Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68284
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor黃慶怡
dc.contributor.authorYu-Lin Lien
dc.contributor.author李祐霖zh_TW
dc.date.accessioned2021-06-17T02:16:35Z-
dc.date.available2018-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-09-28
dc.identifier.citation[1] Y.-J. Cheng, S.-H. Yang, C.-S. Hsu, Synthesis of conjugated polymers for organic solar cell applications, Chemical reviews 109(11) (2009) 5868-5923.
[2] A. Shah, P. Torres, R. Tscharner, N. Wyrsch, H. Keppner, Photovoltaic technology: the case for thin-film solar cells, science 285(5428) (1999) 692-698.
[3] S. Günes, H. Neugebauer, N.S. Sariciftci, Conjugated polymer-based organic solar cells, Chemical reviews 107(4) (2007) 1324-1338.
[4] H. Hoppe, N. Sariciftci, D. Meissner, Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells, Molecular Crystals and Liquid Crystals 385(1) (2002) 113-119.
[5] O.V. Mikhnenko, P.W. Blom, T.-Q. Nguyen, Exciton diffusion in organic semiconductors, Energy & Environmental Science 8(7) (2015) 1867-1888.
[6] N.A. Ran, J.A. Love, C.J. Takacs, A. Sadhanala, J.K. Beavers, S.D. Collins, Y. Huang, M. Wang, R.H. Friend, G.C. Bazan, Harvesting the full potential of photons with organic solar cells, Advanced Materials (2015).
[7] G. Dennler, M.C. Scharber, C.J. Brabec, Polymer‐Fullerene bulk‐heterojunction solar cells, Advanced Materials 21(13) (2009) 1323-1338.
[8] Y. Shang, Q. Li, L. Meng, D. Wang, Z. Shuai, Computational characterization of organic photovoltaic devices, Theoretical Chemistry Accounts 129(3-5) (2011) 291-301.
[9] H.S. Nalwa, Handbook of advanced electronic and photonic materials and devices: semiconductors. Vol. 1, Academic Press2001.
[10] K. Vandewal, K. Tvingstedt, A. Gadisa, O. Inganäs, J.V. Manca, On the origin of the open-circuit voltage of polymer-fullerene solar cells, Nature materials 8(11) (2009) 904.
[11] D. Wynands, M. Levichkova, M. Riede, M. Pfeiffer, P. Baeuerle, R. Rentenberger, P. Denner, K. Leo, Correlation between morphology and performance of low bandgap oligothiophene: C60 mixed heterojunctions in organic solar cells, Journal of Applied Physics 107(1) (2010) 014517.
[12] H. Peng, X. Sun, W. Weng, X. Fang, Polymer Materials for Energy and Electronic Applications, Academic Press2016.
[13] Q. Wang, S. Zhang, B. Xu, L. Ye, H. Yao, Y. Cui, H. Zhang, W. Yuan, J. Hou, Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedione‐based Photovoltaic Polymer by Grafting Alkylthio Functional Groups, Chemistry–An Asian Journal 11(19) (2016) 2650-2655.
[14] J.K. van Duren, X. Yang, J. Loos, C.W. Bulle‐Lieuwma, A.B. Sieval, J.C. Hummelen, R.A. Janssen, Relating the morphology of poly (p‐phenylene vinylene)/methanofullerene blends to solar‐cell performance, Advanced Functional Materials 14(5) (2004) 425-434.
[15] H. Hoppe, M. Niggemann, C. Winder, J. Kraut, R. Hiesgen, A. Hinsch, D. Meissner, N.S. Sariciftci, Nanoscale morphology of conjugated polymer/fullerene‐based bulk‐heterojunction solar cells, Advanced Functional Materials 14(10) (2004) 1005-1011.
[16] C.-Y. Nam, Q. Wu, D. Su, C.-y. Chiu, N.J. Tremblay, C. Nuckolls, C.T. Black, Nanostructured electrodes for organic bulk heterojunction solar cells: Model study using carbon nanotube dispersed polythiophene-fullerene blend devices, Journal of Applied Physics 110(6) (2011) 064307.
[17] O.V. Mikhnenko, H. Azimi, M. Scharber, M. Morana, P.W. Blom, M.A. Loi, Exciton diffusion length in narrow bandgap polymers, Energy & Environmental Science 5(5) (2012) 6960-6965.
