請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68264完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 蔡武廷(Wu-Ting Tsai) | |
| dc.contributor.author | Po-Chen Chen | en |
| dc.contributor.author | 陳柏丞 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:16:05Z | - |
| dc.date.available | 2019-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-10-12 | |
| dc.identifier.citation | Andrilli, S., & Hecker, D. (2003). Elementary linear algebra. Elsevier.
Blackwelder, R. F., & Kaplan, R. E. (1976). On the wall structure of the turbulent boundary layer. Journal of Fluid Mechanics, 76(1), 89-112. Chakraborty, P., Balachandar, S., & Adrian, R. J. (2005). On the relationships between local vortex identification schemes. Journal of fluid mechanics, 535, 189-214. Chong, M. S., Perry, A. E., & Cantwell, B. J. (1990). A general classification of three‐dimensional flow fields. Physics of Fluids A: Fluid Dynamics, 2(5), 765-777. Druzhinin, O. A., Troitskaya, Y. I., & Zilitinkevich, S. S. (2012). Direct numerical simulation of a turbulent wind over a wavy water surface. Journal of Geophysical Research: Oceans, 117(C11). Hunt, J. C., Wray, A. A., & Moin, P. (1988). Eddies, streams, and convergence zones in turbulent flows. Jeong, J., & Hussain, F. (1995). On the identification of a vortex. Journal of fluid mechanics, 285, 69-94. Kim, J. (1983). On the structure of wall‐bounded turbulent flows. The Physics of fluids, 26(8), 2088-2097. Kim, J., & Moin, P. (1986). The structure of the vorticity field in turbulent channel flow. Part 2. Study of ensemble-averaged fields. Journal of Fluid Mechanics, 162, 339-363. Kreyszig, E. (2010). Advanced engineering mathematics. John Wiley & Sons. Moin, P., & Kim, J. (1985). The structure of the vorticity field in turbulent channel flow. Part 1. Analysis of instantaneous fields and statistical correlations. Journal of Fluid Mechanics, 155, 441-464. Robinson, S. K. (1991). Coherent motions in the turbulent boundary layer. Annual Review of Fluid Mechanics, 23(1), 601-639. Schafhitzel, T., Vollrath, J. E., Gois, J. P., Weiskopf, D., Castelo, A., & Ertl, T. (2008, May). Topology‐Preserving λ2‐based Vortex Core Line Detection for Flow Visualization. In Computer Graphics Forum (Vol. 27, No. 3, pp. 1023-1030). Blackwell Publishing Ltd. Tsai, W. T., Chen, S. M., & Lu, G. H. (2015). Numerical evidence of turbulence generated by nonbreaking surface waves. Journal of Physical Oceanography, 45(1), 174-180. Tsai, W. T., Lu, G. H., Chen, J. R., Dai, A., & Phillips, W. R. (2017). On the Formation of Coherent Vortices beneath Nonbreaking Free-Propagating Surface Waves. Journal of Physical Oceanography, 47(3), 533-543. Willmarth, W. W., & Lu, S. S. (1972). Structure of the Reynolds stress near the wall. Journal of Fluid Mechanics, 55(1), 65-92. Wallace, J. M., Eckelmann, H., & Brodkey, R. S. (1972). The wall region in turbulent shear flow. Journal of Fluid Mechanics, 54(1), 39-48. Yang, D., & Shen, L. (2009). Characteristics of coherent vortical structures in turbulent flows over progressive surface waves. Physics of Fluids, 21(12), 125106. Zhou, J., Adrian, R. J., Balachandar, S., & Kendall, T. M. (1999). Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of fluid mechanics, 387, 353-396. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68264 | - |
| dc.description.abstract | 本研究旨於探究自由傳播波浪下之流場、波狀面上之空氣紊流場邊界層內之渦漩結構。我們採用四種建立於速度應變率特徵之旋渦結構辨識方法,並與傳統與渦度向量有關之方法比較。此外,條件平均法也被運用於擷取馬蹄形渦旋結構。在兩種流場中,四種渦漩結構辨識方法皆可得到相近之結果。在自由傳播波浪下之流場,可以觀察到沿流向伸展、成對反向旋轉之渦漩結構。藉由比較渦漩結構辨識方法和與渦度向量有關之方法,可以得知以渦漩結構辨識方法來研究流場較為直覺。在波浪上之空氣紊流場中,可以觀察到馬蹄型渦漩結構及類沿流向渦漩結構,我們也觀察到了馬蹄型渦漩結構的演化並發現其紊流場存在大尺度之旋轉運動。此外,條件平均的結果顯示象限分析取樣法較VISA取樣法佳。 | zh_TW |
