Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生態學與演化生物學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68300
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何傳愷(Chuan-Kai Ho)
dc.contributor.authorYi-An Chiangen
dc.contributor.author江怡安zh_TW
dc.date.accessioned2021-06-17T02:17:01Z-
dc.date.available2020-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-09-18
dc.identifier.citationAarssen, L. W. (1983). Ecological combining ability and competitive combining ability in plants: toward a general evolutionary theory of coexistence in systems of competition. The American Naturalist, 122, 707-731.
Abhilasha, D., Quintana, N., Vivanco, J., Joshi, J. (2008). Do allelopathic compounds in invasive Solidago canadensis restrain the native European flora? Journal of Ecology, 96, 993-1001.
Alvarez, A., Pomar, F., Sevilla, M. A., Montero, M. J. (1999). Gastric antisecretory and antiulcer activities of an ethanolic extract of B. pilosa pilosa L. var. radiata Schult. Bip. Journal of Ehnopharmacology, 67, 333-340.
Alexander, J. M., Edwards, P. J., Poll, M., Parks, C. G., Dietz, H. (2009). Establishment of parallel altitudinal clines in traits of native and introduced forbs. Ecology, 90, 612-622.
Arévalo, J. R., Delgado, J. D., Otto, R., Naranjo, A., Salas, M., Fernández-Palacios, J. M. (2005). Distribution of alien vs. native plant species in roadside communities along an altitudinal gradient in Tenerife and Gran Canaria (Canary Islands). Perspectives in Plant Ecology, Evolution and Systematics, 7, 185-202.
Aschehoug, E. T., Callaway, R. M. (2015). Diversity increases indirect interactions, attenuates the intensity of competition, and promotes coexistence. The American Naturalist, 186, 452-459.
Aschehoug, E. T., Brooker, R., Atwater, D. Z., Maron, J. L., & Callaway, R. M. (2016). The mechanisms and consequences of interspecific competition among plants. Annual Review of Ecology, Evolution, and Systematics, 47, 263-281.
Awmack, C. S., Leather, S. R. (2002). Host plant quality and fecundity in herbivorous insects. Annual Review of entomology, 47, 817-844.
Baret, S., Maurice, S., Bourgeois, T. L., Strasberg, D. (2004). Altitudinal variation in fertility and vegetative growth in the invasive plant Rubus alceifolius Poiret (Rosaceae), on Réunion island. Plant Ecology, 172, 265-273.
Baličević, R., Ravlić, M., Živković, T. (2015). Allelopathic effect of invasive species giant goldenrod (Solidago gigantea Ait.) on crops and weeds. Herbologia, 15, 19-29.
Becker, T., Dietz, H., Billeter, R., Buschmann, H., Edwards, P. J. (2005). Altitudinal distribution of alien plant species in the Swiss Alps. Perspectives in Plant Ecology, Evolution and Systematics, 7, 173-183.
Bezemer, T. M., Harvey, J. A., Cronin, J. T. (2014). Response of native insect communities to invasive plants. Annual Review of Entomology, 59, 119-141.
Brown, C. S., Anderson, V. J., Claassen, V. P., Stannard, M. E., Wilson, L. M., Atkinson,
S. Y., Bromberg, J. E., Grant, T. A., Munis, M. D. (2008). Restoration ecology and invasive plants in the semiarid west. Invasive plant science and management, 1, 399-413.
Brown, K. A., Scatena, F. N., Gurevitch, J. (2006). Effects of an invasive tree on
community structure and diversity in a tropical forest in Puerto Rico. Forest
Ecology and Management, 226, 145-152.
Callaway, R. M., DeLucia, E. H., Moore, D., Nowak, R., Schlesinger, W. H., (1996). Competition and facilitation: contrasting effects on Artemisia tridentata on desert versus montane pines. Ecology, 77, 2130-2141.
Callaway, R. M., DeLuca, T. H., Belliveau, W. M. (1999). Biological‐control herbivores may increase competitive ability of the noxious weed Centaurea maculosa. Ecology, 80, 1196-1201.
Callaway, R. M., Aschehoug, E. T. (2000). Invasive plants versus their new and old neighbors: a mechanism for exotic invasion. Science, 290, 521-523.
Callaway, R. M., Ridenour, W. M., (2004). Novel weapons: invasive success and the evolution of increased competitive ability. Frontiers in Ecology and the Environment, 2, 436-443.
Callaway, R. M., Thelen, G. C., Barth, S., Ramsey, P. W., Gannon, J. E. (2004). Soil fungi alter interactions between the invader Centaurea maculosa and North American natives. Ecology, 85, 1062-1071.