[18] M.C. Scharber, D. Mühlbacher, M. Koppe, P. Denk, C. Waldauf, A.J. Heeger, C.J. Brabec, Design rules for donors in bulk‐heterojunction solar cells—Towards 10% energy‐conversion efficiency, Advanced materials 18(6) (2006) 789-794.
[19] C.J. Brabec, A. Cravino, D. Meissner, N.S. Sariciftci, T. Fromherz, M.T. Rispens, L. Sanchez, J.C. Hummelen, Origin of the open circuit voltage of plastic solar cells, Advanced Functional Materials 11(5) (2001) 374-380.
[20] P. Morvillo, E. Bobeico, Tuning the LUMO level of the acceptor to increase the open-circuit voltage of polymer-fullerene solar cells: a quantum chemical study, Solar Energy Materials and Solar Cells 92(10) (2008) 1192-1198.
[21] H.-Y. Chen, J. Hou, S. Zhang, Y. Liang, G. Yang, Y. Yang, L. Yu, Y. Wu, G. Li, Polymer solar cells with enhanced open-circuit voltage and efficiency, Nature photonics 3(11) (2009) 649-653.
[22] B. Qi, J. Wang, Fill factor in organic solar cells, Physical Chemistry Chemical Physics 15(23) (2013) 8972-8982.
[23] X. Guo, N. Zhou, S.J. Lou, J. Smith, D.B. Tice, J.W. Hennek, R.P. Ortiz, J.T.L. Navarrete, S. Li, J. Strzalka, Polymer solar cells with enhanced fill factors, Nature Photonics 7(10) (2013) 825-833.
[24] J. Yan, Q. Liang, K. Liu, J. Miao, H. Chen, S. Liu, Z. He, H. Wu, J. Wang, Y. Cao, Optimized Phase Separation and Reduced Geminate Recombination in High Fill Factor Small-Molecule Organic Solar Cells, ACS Energy Letters 2(1) (2016) 14-21.
[25] J.-W. Kang, S.-P. Lee, D.-G. Kim, S. Lee, G.-H. Lee, J.-K. Kim, S.-Y. Park, J.H. Kim, H.-K. Kim, Y.-S. Jeong, Reduction of series resistance in organic photovoltaic using low sheet resistance of ITO electrode, Electrochemical and Solid-State Letters 12(3) (2009) H64-H66.
[26] M.-S. Kim, B.-G. Kim, J. Kim, Effective variables to control the fill factor of organic photovoltaic cells, ACS applied materials & interfaces 1(6) (2009) 1264-1269.
[27] Y.T. Chang, S.L. Hsu, M.H. Su, K.H. Wei, Intramolecular Donor–Acceptor Regioregular Poly (hexylphenanthrenyl‐imidazole thiophene) Exhibits Enhanced Hole Mobility for Heterojunction Solar Cell Applications, Advanced Materials 21(20) (2009) 2093-2097.
[28] O. Inganäs, W. Salaneck, J.-E. Österholm, J. Laakso, Thermochromic and solvatochromic effects in poly (3-hexylthiophene), Synthetic Metals 22(4) (1988) 395-406.
[29] M. Trznadel, A. Pron, M. Zagorska, R. Chrzaszcz, J. Pielichowski, Effect of molecular weight on spectroscopic and spectroelectrochemical properties of regioregular poly (3-hexylthiophene), Macromolecules 31(15) (1998) 5051-5058.
[30] J.Y. Kim, S.H. Kim, H.H. Lee, K. Lee, W. Ma, X. Gong, A.J. Heeger, New Architecture for high‐efficiency polymer photovoltaic cells using solution‐based titanium oxide as an optical spacer, Advanced materials 18(5) (2006) 572-576.
[31] N. Camaioni, G. Ridolfi, G. Casalbore‐Miceli, G. Possamai, M. Maggini, The Effect of a Mild Thermal Treatment on the Performance of Poly (3‐alkylthiophene)/Fullerene Solar Cells, Advanced Materials 14(23) (2002) 1735-1738.
[32] F. Padinger, R.S. Rittberger, N.S. Sariciftci, Effects of postproduction treatment on plastic solar cells, Advanced Functional Materials 13(1) (2003) 85-88.
[33] E. Havinga, W. Ten Hoeve, H. Wynberg, Alternate donor-acceptor small-band-gap semiconducting polymers; Polysquaraines and polycroconaines, Synthetic Metals 55(1) (1993) 299-306.
[34] A. Ajayaghosh, Donor–acceptor type low band gap polymers: polysquaraines and related systems, Chemical Society Reviews 32(4) (2003) 181-191.
[35] H. Zhou, L. Yang, W. You, Rational design of high performance conjugated polymers for organic solar cells, Macromolecules 45(2) (2012) 607-632.
[36] Y. Gao, M. Liu, Y. Zhang, Z. Liu, Y. Yang, L. Zhao, Recent Development on Narrow Bandgap Conjugated Polymers for Polymer Solar Cells, Polymers 9(2) (2017) 39.
[37] K.H. Ong, S.L. Lim, H.S. Tan, H.K. Wong, J. Li, Z. Ma, L.C. Moh, S.H. Lim, J.C. de Mello, Z.K. Chen, A Versatile Low Bandgap Polymer for Air‐Stable, High‐Mobility Field‐Effect Transistors and Efficient Polymer Solar Cells, Advanced Materials 23(11) (2011) 1409-1413.
[38] J.F. Jheng, Y.Y. Lai, J.S. Wu, Y.H. Chao, C.L. Wang, C.S. Hsu, Influences of the Non‐Covalent Interaction Strength on Reaching High Solid‐State Order and Device Performance of a Low Bandgap Polymer with Axisymmetrical Structural Units, Advanced Materials 25(17) (2013) 2445-2451.
[39] W. Li, S. Albrecht, L. Yang, S. Roland, J.R. Tumbleston, T. McAfee, L. Yan, M.A. Kelly, H. Ade, D. Neher, Mobility-controlled performance of thick solar cells based on fluorinated copolymers, Journal of the American Chemical Society 136(44) (2014) 15566-15576.
[40] Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, H. Yan, Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells, Nature communications 5 (2014).
[41] H. Hu, K. Jiang, G. Yang, J. Liu, Z. Li, H. Lin, Y. Liu, J. Zhao, J. Zhang, F. Huang, Terthiophene-based D–A polymer with an asymmetric arrangement of alkyl chains that enables efficient polymer solar cells, Journal of the American Chemical Society 137(44) (2015) 14149-14157.
[42] J. Zhao, Y. Li, A. Hunt, J. Zhang, H. Yao, Z. Li, J. Zhang, F. Huang, H. Ade, H. Yan, A difluorobenzoxadiazole building block for efficient polymer solar cells, Advanced materials 28(9) (2016) 1868-1873.
[43] T.-A. Chen, X. Wu, R.D. Rieke, Regiocontrolled synthesis of poly (3-alkylthiophenes) mediated by Rieke zinc: their characterization and solid-state properties, Journal of the American Chemical Society 117(1) (1995) 233-244.
[44] Z. Lin, J. Bjorgaard, A.G. Yavuz, A. Iyer, M.E. Köse, Synthesis, photophysics, and photovoltaic properties of low-band gap conjugated polymers based on thieno [3, 4-c] pyrrole-4, 6-dione: a combined experimental and computational study, RSC Advances 2(2) (2012) 642-651.
[45] C.D. Canestraro, P.C. Rodrigues, C.F. Marchiori, C.B. Schneider, L. Akcelrud, M. Koehler, L.S. Roman, The role of the double peaked absorption spectrum in the efficiency of solar cells based on donor–acceptor–donor copolymers, Solar Energy Materials and Solar Cells 95(8) (2011) 2287-2294.
[46] S. Beaupré, M. Belletête, G. Durocher, M. Leclerc, Rational Design of Poly (2, 7‐Carbazole) Derivatives for Photovoltaic Applications, Macromolecular Theory and Simulations 20(1) (2011) 13-18.
[47] N. Blouin, A. Michaud, D. Gendron, S. Wakim, E. Blair, R. Neagu-Plesu, M. Belletête, G. Durocher, Y. Tao, M. Leclerc, Toward a rational design of poly (2, 7-carbazole) derivatives for solar cells, Journal of the American Chemical Society 130(2) (2008) 732-742.
[48] N. Banerji, E. Gagnon, P.-Y. Morgantini, S. Valouch, A.R. Mohebbi, J.-H. Seo, M. Leclerc, A.J. Heeger, Breaking down the problem: optical transitions, electronic structure, and photoconductivity in conjugated polymer PCDTBT and in its separate building blocks, The Journal of Physical Chemistry C 116(21) (2012) 11456-11469.
[49] L. Pandey, C. Risko, J.E. Norton, J.-L. Brédas, Donor–acceptor copolymers of relevance for organic photovoltaics: a theoretical investigation of the impact of chemical structure modifications on the electronic and optical properties, Macromolecules 45(16) (2012) 6405-6414.
[50] K. Do, Q. Saleem, M.K. Ravva, F. Cruciani, Z. Kan, J. Wolf, M.R. Hansen, P.M. Beaujuge, J.L. Brédas, Impact of Fluorine Substituents on π‐Conjugated Polymer Main‐Chain Conformations, Packing, and Electronic Couplings, Advanced Materials 28(37) (2016) 8197-8205.
[51] Y.-C. Huang, T.-C. Lu, C.-I. Huang, Exploring the correlation between molecular conformation and UV–visible absorption spectra of two-dimensional thiophene-based conjugated polymers, Polymer 54(23) (2013) 6489-6499.
[52] Y.-K. Lan, C.-I. Huang, Charge mobility and transport behavior in the ordered and disordered states of the regioregular poly (3-hexylthiophene), The Journal of Physical Chemistry B 113(44) (2009) 14555-14564.
[53] F. Di Meo, J.C. Sancho Garcia, O. Dangles, P. Trouillas, Highlights on anthocyanin pigmentation and copigmentation: a matter of flavonoid π-stacking complexation to be described by DFT-D, Journal of Chemical Theory and Computation 8(6) (2012) 2034-2043.
[54] H. Wang, F.-Q. Bai, X. Jia, D. Cao, R.M. Kumar, J.-L. Brédas, S. Qu, B. Bai, H.-X. Zhang, M. Li, Theoretical study on molecular packing and electronic structure of bi-1, 3, 4-oxadiazole derivatives, RSC Advances 4(94) (2014) 51942-51949.
[55] C.A. Guido, B. Mennucci, D. Jacquemin, C. Adamo, Planar vs. twisted intramolecular charge transfer mechanism in Nile Red: new hints from theory, Physical Chemistry Chemical Physics 12(28) (2010) 8016-8023.
[56] P. Hohenberg, W. Kohn, Inhomogeneous electron gas, Physical review 136(3B) (1964) B864.
[57] P. Stephens, F. Devlin, C. Chabalowski, M.J. Frisch, Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields, The Journal of Physical Chemistry 98(45) (1994) 11623-11627.
[58] Julien Preat, D. Jacquemin, V. Wathelet, J.-M. Andre, E.A. Perpete, TD-DFT Investigation of the UV Spectra of Pyranone Derivatives, J. Phys. Chem. A 110 (2006) 8144-8150.
[59] E. Runge, E.K.U. Gross, Density-Functional Theory for Time-Dependent Systems, Phys. Rev. Lett. 52(12) (1984) 997-1000.
[60] S.L. Mayo, B.D. Olafson, W.A. Goddard, DREIDING: a generic force field for molecular simulations, The Journal of Physical Chemistry 94(26) (1990) 8897-8909.
[61] A.K. Rappe, W.A. Goddard III, Charge equilibration for molecular dynamics simulations, The Journal of Physical Chemistry 95(8) (1991) 3358-3363.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68284-
dc.description.abstract在本研究中,我們利用分子動力學與量子力學模擬方法來探討PffBT4T-2OD共軛高分子在有序排列及無序溶液狀態下分子鏈構型與光電性質之關聯性。首先我們先使用Gaussian量子計算軟體,來建構一PffBT4T-2OD單體分子,並對其做幾何最佳化觀察其構型並計算吸收光譜,並發現結果與實驗值相比有較大的紅位移,因此我們認為以Gaussian所直接做出的幾何最佳化構型,相較實際的構型來的可能過於平面。為了得到高分子鏈在溶液下真正的構型,我們便利用分子動力學的模擬加入真實溶劑來觀察高分子鏈在溶劑中情況,由於分子鏈間缺乏pi-pi作用力,分子鏈運動較為自由,均呈現出蜷曲的構形,我們經由統計各單元間的扭轉角度來得到的幾個最大機率單體,可觀察到主鏈單元間扭轉角度約為180±40˚,再將這些統計出的單體進行吸收光譜計算,並觀察到與實驗值的高度一致性,分別在400nm及550nm附近都出現了兩個峰值,吸收範圍也大約落在400nm~600nm,證明我們結合分子動力學所做出的構型模擬與真實情況是非常相似的。在有序排列下,我們同樣利用分子動力學來模擬高分子鏈在緊密堆疊時的構型,由於pi-pi作用力的影響高分子鏈呈現規整的有序排列,相對於無序溶液狀態下的結果構型來的較平面,吸收光譜的結果也呈現紅位移的現象,重要的是如同實驗吸收光譜一樣在700nm也出現了一個由聚集的pi-pi作用力產生的峰,吸收範圍也介於400nm~700nm,並藉由我們的模擬結果與之前本實驗室所作的P3HT作比較,藉此發現PffBT4T-2OD高分子在堆疊時與P3HT無太大差異,這可能是PffBT4T-2OD高分子與P3HT同樣有高結晶度,且有高電洞遷移率的原因,也是造就這個分子如此高效率的原因。zh_TW
dc.description.abstractWe employed all-atom molecular dynamics simulation and quantum mechanical methods to explore the relationship between molecular conformation and Photoelectric properties of PffBT4T-2OD polymer in ordered state and disordered state. First, we used Gaussian to build a monomer model and optimized the model then we calculated the UV spectrum. In comparison with experimental data we found that there’s a big red-shift of our result. We thought that the structure which was optimized by Gaussian was too coplanar. In order to obtain the true configuration of the polymer chain in the solution, we used the molecular dynamics simulation to add the real solvent to observe the polymer chain in the solvent. Due to the lack of pi-pi interaction, the molecular chain showed a cured configuration. We can obtain the maximum probability of monomer by counting the torsional angle between the units. We founded the values were approximately 180±40˚, and then we calculated the UV spectrum. The spectrum was shown in two peaks just like the experimental data. In the ordered state, the polymer chain experience the pi-pi interaction and result in more planarity for main chain. Thus, it shows significantly red-shift.
In comparison with experimental data there’s also a new peak at 700nm of our result. Overall, our simulated spectrum for PffBT4T-2OD in disordered state and ordered state showed the excellent agreement with experimental data. Comparing with our previous study about P3HT, we found that there is no significant difference in order state. This is why PffBT4T-2OD has high crystallinity as P3HT and high mobility. And it may be the reason why the polymer has high performance.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:16:35Z (GMT). No. of bitstreams: 1
ntu-106-R04549028-1.pdf: 3786815 bytes, checksum: 2f0b60108932f109f94339b9d2bb5afa (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
誌謝 i
中文摘要 ii
ABSTRACT iii
目錄 iv
圖目錄 vi
表目錄 viii
第1章. 前言 1
第2章. 模擬方法 14
2.1 量子力學模擬 14
2.1.1 密度泛涵理論 (Density Functional Theory, DFT) 14
2.2 分子動力學模擬 15
2.2.1 系統介紹與初始架構 15
2.2.2 升溫退火程序與分子動力學模擬 16
2.3 模擬的實驗流程 19
第3章. 結果與討論 21
3.1 使用Gaussian軟體做單體幾何最佳化並計算光譜 21
3.2 使用Molecular Dynamics模擬PffBT4T-2OD高分子鏈在溶劑中的無序狀態構型及吸收光譜 25
3.3 -模擬PffBT4T-2OD在有序狀態排列下之構型及吸收光譜 36
3.4 PffBT4T-2OD與P3HT之比較 46
第4章. 結論 50
REFERENCE 51
dc.language.isozh-TW
dc.subject高效率共軛高分子zh_TW
dc.subject量子力學zh_TW
dc.subject全原子分子動力學zh_TW
dc.subjecthigh performance conjugated polymeren
dc.subjectquantum mechanicsen
dc.subjectmolecular dynamicsen
dc.title結合分子動力學與量子力學探討高效率高分子太陽能電池給體材料其分子鏈構形與光電性質之關聯性zh_TW
dc.titleExploring the Correlation between Molecular Conformation and Photoelectric properties of Donor-Type Materials in Highly Efficient Polymer Solar Cells via Quantum Mechanics and Molecular Dynamics Methodsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee賴育英,楊小青
dc.subject.keyword高效率共軛高分子,量子力學,全原子分子動力學,zh_TW
dc.subject.keywordhigh performance conjugated polymer,quantum mechanics,molecular dynamics,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201704212
dc.rights.note有償授權
dc.date.accepted2017-09-29
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.7 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved