請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68272完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳志毅(Chihi Wu) | |
| dc.contributor.author | YIFENG SHI | en |
| dc.contributor.author | 史亦灃 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:16:18Z | - |
| dc.date.available | 2020-09-02 | |
| dc.date.copyright | 2020-09-02 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1 Kojima, A., Teshima, K., Shirai, Y. Miyasaka, T. Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. Journal of the American Chemical Society 131, 6050-6051, doi:10.1021/ja809598r (2009). 2 Basore, P. A. Understanding Manufacturing Cost Influence on Future Trends in Silicon Photovoltaics. IEEE Journal of Photovoltaics 4, 1477-1482, doi:10.1109/JPHOTOV.2014.2358081 (2014). 3 de Wild, J., Rath, J. K., Meijerink, A., van Sark, W. G. J. H. M. Schropp, R. E. I. Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors. Solar Energy Materials and Solar Cells 94, 2395-2398, doi:https://doi.org/10.1016/j.solmat.2010.08.024 (2010). 4 Casey, H. C., Sell, D. D. Wecht, K. W. Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV. Journal of Applied Physics 46, 250-257, doi:10.1063/1.321330 (1975). 5 Hagfeldt, A., Boschloo, G., Sun, L., Kloo, L. Pettersson, H. Dye-Sensitized Solar Cells. Chemical Reviews 110, 6595-6663, doi:10.1021/cr900356p (2010). 6 Hadipour, A., de Boer, B. Blom, P. W. M. Organic Tandem and Multi-Junction Solar Cells. 18, 169-181, doi:10.1002/adfm.200700517 (2008). 7 Mailoa, J. P. et al. A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction. Applied Physics Letters 106, 121105, doi:10.1063/1.4914179 (2015). 8 Gonzalez-Pedro, V. et al. General Working Principles of CH3NH3PbX3 Perovskite Solar Cells. Nano Letters 14, 888-893, doi:10.1021/nl404252e (2014). 9 Sahli, F. et al. Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency. Nature Materials 17, 820-826, doi:10.1038/s41563-018-0115-4 (2018). 10 Eperon, G. E. et al. 11 Habibi, M., Zabihi, F., Ahmadian-Yazdi, M. R. Eslamian, M. Progress in emerging solution-processed thin film solar cells – Part II: Perovskite solar cells. Renewable and Sustainable Energy Reviews 62, 1012-1031, doi:https://doi.org/10.1016/j.rser.2016.05.042 (2016). 12 Liu, S. et al. Imaging the Long Transport Lengths of Photo-generated Carriers in Oriented Perovskite Films. Nano Letters 16, 7925-7929, doi:10.1021/acs.nanolett.6b04235 (2016). 13 Zhumekenov, A. A. et al. Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length. ACS Energy Letters 1, 32-37, doi:10.1021/acsenergylett.6b00002 (2016). 14 Lee, Y. M. et al. Comprehensive Understanding and Controlling the Defect Structures: An Effective Approach for Organic-Inorganic Hybrid Perovskite-Based Solar-Cell Application. 6, doi:10.3389/fenrg.2018.00128 (2018). 15 Jain, A. Kapoor, A. A new approach to study organic solar cell using Lambert W-function. Solar Energy Materials and Solar Cells 86, 197-205, doi:https://doi.org/10.1016/j.solmat.2004.07.004 (2005). 16 Cheknane, A., Hilal, H. S., Djeffal, F., Benyoucef, B. Charles, J.-P. An equivalent circuit approach to organic solar cell modelling. Microelectronics Journal 39, 1173-1180, doi:https://doi.org/10.1016/j.mejo.2008.01.053 (2008). 17 Lindholm, F. A., Fossum, J. G. Burgess, E. L. Application of the superposition principle to solar-cell analysis. IEEE Transactions on Electron Devices 26, 165-171, doi:10.1109/T-ED.1979.19400 (1979). 18 Stolterfoht, M. et al. Approaching the Fill Factor Shockley Queisser Limit in Stable, Dopant-Free Triple Cation Perovskite Solar Cells. Energy Environ. Sci. 10, doi:10.1039/C7EE00899F (2017). 19 Park, N.-G. Zhu, K. Scalable fabrication and coating methods for perovskite solar cells and solar modules. Nature Reviews Materials 5, 333-350, doi:10.1038/s41578-019-0176-2 (2020). 