Callaway, R. M., Ridenour, W. M., Laboski, T., Weir, T., Vivanco, J. M. (2005). Natural selection for resistance to the allelopathic effects of invasive plants. Journal of Ecology, 93, 576-583.
Cappuccino, N., & Arnason, J. T. (2006). Novel chemistry of invasive exotic plants. Biology Letters, 2, 189-193.
Carnegie, A. J., Kathuria, A., Pegg, G. S., Entwistle, P., Nagel, M., Giblin, F. R. (2016). Impact of the invasive rust Puccinia psidii (myrtle rust) on native Myrtaceae in natural ecosystems in Australia. Biological Invasions, 18, 127.
Casper, B. B., Jackson, R. B. (1997). Plant competition underground. Annual Review of Ecology and Systematics, 28, 545-570.
Cavieres, L. A., Badano, E. I., Sierra‐Almeida, A., Gómez‐González, S., Molina‐Montenegro, M. A. (2006). Positive interactions between alpine plant species and the nurse cushion plant Laretia acaulis do not increase with elevation in the Andes of central Chile. New Phytologist, 169, 59-69.
Chang, M., Hsu, L. M., Yuan, C. I., Chen, F. Y., Chang, Y. C. (2002). The harmful effect and ecology of invasive plants in Taiwan. The Harmful Effect and Field Management of Mikania micrantha, Hualien District Agricultural Research and Externsion, Agricultural Council, Taiwan, 97-109.
Cipollini, K. A., Flint, W. N. (2013). Comparing allelopathic effects of root and leaf extracts of invasive Alliaria petiolata, Lonicera maackii and Ranunculus ficaria on germination of three native woodland plants. The Ohio Journal of Science, 112, 37.
Craine, J. M., Dybzinski, R. (2013). Mechanisms of plant competition for nutrients, water and light. Functional Ecology, 27, 833-840.
Cronin, J. T., Bhattarai, G. P., Allen, W. J., Meyerson, L. A. (2015). Biogeography of a plant invasion: plant–herbivore interactions. Ecology, 96, 1115-1127.
D'Antonio, C. M., Mahall, B. E. (1991). Root profiles and competition between the invasive, exotic perennial, Carpobrotus edulis, and two native shrub species in California coastal scrub. American Journal of Botany, 885-894.
Daehler, C. C. (2003). Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annual Review of Ecology, Evolution, and Systematics, 34, 183-211.
DeLucia, E. H., Schlesinger, W. H., Billings. W. D. (1988). Water relations and the maintenance of Sierran conifers on hydrothermally altered rock. Ecology, 69, 303-311.
Del Fabbro, C., Güsewell, S., Prati, D. (2014). Allelopathic effects of three plant invaders on germination of native species: a field study. Biological Invasions, 16, 1035-1042.
Ehrenfeld, J. G. (2003). Effects of exotic plant invasions on soil nutrient cycling processes. Ecosystems, 6, 503-523.
Elser, J. J., Fagan, W. F., Denno, R. F., Dobberfuhl, D. R., Folarin, A., Huberty, A., Interlandi, S., Kilham, S. S., McCauley, E., Schulz, K. L., Siemann, E. H., Sterner, R. W. (2000). Nutritional constraints in terrestrial and freshwater food webs. Nature, 408, 578-580.
Ens, E. J., Bremner, J. B., French, K., Korth, J. (2009). Identification of volatile compounds released by roots of an invasive plant, bitou bush (Chrysanthemoides monilifera spp. rotundata), and their inhibition of native seedling growth. Biological Invasions, 11, 275-287.
Farquhar, G. D., Ehleringer, J. R., Hubick, K. T. (1989). Carbon isotope discrimination and photosynthesis. Annual Review of Plant Biology, 40, 503-537.
Fowler, N. (1986). The role of competition in plant communities in arid and semiarid regions. Annual Review of Ecology and Systematics, 17, 89-110.
Gaertner, M., Den Breeyen, A., Hui, C., Richardson, D. M. (2009). Impacts of alien
plant invasions on species richness in Mediterranean-type ecosystems: a meta-analysis. Progress in Physical Geography, 33, 319-338.
Goldberg, D. E., Barton, A. M. (1992). Patterns and consequences of interspecific
competition in natural communities: a review of field experiments with plants. The American Naturalist, 139, 771-801.