| dc.description.abstract | In this thesis we study the coherent vortical structures within the boundary-layer flow next to a wavy surface. Both aqueous flow beneath a free-propagating surface wave and turbulent air flow above a prescribed propagating wavy boundary are considered. Four vortex identification schemes based on the characteristics of velocity-strain rate are adopted to extract the vortical structures. These schemes are also compared with traditional methods based on vorticity vector. Conditional averaging technique of the flow field is also applied to extract the horseshoe vortices. In both aqueous and air flow, four vortex identification schemes derive similar results. For the aqueous flow underneath a free-propagating surface wave, counter-rotating vortex pairs that elongate along streamwise direction are observed. By comparing vortex identification schemes with methods based on vorticity vector, it is found that observing vortical structures is a more intuitive way to study the flow field. For the air flow above a prescribed propagating wavy boundary, horseshoe vortices and quasi-streamwise vortices are found, the regeneration of forward horseshoe vortices are observed, and the larger scale vortical motions in the flow field above wavy surface are discovered. In addition, the conditional averaging results shows that out of the two sampling criterions, the quadrant analysis sampling technique is more feasible than the VISA sampling technique. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:16:05Z (GMT). No. of bitstreams: 1 ntu-106-R04525010-1.pdf: 8301489 bytes, checksum: e7120dd2960823dd190760dc82849963 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 中文摘要 i
Abstract ii Contents iii List of figures v List of tables xii Chapter 1. Introduction 13 1.1 Research background and objectives 13 1.2 Outline of this thesis 15 Chapter 2. Conditional averaging method 16 2.1 Quadrant analysis 17 2.2 VISA sampling technique 19 Chapter 3. Vortex identification methods 20 3.1 Q Criterion 21 3.2 ∆ Criterion 23 3.3 λ_2 Criterion 25 3.4 λ_ci Criterion 28 3.5 Relation between Q, ∆, λ_2 and λ_ci 29 Chapter 4. Coherent vortical structures beneath free-propagating wavy surface 31 4.1 Numerical simulation 31 4.2 Results of vortical structure identification 33 4.2.1 Equivalent thresholds 33 4.2.2 Vortical structures 36 4.2.3 Relation between vorticity inclination angle and vortical structures 39 Chapter 5. Coherent vortical structures above wavy surface 44 5.1 Numerical simulation 44 5.2 Results of structure identification 47 5.2.1 Equivalent thresholds 50 5.2.2 Vortical structures 54 5.2.3 Regeneration of the forward horseshoe vortices 63 5.2.4 Larger scale vortical motions 67 5.3 Conditional averaging analysis 70 5.3.1 Conditional averaging procedures 70 5.3.2 Subjective conditional average 74 5.3.3 Autonomous conditional average 80 Chapter 6. Conclusion 91 References 92 Appendix A. Phase plane method and critical point theory 94 Appendix B. Properties of the Hessian matrix 96 | |
| dc.language.iso | en | |
| dc.subject | 邊界層 | zh_TW |
| dc.subject | 渦旋結構 | zh_TW |
| dc.subject | 波浪表面 | zh_TW |
| dc.subject | 漩渦結構辨識方法 | zh_TW |
| dc.subject | 條件平均法 | zh_TW |
| dc.subject | boundary layer | en |
| dc.subject | vortical structures | en |
| dc.subject | wavy surface | en |
| dc.subject | vortex identification method | en |
| dc.subject | conditional averaging method | en |
| dc.title | 波浪邊界層流場渦漩結構之擷取 | zh_TW |
| dc.title | Extraction of vortical structures in boundary layer next to wavy surface | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周逸儒(Yi-Ju Chou),戴璽恆(Hsi-Heng Dai),陳世楠(Shih-Nan Chen),黃印良(Yin-Liang Huang) | |
| dc.subject.keyword | 邊界層,渦旋結構,波浪表面,漩渦結構辨識方法,條件平均法, | zh_TW |
| dc.subject.keyword | boundary layer,vortical structures,wavy surface,vortex identification method,conditional averaging method, | en |
| dc.relation.page | 98 | |
| dc.identifier.doi | 10.6342/NTU201704258 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-10-12 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 工程科學及海洋工程學研究所 | zh_TW |
| 顯示於系所單位: | 工程科學及海洋工程學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 8.11 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
