................38 二、 無尾熊腸道健康之監控評估...................................39 (一) 糞便菌相監測..............................................39 (二) 桉樹葉成分分析............................................43 I. 水分(water content,wt %)..............................43 II. 水溶性碳水化合物(WSC)...................................44 III. 總酚類與單寧(TP TA)...................................46 IV. 纖維含量(NDF、ADF、HC)..................................48 V. 粗蛋白(CP)..............................................50 (三) 1、2級葉各成分平均含量與平均採食評分比對....................51 I. 1、2級葉平均水分與平均採食評分.............................51 II. 10月時間點中1、2級葉各成分平均含量與平均採食評分............52 III. 11月時間點中1、2級葉各成分平均含量與平均採食評分............53 IV. 兩時間點脂1、2級之各成分平均含量與平均採食評分..............54 V. 兩時間點細1、2級之各成分平均含量與平均採食評分..............55 肆、 討論.....................................................56 一、 大貓熊糞源乳酸菌之篩選....................................56 二、 無尾熊腸道健康之監控......................................58 伍、 結論.....................................................62 陸、 參考文獻.................................................63 柒、 附錄.....................................................73 | |
| dc.language.iso | zh-TW | |
| dc.subject | 無尾熊 | zh_TW |
| dc.subject | 大貓熊 | zh_TW |
| dc.subject | 腸道健康監控 | zh_TW |
| dc.subject | 糞源乳酸菌 | zh_TW |
| dc.subject | Giant panda | en |
| dc.subject | Koala | en |
| dc.subject | Fecal lactic acid bacteria | en |
| dc.subject | Intestinal health monitoring | en |
| dc.title | 圈養食葉性哺乳類動物腸道健康監控及糞源乳酸菌篩選之研究 | zh_TW |
| dc.title | Intestinal health monitoring and fecal lactic acid bacteria selection in captive folivores | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.coadvisor | 林美峰(Mei-Fong Lin) | |
| dc.contributor.oralexamcommittee | 李一泓(Yi-Hong Li),王怡敏(Yi-Min Wang) | |
| dc.subject.keyword | 大貓熊,無尾熊,糞源乳酸菌,腸道健康監控, | zh_TW |
| dc.subject.keyword | Giant panda,Koala,Fecal lactic acid bacteria,Intestinal health monitoring, | en |
| dc.relation.page | 77 | |
| dc.identifier.doi | 10.6342/NTU202003761 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 動物科學技術學研究所 | zh_TW |
| 顯示於系所單位: | 動物科學技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202015115600.pdf 未授權公開取用 | 4.05 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