Gorchov, D. L., Trisel, D. E. (2003). Competitive effects of the invasive shrub, Lonicera maackii (Rupr.) Herder (Caprifoliaceae), on the growth and survival of native tree seedlings. Plant Ecology, 166, 13-24.
Gordon, D. R. (1998). Effects of invasive, non‐indigenous plant species on ecosystem
processes: lessons from Florida. Ecological Applications, 8, 975-989.
Gratton, C., Denno, R. F. (2005). Restoration of arthropod assemblages in a Spartina salt marsh following removal of the invasive plant Phragmites australis. Restoration Ecology, 13, 358-372.
Gratton, C., Denno, R. F. (2006). Arthropod food web restoration following removal of an invasive wetland plant. Ecological Applications, 16, 622-631.
Hautier, Y., Niklaus, P. A., Hector, A. (2009). Competition for light causes plant biodiversity loss after eutrophication. Science, 324, 636-638.
Hierro, J. L., Callaway, R. M. (2003). Allelopathy and exotic plant invasion. Plant and Soil, 256, 29-39.
Hodge, A., Robinson, D., Griffiths, B. S., Fitter A. H. (1999). Why plants bother: Root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environment, 22, 811-20.
Ho, C. K., Pennings, S. C. (2013). Preference and performance in plant–herbivore interactions across latitude–a study in US atlantic salt marshes. Plos one, 8, e59829.
Janz, N., Bergström, A., Sjögren, A. (2005). , 109, 535-538.
James, J. J., Mangold, J. M., Sheley, R. L., Svejcar, T. (2009). Root plasticity of native and invasive Great Basin species in response to soil nitrogen heterogeneity. Plant Ecology, 202, 211-220.
Kagata, H., Ohgushi, T. (2007). Carbon–nitrogen stoichiometry in the tritrophic food chain willow, leaf beetle, and predatory ladybird beetle. Ecological Research, 22, 671-677.
Khanh, T. D., Cong, L. C., Xuan, T. D., Uezato, Y., Deba, F., Toyama, T., Tawata, S. (2009). Allelopathic plants: 20. hairy beggarticks (B. pilosa pilosa L.). Allelopathy Journal, 24, 243-254.
Kueffer, C., Schumacher, E. V. A., Fleischmann, K., Edwards, P. J., Dietz, H. (2007). Strong below‐ground competition shapes tree regeneration in invasive Cinnamomum verum forests. Journal of Ecology, 95, 273-282.
Lau, J. A., Strauss, S. Y. (2005). Insect herbivores drive important indirect effects of exotic plants on native communities. Ecology, 86, 2990-2997.
Levine, J. M., Vila, M., Antonio, C. M., Dukes, J. S., Grigulis, K., Lavorel, S. (2003). Mechanisms underlying the impacts of exotic plant invasions. Proceedings of the Royal Society of London B: Biological Sciences, 270, 775-781.
Liao, C., Peng, R., Luo, Y., Zhou, X., Wu, X., Fang, C., Chen, J., Li, B. (2008). Altered ecosystem carbon and nitrogen cycles by plant invasion: A meta-analysis. New Phytologist, 177, 706-714.
Livingston, N. J., Guy, R. D., Sun, Z. J., Ethier, G. J. (1999). The effects of nitrogen stress on the stable carbon isotope composition, productivity and water use efficiency of white spruce (Picea glauca (Moench) Voss) seedlings. Plant, Cell & Environment, 22, 281-289.
Lloret, F., Casanovas, C., Peñuelas, J. (1999). Seedling survival of Mediterranean shrubland species in relation to root: shoot ratio, seed size and water and nitrogen use. Functional Ecology, 13, 210-216.
Louda, S. M., Rodman, J. E. (1996). Insect herbivory as a major factor in the shade distribution of a native crucifer. Journal of Ecology, 84, 229-237.
Mattson Jr, W. J. (1980). Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics, 11, 119-161.
Mangla, S., Sheley, R. L., James, J. J., Radosevich, S. R. (2011). Intra and interspecific competition among invasive and native species during early stages of plant growth. Plant Ecology, 212, 531-542.
McCary, M. A., Mores, R., Farfan, M. A., Wise, D. H. (2016). Invasive plants have different effects on trophic structure of green and brown food webs in terrestrial ecosystems: a meta‐analysis. Ecology Letters, 19, 328-335.
McCutchan, J. H., Lewis, W. M., Kendall, C., McGrath, C. C. (2003). Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos, 102, 378-390.
Meissner, E. A., Ruth, N. (1986). Allelopathic influence of Tagetes-and B. pilosa-infested soils on seedling growth of certain crop species. South African Journal of Plant and Soil, 3, 176-180.