20 Xiao-Guo, -. L. et al. - Research progress of interface passivation of n-i-p perovskite solar cells %J - Acta Physica Sinica. - 68, - 158803-158801, doi:- 10.7498/aps.68.20190468 (2019). 21 Jung, K.-H., Seo, J.-Y., Lee, S., Shin, H. Park, N.-G. Solution-processed SnO2 thin film for a hysteresis-free planar perovskite solar cell with a power conversion efficiency of 19.2%. Journal of Materials Chemistry A 5, 24790-24803, doi:10.1039/C7TA08040A (2017). 22 Tavakoli, M. M., Yadav, P., Tavakoli, R. Kong, J. Surface Engineering of TiO2 ETL for Highly Efficient and Hysteresis-Less Planar Perovskite Solar Cell (21.4%) with Enhanced Open-Circuit Voltage and Stability. 8, 1800794, doi:10.1002/aenm.201800794 (2018). 23 Tavakoli, M. M., Simchi, A., Fan, Z. Aashuri, H. Chemical processing of three-dimensional graphene networks on transparent conducting electrodes for depleted-heterojunction quantum dot solar cells. Chemical Communications 52, 323-326, doi:10.1039/C5CC06955F (2016). 24 Wojciechowski, K. et al. Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells. ACS Nano 8, 12701-12709, doi:10.1021/nn505723h (2014). 25 Zuo, L. et al. Tailoring the Interfacial Chemical Interaction for High-Efficiency Perovskite Solar Cells. Nano Letters 17, 269-275, doi:10.1021/acs.nanolett.6b04015 (2017). 26 Liu, L. et al. Fully Printable Mesoscopic Perovskite Solar Cells with Organic Silane Self-Assembled Monolayer. Journal of the American Chemical Society 137, 1790-1793, doi:10.1021/ja5125594 (2015). 27 Yang, F., Kang, D.-W. Kim, Y.-S. Improved interface of ZnO/CH3NH3PbI3 by a dynamic spin-coating process for efficient perovskite solar cells. RSC Advances 7, 19030-19038, doi:10.1039/C7RA01869J (2017). 28 Rostalski, J. Meissner, D. Monochromatic versus solar efficiencies of organic solar cells. Solar Energy Materials and Solar Cells 61, 87-95, doi:https://doi.org/10.1016/S0927-0248(99)00099-9 (2000). 29 Yang, L. et al. Comparing spiro-OMeTAD and P3HT hole conductors in efficient solid state dye-sensitized solar cells. Physical chemistry chemical physics : PCCP 14, 779-789, doi:10.1039/c1cp23031j (2011). 30 Hawash, Z., Ono, L. K., Raga, S. R., Lee, M. V. Qi, Y. Air-Exposure Induced Dopant Redistribution and Energy Level Shifts in Spin-Coated Spiro-MeOTAD Films. Chemistry of Materials 27, 562-569, doi:10.1021/cm504022q (2015). 31 Xiao, M. et al. A Fast Deposition-Crystallization Procedure for Highly Efficient Lead Iodide Perovskite Thin-Film Solar Cells. Angewandte Chemie 126, doi:10.1002/ange.201405334 (2014). 32 Gao, R., Wu, J., Hao, D., Zhu, L. Zhao, C. Effect of tourmaline on structure and photocatal activity of TiO2 nanoparticles. Kuei Suan Jen Hsueh Pao/Journal of the Chinese Ceramic Society 42, 920-925, doi:10.7521/j.issn.0454-5648.2014.07.18 (2014). 33 Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nature Communications 8, doi:10.1038/s41467-017-02039-5 (2017). 34 Guo, X. et al. Identification and characterization of the intermediate phase in hybrid organic–inorganic MAPbI3 perovskite. Dalton Transactions 45, 3806-3813, doi:10.1039/C5DT04420K (2016). 35 Hu, Q. et al. Engineering of Electron-Selective Contact for Perovskite Solar Cells with Efficiency Exceeding 15%. ACS Nano 8, 10161-10167, doi:10.1021/nn5029828 (2014). 36 Fu, F.-Y. et al. KSCN-induced Interfacial Dipole in Black TiO2 for Enhanced Photocatalytic CO2 Reduction. ACS Applied Materials Interfaces 11, 25186-25194, doi:10.1021/acsami.9b06264 (2019). 37 Yun, S. et al. (2016). 38 Abate, A. et al. Lithium salts as “redox active” p-type dopants for organic semiconductors and their impact in solid-state dye-sensitized solar cells. Physical Chemistry Chemical Physics 15, 2572-2579, doi:10.1039/C2CP44397J (2013). 39 Deng, Y. et al. Surfactant-controlled ink drying enables high-speed deposition of perovskite films for efficient photovoltaic modules. Nature Energy 3, doi:10.1038/s41560-018-0153-9 (2018). 