Murphy, D. D., Menninger, M. S., Ehrlich, P. R. (1984). Nectar source distribution as a determinant of oviposition host species in Euphydryas chalcedona. Oecologia, 62, 269-271.
Oliveira, R. S., Bezerra, L., Davidson, E. A., Pinto, F., Klink, C. A., Nepstad, D. C., Moreira, A. (2005). Deep root function in soil water dynamics in cerrado savannas of central Brazil. Functional Ecology, 19, 574-581.
Orr, S. P., Rudgers, J. A., Clay, K. (2005). Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. Plant Ecology, 181, 153-165.
Padilla, F. M., Pugnaire, F. I., (2007). Rooting depth and soil moisture control Mediterranean woody seedlings survival during drought. Functional Ecology, 21, 489-495.
Pattison, R. R., Goldstein, G., Ares, A. (1998). Growth, biomass allocation and photosynthesis of invasive and native Hawaiian rainforest species. Oecologia, 117, 449-459.
Parker, I. M., Simberloff, D., Lonsdale, W. M., Goodell, K. M., Wonham, P. M.,
Kareiva, M. H., Williamson, B., Von Holle, P. B., Moyle, J. E., Byers, J. E.,
Goldwasser, L. (1999). Impact: toward a framework for understanding the
ecological effects of invaders. Biological Invasions, 1, 3-19.
Pejchar, L., Mooney, H. A. (2009). Invasive species, ecosystem services and human well-being. Trends in Ecology & Evolution, 24, 497-504.
Peng, C. I., Chung, K. F., Li, H. L. (1998). B. pilosa. Flora of Taiwan, 4, 868-870.
Pennings, S. C., Silliman, B. R. (2005). Linking biogeography and community ecology:
latitudinal variation in plant–herbivore interaction strength. Ecology, 86, 2310-2319.
Powell, K. I., Chase, J. M., Knight, T. M. (2011). A synthesis of plant invasion effects
on biodiversity across spatial scales. American Journal of Botany, 98, 539-548.
Pyšek, P., Jarošík, V., Hulme, P. E., Pergl, J., Hejda, M., Schaffner, U., Vilà, M.
(2012). A global assessment of invasive plant impacts on resident species,
communities and ecosystems: the interaction of impact measures, invading
species' traits and environment. Global Change Biology, 18, 1725-1737.
Raynaud, X., Leadley, P. W. (2004). Soil characteristics play a key role in
modeling nutrient competition in plant communities. Ecology, 85, 2200-
2214.
Rausher, M. D. (1979). Larval habitat suitability and oviposition preference in three related butterflies. Ecology, 60, 503-511.
Reigosa, M. J., Pedrol, N., & González, L. (Eds.). (2006). Allelopathy: a physiological process with ecological implications. Springer Science & Business Media.
Richardson, D. M., Macdonald, I. A. W., & Forsyth, G. G. (1989). Reductions in plant
species richness under stands of alien trees and shrubs in the fynbos
biome. South African Forestry Journal, 149, 1-8.
Roslin, T., Hardwick, B., Novotny, V., Petry, W. K., Andrew, N. R., Asmus, A., Cameron, E. K. (2017). Higher predation risk for insect prey at low latitudes and elevations. Science, 356, 742-744.
Russell, F. L., Louda, S. M., Rand, T. A., Kachman, S. D. (2007). Variation in herbivore-mediated indirect effects of an invasive plant on a native plant. Ecology, 88, 413-423.
Sardans, J., Rivas-Ubach, A., Peñuelas, J. (2012). The C: N: P stoichiometry of organisms and ecosystems in a changing world: a review and perspectives. Perspectives in Plant Ecology, Evolution and Systematics, 14, 33-47.
Salgado, C. S., Pennings, S. C. (2005). Latitudinal variation in palatability of salt‐marsh plants: are differences constitutive? Ecology, 86, 1571-1579.
Schenk, H. J. (2006). Root competition: beyond resource depletion. Journal of Ecology, 94, 725-739.
Schemske, D. W., Mittelbach, G. G., Cornell, H. V., Sobel, J. M., Roy, K. (2009). Is there a latitudinal gradient in the importance of biotic interactions? Annual Review of Ecology, Evolution, and Systematics, 40, 245-269.
Schwinning, S., Weiner, J. (1998). Mechanisms determining the degree of size
asymmetry in competition among plants. Oecologia, 113, 447-455.
Shabel, A. B., Peart, D. R. (1994). Effects of competition, herbivory and substrate
disturbance on growth and size structure in pin cherry (Prunus pensylvanica
L.) seedlings. Oecologia, 98, 150-158.
Siemann, E., & Rogers, W. E. (2003). Changes in light and nitrogen availability under
pioneer trees may indirectly facilitate tree invasions of grasslands. Journal of Ecology, 91, 923-931.
Singh, R., Hazarika, U. K. (1996). Allelopathic effects of Galinsoga parviflora Car. and Bidens pilosa L. on germination and seedling growth of soybean and groundnut. Allelopathy Journal, 3, 89-92.
Stevens, G. A., Tang, C. S. (1985). Inhibition of seedling growth of crop species by recirculating root exudates of Bidens pilosa L. Journal of Chemical Ecology, 11, 1411-1425.
Stinson, K. A., Campbell, S. A., Powell, J. R., Wolfe, B. E., Callaway, R. M., Thelen, G. C., Hallett, S. G., Prati D., Klironomos, J. N. (2006). Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. PLoS Biology, 4, e140.
Thorpe, A. S., Thelen, G. C., Diaconu, A., Callaway, R. M. (2009). Root exudate is allelopathic in invaded community but not in native community: field evidence for the novel weapons hypothesis. Journal of Ecology, 97, 641-645.
Tilman, D. (1999). The ecological consequences of changes in biodiversity: a search
for general principles. Ecology, 80, 1455-1474.
Traveset, A., Richardson, D. M. (2006). Biological invasions as disruptors of plant reproductive mutualisms. Trends in Ecology & Evolution, 21, 208-216.
Vanbergen, A. J. (2013). Threats to an ecosystem service: pressures on pollinators. Frontiers in Ecology and the Environment, 11, 251-259.
Vilà, M., Espinar, J. L., Hejda, M., Hulme, P. E., Jarošík, V., Maron, J. L., Pergl, J.,
Schaffner, U., Sun, Y., Pyšek, P. (2011). Ecological impacts of invasive alien plants: a meta‐analysis of their effects on species, communities and ecosystems. Ecology Letters, 14, 702-708.
Vila, M., Weiner, J. (2004). Are invasive plant species better competitors than native plant species? –evidence from pair‐wise experiments. Oikos, 105, 229-238.
Vitousek, P. M., Antonio, C. M., Loope, L. L., Westbrooks, R. (1996). Biological invasions as global environmental change. American Scientist, 84, 468.
Wäckers, F. L., Romeis, J., van Rijn, P. (2007). Nectar and pollen feeding by insect herbivores and implications for multitrophic interactions. Annual Review of Ecology and Systematics, 52, 301-323.
Weiner, J. (1990). Asymmetric competition in plant populations. Trends in Ecology &
Evolution, 5, 360-364.
Weidenhamer, J. D., Callaway, R. M. (2010). Direct and indirect effects of invasive plants on soil chemistry and ecosystem function. Journal of Chemical Ecology, 36, 59-69.
Weston, L. A. (2000). Are laboratory bioassays for allelopathy suitable for prediction of field responses? Journal of Chemical Ecology, 26, 2111-2118.
White, E. M., Wilson, J. C., Clarke, A. R. (2006). Biotic indirect effects: a neglected concept in invasion biology. Diversity and Distributions, 12, 443-455.
White, T. C. (2012). The inadequate environment: nitrogen and the abundance of animals. Springer Science & Business Media.
Williams KS (1983) The coevolution of Euphydryas ehalcedona butterflies and their larval host plants. III. Oviposition behavior and host plant quality. Oecologia 56, 336-340
Willis, S. G., Hulme, P. E. (2002). Does temperature limit the invasion of Impatiens glandulifera and Heracleum mantegazzianum in the UK? Functional Ecology, 16, 530-539.
Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25, 443-466.
Wu, S. H., Hsieh, C. F., Chaw, S. M., Rejmánek, M. (2004). Plant invasions in Taiwan: insights from the flora of casual and naturalized alien species. Diversity and Distributions, 10, 349-362.
Yuan, Y., Wang, B., Zhang, S., Tang, J., Tu, C., Hu, S., Yong, W. H., Chen, X. (2013). Enhanced allelopathy and competitive ability of invasive plant Solidago canadensis in its introduced range. Journal of Plant Ecology, rts033.
Yurkonis, K. A., Meiners, S. J., Wachholder, B. E. (2005). Invasion impacts diversity through altered community dynamics. Journal of ecology, 93, 1053-1061.
林正鴻 (2015)。暖化將如何影響本土及外來種紋白蝶於兩種寄主植物上的競爭
關係?台灣大學生態學與演化生物學研究所學位論文。
黃涵靈 (2008)。比較生長在不同海拔高度咸豐草(Bidens pilosa) 族群間的差
異。台灣大學生態學與演化生物學研究所學位論文。
余淑惠 (2016)。暖化操控對不同海拔的本土種紋白蝶、外來種紋白蝶及其蜜源
植物的影響。台灣大學生態學與演化生物學研究所學位論文。
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68300-
dc.description.abstract入侵植物是全球重要的生態議題,然而我們對於入侵植物在不同海拔是否會對本土植物造成直接和/或間接的影響,以及入侵植物對本土植物的影響是否會進一步影響到更高階的營養階層仍不清楚。本研究探討以上議題利用台灣可發現的物種:入侵植物大花咸豐草(Bidens pilosa var. radiata),本土植物葶藶(Rorippa indica),和紋白蝶。大花咸豐草是紋白蝶(Pieris)的蜜源植物,葶藶則是紋白蝶的寄主植物。本研究進行以下實驗:(1)野外調查—為了解大花咸豐草與葶藶在野外可能的直接與間接交互關係如何隨海拔變化,我們在低、中海拔(100、1000 m)各三個地點測量兩植物的間距是否和葶藶的生長表現,及葶藶上的紋白蝶卵數有相關性。(2)操控實驗一—為了解大花咸豐草如何在不同海拔下直接影響葶藶的生長,我們自低、中海拔收集兩種植物的種子,並依以下三組處理種植於模擬低海拔(25 oC ~ 20 oC)和中海拔溫度(20 oC ~ 15 oC)的人工氣候室:兩株大花咸豐草、一株大花咸豐草及一株葶藶、兩株葶藶種在一起。(3) 操控實驗二—為進一步檢測大花咸豐草直接影響葶藶的地上與地下部機制,我們利用類似實驗一的方法將大花咸豐草與葶藶共植,操控並探討大花咸豐草如何在不同海拔透過地上部(遮蔽)和地下部競爭(根部接觸)影響葶藶的生長。(4) 操控實驗三—為了解大花咸豐草是否會透過吸引紋白蝶而間接的影響葶藶,我們在低、中海拔擺放等距的植株,檢驗距離大花咸豐草越近的葶藶是否會有較多的紋白蝶卵,進而造成葶藶的傷害。(5) 操控實驗四—為探討大花咸豐草對葶藶的影響是否會進一步影響到更高階的生物,我們將台灣紋白蝶 (Pieris canidia)(取食葶藶的草食動物)飼養在有或沒有受到大花咸豐草競爭影響的葶藶上,並監測台灣紋白蝶的生長表現。野外調查結果暗示大花咸豐草與葶藶在野外可能有直接與間接的交互關係,然而這些關係可能隨著月份和海拔改變。進一步的研究室操控實驗結果顯示,大花咸豐草在低海拔會直接抑制葶藶的生長(實驗一),可能的機制是直接透過地下部非物理性的接觸(實驗二)。雖然大花咸豐草似乎不會透過紋白蝶而間接影響葶藶(實驗三),然而大花咸豐草對葶藶的負面影響會延伸到葶藶的草食動物上,降低台灣紋白蝶的生長表現(實驗四)。這些結果顯示入侵植物可在不同海拔對本土植物造成不同的直接影響,並且進一步影響到更高階的營養階層。zh_TW
dc.description.abstractPlant invasion changes invaded communities and has become a global concern. However, little is known about how invasive plants directly and indirectly influence native plants across spatial gradients, and how this might create cascading effects on the associated arthropods. To answer these questions, we examined an invasive plant (Bidens pilosa var. radiata; hereafter B. p. r.), a native plant (Rorippa indica; hereafter R. i), and associated Pieris butterflies across altitude (100 and 1000 m). Pieris are pollinators of Bidens but herbivores of Rorippa. We conducted following field and laboratory studies: 1) Field survey - To explore the field relationship between Bidens and Rorippa (e.g., direct and indirect effect of Bidens on Rorippa), we surveyed plant height vs. distance across altitude. 2) Experiment 1 - To examine the direct effect of Bidens on Rorippa across altitude, we conducted a laboratory competition experiment and measured plant performance in the Bidens-Bidens, Rorippa-Rorippa, and Bidens-Rorippa treatment groups. Plants, germinated from seeds collected from low and medium altitude, were cultivated in a greenhouse simulating low- and medium-altitude temperature (25-20 and 20-15 oC [day-night], respectively). 3) Experimental 2 - To explore the competition mechanisms, we performed an above-ground (shading) x below-ground (root contact) experiment in laboratory, with detailed methods similar to those in Experiment 1. Soil chemicals were analyzed. 4) Experiment 3 - To investigate the indirect effect of Bidens on Rorippa via Pieris across altitude, we examined whether the distance between these two plants would affect Pieris oviposition on Rorippa, using potted plants with fixed interval. 5) Experiment 4 - To understand whether the impact of Bidens on Rorippa would have a cascading effect on Rorippa’s herbivores, we raised and monitored Pieirs canidia on Rorippa with or without grown with Bidens competition (low altitude condition only). Our field survey results implied direct and indirect effects of Bidens on Rorippa, which varied with seasons and altitude. The laboratory competition experiment further showed that the invasive Bidens directly suppressed the native Rorippa at low altitude condition (Exp.1), contributed by the below-ground effect of Bidens (e.g., soil chemicals) (Exp.2). The distance between Bidens and Rorippa didn’t affect Pieris oviposition on Rorippa (Exp.3), suggesting no indirect effect of Bidens on Rorippa via Pieris. Furthermore, Bidens impact on Rorippa reduced P. canidia performance (Exp.4), indicating a cascading effect of plant invasion. In conclusion, the study reveals that the negative impact of invasive plants (e.g., Bidens) on native ones (e.g., Rorippa) can act through below-ground mechanisms and vary with altitude. In addition, the negative impact of invasive on native plants may cascade up to a higher trophic level (e.g., native plants’ herbivores). These cascading effects may be common in various systems and deserve further investigations.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:17:01Z (GMT). No. of bitstreams: 1
ntu-106-R03b44011-1.pdf: 5199131 bytes, checksum: 1d065513487c6a8e0775fa36a706719e (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsContent
謝辭 i
摘要 ii
Abstract iiv
Content vii
Content of tables x
Content of figures xi
Introduction 1
The impact of invasive plants on native ones 1
Direct effects of invasive plants on native ones 2
Indirect effects of invasive plants on native ones 4
Cascading effect of invasive plants on the herbivores of native plants 6
Species interactions vary with spatial gradients 7
Research system 8
Objectives 9
Hypotheses 10
Materials & Methods 12
Study system 12
Field survey 12
Laboratory competition experiments 13
Experiment 1: Direct effect of B. pilosa on R. indica across altitude 13
Plant preparation 15
Plant trait measurements 15
Plant quality traits: stoichiometry 17
Experiment 2: Mechanisms for direct effect of B. pilosa on R. indica across altitude 17
Design 17
Plant preparation 19
Plant trait measurements 20
Analysis soil chemicals 20
Field oviposition experiment 21
Experiment 3: Indirect effect of B. pilosa on R. indica via Pieris across altitude 21
Design 21
Plant preparation 22
Feeding experiment 22
Experiment 4: Cascading effect of B. pilosa on R. indica’s herbivores 22
Design 23
Plant preparation in phytotron 23
Plant trait measurements 24
Rearing P. canidia in growth chambers 24
Pieris trait measurements 25
Statistical analysis 26
Field survey 26
Laboratory competition experiments 26
Field oviposition experiment 26
Feeding experiment 27
Results 28
Field survey 28
Effect of B. pilosa-R. indica distance on plant performance 28
Indirect effect of B. pilosa on R. indica 30
Laboratory competition experiments 31
Experiment 1: Direct effect of B. pilosa on R. indica across altitude 31
R. indica performance – growth traits 31
R. indica performance – plant quality traits 31
B. pilosa performance 32
Experiment 2: Mechanisms for direct effect of B. pilosa on R. indica across altitude 33
Below-ground competition treatment 33
Above-ground competition treatment 35
An interaction between below- and above-ground competition treatments 35
Analysis of soil chemicals 36
Experiment 1: Direct effect of B. pilosa on R. indica across altitude 36
Experiment 2: Mechanisms for direct effect of B. pilosa on R. indica across altitude 37
Field oviposition experiment 37
Experiment 3: Indirect effect of B. pilosa on R. indica via Pieris across altitude 37
Feeding experiment 37
Experiment 4: Cascading effect of B. pilosa on R. indica’s herbivores 38
Discussion 39
Summary 39
Direct effects of invasive plants on native ones 39
Mechanisms for direct effect of B. pilosa on R. indica across altitude 41
Cascading effect of invasive plants on the herbivores of native plants 43
Indirect effects of invasive plants on native ones 44
Potential caveats of this study 46
Conclusions 47
References 48
Content of tables
Table 1. Study sites 61