40 Jr., H. C. C., Sell, D. D. Wecht, K. W. Concentration dependence of the absorption coefficient for n− and p−type GaAs between 1.3 and 1.6 eV. 46, 250-257, doi:10.1063/1.321330 (1975). 41 Coulter, J. B. Birnie III, D. P. Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System. 255, 1700393, doi:10.1002/pssb.201700393 (2018). 42 Xu, Z. et al. Tuning the Fermi Level of TiO2 Electron Transport Layer through Europium Doping for Highly Efficient Perovskite Solar Cells. 5, 1820-1826, doi:10.1002/ente.201700377 (2017). 43 Sweenor, D. E., O’Leary, S. K. Foutz, B. E. On defining the optical gap of an amorphous semiconductor: an empirical calibration for the case of hydrogenated amorphous silicon. Solid State Communications 110, 281-286, doi:https://doi.org/10.1016/S0038-1098(99)00049-6 (1999). 44 Coulter, J. B. Birnie III, D. P. Assessing Tauc Plot Slope Quantification: ZnO Thin Films as a Model System. 255, 1700393, doi:10.1002/pssb.201700393 (2018). 45 Mills, A. Le Hunte, S. An overview of semiconductor photocatalysis. Journal of Photochemistry and Photobiology A: Chemistry 108, 1-35, doi:https://doi.org/10.1016/S1010-6030(97)00118-4 (1997). 46 Kim, J. et al. Alkali acetate-assisted enhanced electronic coupling in CsPbI3 perovskite quantum dot solids for improved photovoltaics. Nano Energy 66, 104130, doi:https://doi.org/10.1016/j.nanoen.2019.104130 (2019). 47 Kango, S. et al. Surface modification of inorganic nanoparticles for development of organic–inorganic nanocomposites—A review. Progress in Polymer Science 38, 1232-1261, doi:https://doi.org/10.1016/j.progpolymsci.2013.02.003 (2013). 48 Shao, Y. et al. Grain boundary dominated ion migration in polycrystalline organic–inorganic halide perovskite films. Energy Environmental Science 9, 1752-1759, doi:10.1039/C6EE00413J (2016). 49 Nukunudompanich, M., Budiutama, G., Suzuki, K., Hasegawa, K. Ihara, M. Dominant effect of the grain size of the MAPbI3 perovskite controlled by the surface roughness of TiO2 on the performance of perovskite solar cells. CrystEngComm 22, 2718-2727, doi:10.1039/D0CE00169D (2020). 50 Almora, O., Aranda, C. Garcia-Belmonte, G. Do Capacitance Measurements Reveal Light-Induced Bulk Dielectric Changes in Photovoltaic Perovskites? The Journal of Physical Chemistry C 122, 13450-13454, doi:10.1021/acs.jpcc.7b11703 (2018). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68272 | - |
| dc.description.abstract | 本論文主要探討正型鈣鈦礦太陽能電池在膜層之間的介面吻合問題,通過介面改質的方法,修補鈣鈦礦表面缺陷,降低漏電流及遲滯效應,從而提高鈣鈦礦元件電流密度,達到開發高效率、高穩定性的鈣鈦礦太陽能電池的目的。 本研究主要通過不同官能團修飾物修飾TiO2對電子傳輸層/主動層介面的改質效果,採用的結構為ITO/TiO2/鈣鈦礦(perovskite)/Spiro-OMeTAD/Au,通過低溫方式製備nanoparticle TiO2,並且用帶有不同官能團的分子對TiO2表面進行修飾,在TiO2納米顆粒上形成了交聯的網狀結構,形成Ti-O-R的化學鍵,並且用於修飾的R基分子僅存在于顆粒表面的最外層,並通過XPS測量,驗證修飾基官能團已修飾在TiO2納米顆粒表面;從UPS和UV-Visible量測,得出由GABA和Tiacac修飾後的TiO2,改進了導帶的位置,减小了载流子被trap在界面处的可能性,完成能级对准,使元件效率变高。 以此種方法將Tiacac,APTMS,GABA,IPTMS,45-Dich,CPTMS這6中不同分子修飾在TiO2上製成元件,在模擬AM1.5陽光下測得的太陽能電池中,經GABA(-NH2)改性的器件可實現17.39%的能量轉換效率.相較於未修飾的元件(能量轉換效率15.25%),效率顯著提升14.03% | zh_TW |
| dc.description.abstract | This study mainly discusses the enhancement of the interface between the positive-type perovskite solar cells between the film layers. Through the method of interface modification, the surface defects of the perovskite are repaired, the leakage current and the hysteresis effect are reduced, thereby increasing the current density of the perovskite component, to achieve the purpose of developing high-efficiency, high-stability perovskite solar cells. Organic-inorganic perovskites, such as CH3NH3PbX3 (X = I, Br, Cl), due to the excellent optical and electronic properties of perovskites, including large absorption coefficients, low exciton binding energy and longer carrier diffusion length ,becoming a new material for manufacturing low-cost and high-efficiency solar cells. Over the past decade, the power conversion efficiency (PCE) has seen an amazing increase, proving the great potential of these perovskite materials. However, perovskite solar cells still have some problems,such as low built-in voltage, low crystallinity, and poor interface alignment, resulting in high leakage current, hysteresis, and ion migration, which affects device stability. Therefore, this study aims to repair the surface defects of perovskite through interface passivation, so as to develop perovskite solar cells with high power efficiency and high stability. The structure adopted in this research is ITO / TiO2 / perovskite / Spiro-OMeTAD / Au, TiO2 nanoparticle was prepared by low temperature, and the surface of TiO2 was modified with molecules with different functional groups on TiO2 nanoparticle,formed a cross-linked network structure, and the chemical bond of TI-O-R is formed, and the R-based molecules used for modification exist only on the outermost layer of the particle surface. In this way, a solar cell measured under simulated AM1.5 sunlight Among them, devices modified with GABA (-NH2) can achieve a power conversion efficiency of 17.39%, compared to those without modify components (power conversion efficiency 15.25%), which constitutes an ∼14.03% enhancement . | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:16:18Z (GMT). No. of bitstreams: 1 U0001-1708202015205500.pdf: 5938456 bytes, checksum: ef6a10b570b4703a5717a1757cf62877 (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 目錄 中文摘要 2 Abstract 3 第一章:緒論 12 1.1. 前言 12 1.2. 太陽能電池分類 12 1.3. 鈣鈦礦太陽能電池 16 1.4. 鈣鈦礦太陽能電池光電轉換機制 19 1.5. 太陽能電池等效電路與參數介紹 21 1.5.1 太陽能電池等效電路 21 1.5.2 太陽能電池理論介紹 22 第二章:實驗動機 26 第三章:研究方法 34 3.1 制程儀器 34 3.1.1 離心機(Centrifuge) 34 3.1.2 紫外臭氧清洗機(UV-Ozone Cleaner) 34 3.1.3 旋轉塗佈機(Spin-Coater) 35 3.1.4 手套箱(Glove Box) 36 3.1.5 真空蒸鍍機(Vacuum Evaporator) 37 3.2 量測儀器 38 3.2.1 太陽能模擬器(Solar simulators) 38 3.2.2 紫外-可見光光譜儀(UV-Visiable Spectrophotometer) 40 3.2.3 外部量子效率量測系統(External Quantum Efficiency System, EQE) 41 3.2.4 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 42 3.2.5 PL光致發光測試系統(Photoluminescence System) 43 3.2.6 X射線衍射儀(X-Ray Diffraction) 44 3.2.7 紫外光電子能譜(Ultroviolet Photoelectron Spectrometer,UPS) 45 3.2.8 X射線光電子能譜(X-ray Photoelectron Spectroscopy,XPS) 46 3.3實驗材料介紹 47 3.3.1下電極材料(Lower Electrode) 47 3.3.2電子傳輸層材料(Electron Transport Layer) 47 3.3.3主動層材料(active layer) 47 3.3.4電洞傳輸層材料(Hole Transport Layer) 48 3.3.5上電極材料(Upper Electrode) 49 3.4實驗步驟 50 3.4.1元件製作流程圖 50 3.4.2元件製程步驟 50 3.4.3元件製程示意圖 56 第四章:結果與討論 57 4.1實驗流程 57 4.2實驗結果 59 4.3實驗分析 60 第五章:總結與未來展望 79 5.1 總結 79 参考文献 85 | |
| dc.language.iso | zh-TW | |
| dc.subject | 鈣鈦礦太陽能電池 | zh_TW |
| dc.subject | 低溫製程 | zh_TW |
| dc.subject | 遲滯 | zh_TW |
| dc.subject | 離子遷移 | zh_TW |
| dc.subject | 分子修飾 | zh_TW |
| dc.subject | 介面鈍化 | zh_TW |
| dc.subject | interface passivation | en |
| dc.subject | Low temperature process | en |
| dc.subject | hysteresis | en |
| dc.subject | Perovskite solar cells | en |
| dc.subject | molecular modification | en |
| dc.subject | ion migration | en |
| dc.title | 利用帶有不同官能基的分子進行鈣鈦礦介面改質 | zh_TW |
| dc.title | Modify perovskite solar cell interface by using molecules with different functional groups | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳奕君(I-C Cheng),林恭如(Gong-Ru Lin),吳忠幟(Chung-chih Wu),陳美杏(Mei-Hsin Chen) | |
| dc.subject.keyword | 鈣鈦礦太陽能電池,低溫製程,遲滯,離子遷移,分子修飾,介面鈍化, | zh_TW |
| dc.subject.keyword | Perovskite solar cells,Low temperature process,,hysteresis,interface passivation,molecular modification,ion migration, | en |
| dc.relation.page | 88 | |
| dc.identifier.doi | 10.6342/NTU202003766 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1708202015205500.pdf 未授權公開取用 | 5.8 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