Table 2. R. indica performance in field survey 63
Table 3. B. pilosa performance in field survey 65
Table 4. Pieirs oviposition on R. indica in field survey 66
Table 5. R. indica performance in experiment 1 67
Table 6. R. indica’s quality in experiment 1 69
Table 7. B. pilosa performance in experiment 1 70
Table 8. R. indica performance in experiment 2 71
Table 9. Pieris oviposition on R. indica in experiment 3 73
Table 10. Pieirs canidia performance in experiment 4 74
Content of figures
Fig. 1 Concept map 75
Fig. 2 Potted plants in experiment 1 76
Fig. 3 Setting to examine the mechanisms for direct effect of B. pilosa on R. indica in below-ground competition treatments 77
Fig. 4 Potted plants in experiment 2 (Mechanisms for direct effect of B. pilosa on R. indica across altitude) 78
Fig. 5 Setting to examine indirect effect of B. pilosa on R. indica via Pieris across altitude 79
Fig. 6 Potted plants in experiment 4 (Cascading effect of B. pilosa on R. indica’s herbivores) 80
Fig. 7 R. indica performance in field survey (March) 81
Fig. 8 R. indica performance in field survey (April) 82
Fig. 9 R. indica performance in field survey (April) 83
Fig. 10 B. pilosa performance in field survey (April) 84
Fig. 11 B. pilosa performance in field survey (July) 85
Fig. 12 Pieris oviposition on R. indica in field survey 86
Fig. 13 R. indica performance in experiment 1 (Direct effect of B. pilosa on R. indica across altitude) 87
Fig. 14 R. indica performance in experiment 1 (Direct effect of B. pilosa on R. indica across altitude) 88
Fig. 15 R. indica’s quality in experiment 1 (Direct effect of B. pilosa on R. indica across altitude) 89
Fig. 16 B. pilosa performance in experiment 1 90
Fig. 17 B. pilosa performance in experiment 1 across altitude 91
Fig. 18 Mechanisms for direct effect of B. pilosa on R. indica across altitude 92
Fig. 19 Mechanisms for direct effect of B. pilosa on R. indica across altitude 93
Fig. 20 Soil chemicals at low altitude condition in experiment 1 (Nantou, Taoyuan) 94
Fig. 21 Soil chemicals at low altitude condition in experiment 1 (Taipei) 95
Fig. 22 Soil chemicals at medium altitude condition in experiment 1 96
Fig. 23 Soil chemicals at low altitude condition in experiment 2 97
Fig. 24 Soil chemicals at medium altitude condition in experiment 2 98
Fig. 25 Pieris oviposition on R. indica in experiment 3 (Indirect effect of B. pilosa on R. indica via Pieris across altitude) 99
Fig. 26 Pieirs canidia performance in experiment 4 (Cascading effect of B. pilosa on R. indica’s herbivores) 100
dc.language.isoen
dc.subject葶藶zh_TW
dc.subject植物競爭zh_TW
dc.subject大花咸豐草zh_TW
dc.subject入侵植物zh_TW
dc.subject海拔zh_TW
dc.subject紋白蝶zh_TW
dc.subjectcompetitionen
dc.subjectBidens pilosa var. radiataen
dc.subjectRorippa indicaen
dc.subjectPieris speciesen
dc.subjectovipositionen
dc.subjectaltitudeen
dc.subjectInvasive planten
dc.title入侵植物(大花咸豐草)如何在不同海拔影響本土植物(葶藶)和相關蝴蝶?zh_TW
dc.titleHow does an invasive plant (Bidens pilosa var. radiata) affect a native plant (Rorippa indica) and associated butterflies (Pieris spp.) across altitude?en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee高文媛(Wen-Yuan Kao),江智民(Jyh-Min Chiang),郭奇芊(Chi-Chien Kuo)
dc.subject.keyword大花咸豐草,葶藶,紋白蝶,海拔,入侵植物,植物競爭,zh_TW
dc.subject.keywordInvasive plant,Bidens pilosa var. radiata,Rorippa indica,Pieris species,oviposition,altitude,competition,en
dc.relation.page100
dc.identifier.doi10.6342/NTU201702877
dc.rights.note有償授權
dc.date.accepted2017-09-19
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生態學與演化生物學研究所zh_TW
顯示於系所單位:生態學與演化生物學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.08 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved