Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 獸醫專業學院
  4. 獸醫學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68249
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor鄭益謙(Ivan-Chen Cheng)
dc.contributor.authorLing-Chu Hungen
dc.contributor.author洪鈴柱zh_TW
dc.date.accessioned2021-06-17T02:15:43Z-
dc.date.available2018-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-10-14
dc.identifier.citationAbbott, W.M., Damschroder, M.M., Lowe, D.C., 2014. Current approaches to fine mapping of antigen–antibody interactions. Immunology 142, 526–535. DOI:10.1111/imm.12284
Allan, G., Meehan, B., Todd, D., Kennedy, S., McNeilly, F., Ellis, J., Clark, E.G., Harding, J., Espuna, E., Botner, A., Charreyre, C., 1998. Novel porcine circoviruses from pigs with wasting disease syndromes. Vet. Rec. 142, 467–468.
Allan, G.M., McNeilly, E., Kennedy, S., Meehan, B., Moffett, D., Malone, F., Ellis, J., Krakowka, S., 2000. PCV-2-associated PDNS in northern Ireland in 1990. porcine dermatitis and nephropathy syndrome. Vet. Rec. 46, 711–712.
Beach, N.M., Meng, X.J., 2012. Efficacy and future prospects of commercially available and experimental vaccines against porcine circovirus type 2 (PCV2). Virus Res. 164, 33–42. DOI:10.1016/j.virusres.2011.09.041
Brinck-Jensen, N.S., Vorup-Jensen, T., Leutscher, P.D., Erikstrup, C., Petersen, E., 2015. Immunogenicity of twenty peptides representing epitopes of the hepatitis B core and surface antigens by IFN-γ response in chronic and resolved HBV. BMC Immunol. 16, 65. DOI:10.1186/s12865-015-0127-7
Butler, J.E., Zhao,Y., Sinkora, M., Wertz, N., Kacskovics, I., 2009. Immunoglobulins, antibody repertoire and B cell development. Dev. Comp. Immunol. 33, 321–333. DOI:10.1016/j.dci.2008.06.015
Chae, C., 2005. A review of porcine circovirus 2-associated syndromes and diseases. Vet. J. 169, 326–336. DOI:10.1016/j.tvjl.2004.01.012
Cheung, A.K., 2003. The essential and nonessential transcription units for viral protein synthesis and DNA replication of porcine circovirus type 2. Virology 313, 452–459.
Constans, M., Ssemadaali, M., Kolyvushko, O., Ramamoorthy, S., 2015. Antigenic determinants of possible vaccine escape by porcine circovirus subtype 2b viruses. Bioinformatics 9, 1–12. DOI:10.4137/BBI.S30226
Di Tommaso, P., Moretti, S., Xenarios, I., Orobitg, M., Montanyola, A., Chang, J.M.,Taly, J.F., Notredame, C., 2011. T-coffee: a web server for the multiple sequence alignment of protein and RNA sequences using structural information and homology extension. Nucleic Acids Res. 39, W13–W17. DOI:10.1093/nar/gkr245
Dupont, K., Nielsen, E.O., Baekbo, P., Larsen, L.E., 2008. Genomic analysis of PCV2 isolates from Danish archives and a current PMWS case-control study supports a shift in genotypes with time. Vet Microbiol. 128, 56–64. DOI:10.1016/j.vetmic.2007.09.016.
Dvorak, C.M., Puvanendiran, S., Murtaugh, M.P., 2013. Cellular pathogenesis of porcine circovirus type 2 infection. Virus Res. 174, 60–68. DOI:10.1016/j.virusres.2013.03.001
Gao, Z., Dong, Q., Jiang, Y., Opriessnig, T., Wang, J., Quan, Y., Yang, Z., 2013. Identification and characterization of two novel transcription units of porcine circovirus 2. Virus Genes 47, 268–275. DOI:10.1007/s11262-013-0933-z
Ge, M., Yan, A., Luo, W., Hu, Y.F., Li, R.C., Jiang, D.L., Yu, X.L., 2013. Epitope screening of the PCV2 Cap protein by use of a random peptide-displayed library and polyclonal antibody. Virus Res. 177, 103–107. DOI:10.1016/j.virusres.2013.06.018
Gerber, P.F., Garrocho, F.M., Lana, A.M., Lobato, Z.I., 2012. Fetal infections and antibody profiles in pigs naturally infected with porcine circovirus type 2 (PCV2). Can. J. Vet. Res. 76(1), 38–44. PMCID:PMC3244286
Guo, L.J., Lu, Y.H., Wei, Y.W., Huang, L.P., Liu, C.M., 2010. Porcine circovirus type 2 (PCV2): genetic variation and newly emerging genotypes in China. Virol. J. 7, 273. DOI:10.1186/1743-422X-7-273
Guo, L., Lu, Y., Huang, L., Wei, Y., Liu, C., 2011. Identification of a new antigen epitope in the nuclear localization signal region of porcine circovirus type 2 capsid protein. Intervirology 54, 156–163. DOI:10.1159/000319838
Hamel, A.L., Lin, L.L., Nayar, G.P.S., 1998. Nucleotide sequence of porcine circovirus associated with postweaning multisystemic wasting syndrome in pigs. J. Virol. 72, 5262–5267. PMCID:PMC110114
He, J., Cao, J., Zhou, N., Jin, Y., Wu, J., Zhou, J., 2013. Identification and functional analysis of the novel ORF4 protein encoded by porcine circovirus type 2. J. Virol. 87, 1420–1429. DOI:10.1128/JVI.01443-12
Huang, L.P., Lu, Y.H., Wei, Y.W., Guo, L.J., Liu, C.M., 2011. Identification of one critical amino acid that determines a conformational neutralizing epitope in the capsid protein of porcine circovirus type 2. BMC Microbiol. 11, 188–197. DOI:10.1186/1471-2180-11-188
Karuppannan, A.K., Jong, M.H., Lee, S.H., Zhu, Y., Selvaraj, M., Lau, J., Jia, Q., Kwang, J., 2009. Attenuation of porcine circovirus 2 in SPF piglets by abrogation of ORF3 function. Virology 383, 338–347. DOI:10.1016/j.virol.2008.10.024
Karuppannan, A.K., Kwang, J., 2011. ORF3 of porcine circovirus 2 enhances the in vitro and in vivo spread of the virus. Virology 410, 248–256. DOI:10.1016/j.virol.2010.11.009
Khayat, R., Brunn, N., Speir, J.A., Hardham, J.M., Ankenbaue, R.G., Schneemann, A., Johnson, J.E., 2011. The 2.3-angstrom structure of porcine circovirus 2. J Virol 85, 7856–7862. DOI:10.1128/JVI.00737-11
Kim, J., Ha, Y., Jung, K., Choi, C., Chae, C., 2004. Enteritis associated with porcine circovirus 2 in pigs. Can. J. Vet. Res. 68(3), 218–221. PMCID:PMC1142143
Lekcharoensuk, P., Morozov, I., Paul, P.S., Thangthumniyom, N., Wajjawalku, W., Meng, X.J., 2004. Epitope mapping of the major capsid protein of type 2 porcine circovirus (PCV2) by using chimeric PCV1 and PCV2. J. Virol. 78, 8135–8145. DOI:10.1128/JVI.78.15.8135-8145.2004
Liu, J., Chen, I., Du, Q., Chua, H., Kwang, J., 2006. The ORF3 protein of porcine circovirus type 2 is involved in viral pathogenesis in vivo. J. Virol. 80, 5065–5073. DOI:10.1128/JVI.80.10.5065-5073.2006
Liu, J., Chen, I., Kwang, J., 2005. Characterization of a previously unidentified viral protein in porcine circovirus type 2-infected cells and its role in virus-induced apoptosis. J. Virol. 79, 8262–8274. DOI:10.1128/JVI.79.13.8262-8274.2005
Liu, J., Huang, L., Wei, Y., Tang, Q., Liu, D., Wang, Y., Li, S., Guo, L., Wu, H., Liu, C., 2013. Amino acid mutations in the capsid protein produce novel porcine circovirus type 2 neutralizing epitopes. Vet. Microbiol. 165, 260–267. DOI:10.1016/j.vetmic.2013.03.013
Liu, J., Zhu, Y., Chen, I., Lau, J., He, F., Lau, A., Wang, Z.L., Karuppannan, A.K., Kwang, J., 2007. The ORF3 protein of porcine circovirus type 2 interacts with porcine ubiquitin E3 ligase Pirh2 and facilitates p53 expression in viral infection. J. Virol. 81, 9560–9567. DOI:10.1128/JVI.00681-07
Lou, Z., Li, X., Li, Z., Yin, X., Li, B., Lan, X., Yang, B., Zhang, Y., Liu, J., 2011. Expression and antigenicity characterization for truncated capsid protein of porcine circovirus type 2. Can. J. Vet. Res. 75(1), 61–64. PMCID:PMC3003564
Lv, Q., Guo, K., Xu, H., Wang, T., Zhang, Y., 2015. Identification of putative ORF5 protein of porcine circovirus type 2 and functional analysis of GFP-fused ORF5 protein. PLoS ONE 10,e0127859. DOI:10.1371/journal.pone.0127859
Ma, J.H., Yang, F.R., Yu, H., Zhou, Y.J., Li, G.X., Huang, M., Wen, F., Tong, G., 2013. An M2e-based synthetic peptide vaccine for influenza A virus confers heterosubtypic protection from lethal virus challenge. Virol. J. 10, 227. DOI:10.1186/1743-422X-10-227
Mahé, D., Blanchard, P., Truong, C., Arnauld, C., Le Cann, P., Cariolet, R., Madec, F.,Albina, E., Jestin, A., 2000. Differential recognition of ORF2 protein from type 1and type 2 porcine circoviruses and identification of immunorelevant epitopes. J. Gen. Virol. 81, 1815–1824. DOI:10.1099/0022-1317-81-7-1815
Nawagitgul, P., Morozov, I., Bolin, S.R., Harms, P.A., Sorden, S.D., Paul, P.S., 2000. Open reading frame 2 of porcine circovirus type 2 encodes a major capsid protein. J. Gen. Virol. 81, 2281–2287. DOI:10.1099/0022-1317-81-9-2281
Olvera, A., Cortey, M., Segales, J., 2007. Molecular evolution of porcine circovirus type 2 genomes: phylogeny and clonality. Virology 357, 175–185. DOI:10.1016/j.virol.2006.07.047
Opriessnig, T., Meng, X.J., Halbur, P.G., 2007. Porcine circovirus type 2 associated disease: update on current terminology, clinical manifestations, pathogenesis, diagnosis, and intervention strategies. J. Vet. Diagn. Invest. 19, 591–615.
Opriessnig, T., Gerber, P.F., Xiao, C.T., Mogler, M., Halbur, P.G., 2014. A commercial vaccine based on PCV2a and an experimental vaccine based on a variant mPCV2b are both effective in protecting pigs against challenge with a 2013 U.S. variant mPCV2b strain. Vaccine 32, 230–237. DOI:10.1016/j.vaccine.2013.11.010
Patterson, A.R., Opriessnig, T., 2010. Epidemiology and horizontal transmission of porcine circovirus type 2 (PCV2). Anim. Health Res. Rev. 11, 217–234. DOI:10.1017/S1466252310000162
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., Ferrin, T.E., 2004. UCSF Chimera--a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612. DOI:10.1002/jcc.20084
Rodrı´guez-Carin˜o, C., Duffy, C., Sa´nchez-Chardi, A., McNeilly, F., Allan, G.M., Segale´s, J., 2011. Porcine circovirus type 2 morphogenesis in a clone derived from the l35 lymphoblastoid cell line. J. Comp. Path. 144, 91–102. DOI:10.1016/j.jcpa.2010.07.001
Rodríguez-Cariño, C., Sánchez-Chardi, A., Segalés, J., 2010. Subcellular immunolocalization of porcine circovirus type 2 (PCV2) in lymph nodes from pigs with post-weaning multisystemic wasting syndrome (PMWS). J. Comp. Pathol. 142, 291- 299.
Rodriguez-Cariño, C., Segalés, J., 2009. Ultrastructural findings in lymph nodes from pigs suffering from naturally occurring postweaning multisystemic wasting syndrome. Vet. Pathol. 46, 729-735.
Saha, D., Huang, L., Bussalleu, E., Lefebvre, D.J., Fort, M., Van Doorsselaere, J., Nauwynck, H.J., 2012. Antigenic subtyping and epitopes' competition analysis of porcine circovirus type 2 using monoclonal antibodies. Vet. Microbiol. 157, 13–22. DOI:10.1016/j.vetmic.2011.11.030
Segalés, J., 2012. Porcine circovirus type 2 (PCV2) infections: clinical signs, pathology and laboratory diagnosis. Virus Res. 164, 10–19.
Segalés, J., Domingo, M., 2002. Postweaning multisystemic wasting syndrome (PMWS) in pigs. A review. Vet. Q. 24, 109-124.
Segalés, J., Olvera, A., Grau-Roma, L., Charreyre, C., Nauwynck, H., Larsen, L., Dupont, K., McCullough, K., Ellis, J., Krakowka, S., Mankertz, A., Fredholm, M., Fossum, C., Timmusk, S., Stockhofe-Zurwieden, N., Beattie, V., Armstrong, D., Grassland, B., Baekbo, P., Allan, G., 2008. PCV-2 genotype definition and nomenclature. Vet. Rec. 162, 867–868.
Shang, S.B., Jin, Y.L., Jiang, X.T., Zhou, J.Y., Zhang, X., Xing, G., He, J.L., Yan, Y., 2009. Fine mapping of antigenic epitopes on capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus type 2. Mol. Immunol. 46, 327–334. DOI:10.1016/j.molimm.2008.10.028
Sharon, J., Rynkiewicz, M.J., Lu, Z., Yang, C.-Y., 2013. Discovery of protective B-cell epitopes for development of antimicrobial vaccines and antibody therapeutics. Immunology 142, 1–23. DOI:10.1111/imm.12213
Tischer, I., Gelderblom, H., Vettermann, W., Koch, M.A., 1982. A very small porcine virus with circular single-stranded-DNA. Nature 295, 64–66.
Tischer, .I, Mields, W., Wolff, D., Vagt, M., Griem, W., 1986. Studies on epidemiology and pathogenicity of porcine circovirus. Arch. Virol. 91, 271–276.
Tischer, I., Peters, D., Rasch, R., Pociuli, S., 1987. Replication of porcine circovirus: induction by glucosamine and cell cycle dependence. Arch. Virol. 96, 39–57.
Trible, B.R., Rowland, R.R., 2012. Genetic variation of porcine circovirus type 2 (PCV2) and its relevance to vaccination, pathogenesis and diagnosis. Virus Res. 164, 68–77. DOI:10.1016/j.virusres.2011.11.018
Truong, C., Mahe, D., Blanchard, P., Le, Dimna, M., Madec, F., Jestin, A., Albina, E., 2001. Identification of an immunorelevant ORF2 epitope from porcine circovirus type 2 as a serological marker for experimental and natural infection. Arch. Virol. 146, 1197–1211.
Vita, R., Vasilevsky, N., Bandrowski, A., Haendel, M., Sette, A., Bjoern Peters, B., 2015. Reproducibility and conflicts in immune epitope data. Immunology 147, 349–354. DOI:10.1111/imm.12566
Waterhouse, A.M., Procter, J.B., Martin, D.M., Clamp, M., Barton, G.J., 2009. Jalview Version 2--a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191. DOI:10.1093/bioinformatics/btp033
Xiao, C.T., Halbur, P.G., Opriessnig, T., 2015. Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d. J. Gen. Virol. 96, 1830–1841. DOI:10.1099/vir.0.000100
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68249-
dc.description.abstract豬第二型環狀病毒 (PCV2)是一種小且無封套膜的去氧核醣核酸病毒,導致豬淋巴細胞消耗及嚴重影響養豬產業的病原。本研究的目的是評估特異性胜肽的抗原性和免疫原性,並尋找有潛力的PCV2胜肽疫苗候選物。首先用胜肽檢測PCV2感染的豬血清及胜肽免疫的小鼠血清,進行免疫測試。其中分析合成胜肽(C1,C2,C3,N1,N2和N3)與PCV2感染的田間豬群血清的結合反應。本研究按每季逢機選取分娩仔豬,每胎距平均體重最近之仔豬公母各一頭,共從11頭母豬中選取仔豬22頭,試驗中的畜試黑豬一號母豬及豬隻均未施打該病毒的疫苗。豬隻1日齡(吸到初乳)、1月齡、3月齡及6月齡時,抽血並以間接性酵素連結免疫吸附法進行血清的抗胜肽的抗體檢測。我們還探討了特定的胜肽在體液免疫中可能是免疫原的候選物。為了證明這些胜肽可以模擬天然PCV2殼鞘蛋白質(CP)的抗原決定位,我們利用鍵結的胜肽接種小鼠並製造單株抗體。我們使用抗原決定位拼圖法和液相阻斷免疫測定法找到單株抗體在PCV2殼鞘蛋白質的最小結合位置。數據顯示,PCV2感染的豬血清可以與PCV2殼鞘蛋白質的近氨基(N)端區(C1),中間區(C2)和羧基(C)端區胜肽(C3)、開放閱讀框架三(ORF3)蛋白質(N1)、開放閱讀框架六(ORF6)蛋白質(N2)及開放閱讀框架九(ORF9)蛋白質(N3)等進行反應。本研究顯示可以藉由特異性合成胜肽(C3和N2)來生產製造具有識別PCV2病毒蛋白質能力的抗PCV2小鼠抗血清,亦發現三級結構或線型結構C端區序列的PCV2殼鞘胜肽(C3)僅存在PCV2感染的豬腎(PK)細胞之細胞核中,而PCV2病毒樣顆粒主要分佈位於豬腎細胞之細胞質中,PCV2的ORF 6蛋白質有異樣分佈位於豬腎細胞之細胞質中。此外,在殼鞘蛋白質的3度空間結構中,C1和C3的大多數胺基酸殘基都呈現在PCV2殼鞘蛋白質的表面上。另外,結果證實PCV2感染的豬隻在1日齡具有最高的抗C3特異性免疫球蛋白A(IgA)量(p <0.01,成對t-測試)。且證實PCV2感染的豬隻在1日齡、3月齡及6月齡的抗C3之免疫球蛋白G(IgG)的OD405值比在1月齡的血清為高(p <0.05,成對t-測試)。這暗示哺乳仔豬在出生24小時內,從初乳和母乳中吸收母體移行抗體(抗C3特異性免疫球蛋白A和G)。3月齡和6月齡的抗C3 之免疫球蛋白M(IgM)量高於1日齡(p <0.01,成對t-測試)。這些證據表明仔豬在斷奶後或3個月齡時,發展出適應性免疫反應,靠增加體內免疫球蛋白(抗C3特異性免疫球蛋白A、G和M)的合成。並確認抗C3的特異性抗體是PCV2感染豬隻的血清學標記。此外,利用PCV2b(PCV2b-1A/1B)殼鞘蛋白質的胜肽(C3)模擬羧基端區誘導小鼠體液免疫,並生產融合瘤,透過西方墨漬法分析證實所得單株抗體對PCV2殼鞘蛋白質的陽性反應性,這些單株抗體藉間接免疫螢光染色在PCV2b感染的豬淋巴細胞上顯示陽性訊號。單株抗體1H3分別與PCV2b-1A/1B,PCV2b-1C和PCV2a-2A的殼鞘蛋白質的羧基端上的三個最小線性抗原決定位 (P62, DPPLNP; P67, DPPLNPK; P73, LKDPPLKP)結合。單株抗體3B2僅與一個最小線性抗原決定位 (P59, KDPPLNP)結合。單株抗體6B8與兩個最小線性抗原決定位 (P59和P67)結合。在液相阻斷免疫測定(LPBI)方法中,P59中的核心基序(P62),以自由游離狀態可以被單株抗體(3B2和6B8)識別,但在間接性酵素連結免疫吸附法(iELISA)檢測該固定形式P62,卻不能被單株抗體(3B2和6B8)所識別。然而,在間接性酵素連結免疫吸附法檢測中,單株抗體1H3可以識別P73,但是在液相阻斷免疫測定方法中,無法抑制C3和單株抗體1H3的相互作用結合。本研究還表明IgM單株抗體和有Ig缺陷的單株抗體具有廣泛的結合能力、中度特異性和低親和力。本研究證實單株抗體具有多能結合,這可能是抗體對PCV2b殼鞘蛋白質的羧基端的反應現象。zh_TW
dc.description.abstractPorcine circovirus 2 (PCV2) is a small, non-enveloped DNA virus causing swine lymphocyte depletion and severe impact on the swine industry. The aim of this study was to evaluate the antigenicity and immunogenicity of specific peptides, and to seek the potential candidate of PCV2 peptide-based vaccine. It was initiating from peptides reacting with PCV2-infected pig sera and peptide-immunized mouse sera. The synthetic peptides (C1, C2, C3, N1, N2, and N3) were analyzed for the binding with field sera collected from PCV2-infected herds. This study involved 22 newborn piglets of TLRI Black Pig No.1 (TBP), delivered from 11 sows during 4 seasons of one year. One male and one female piglet were selected from each litter, which body weights were close to the average of their littermate’s. All of pigs had not been immunized with PCV2 vaccine. Blood samples from each pig were collected 4 times during this experiment: on the 1st day (after colostrum uptake), 1st month, 3rd month, and 6th month of life, respectively. Serum samples from these pigs were used to detect anti-PCV2 specific antibodies by an indirect enzyme-linked immunosorbent assay. We also explored specific peptides could be candidates of immunogen involved during humoral immunity. To demonstrate these peptides can mimic the epitopes present on the native PCV2 CP, we utilized the conjugated peptides to inoculate mice and generate mAbs. We generated mAbs and defined their minimal binding region on PCV2 CP using epitope mapping and liquid phase blocking immunoassay. The data showed that the sera from PCV2-infected pigs could react with the N-terminal (C1), middle region (C2), and C-terminal peptide (C3) of PCV2 capsid protein (CP), ORF3 protein (N1), ORF6 protein (N2) and ORF9 protein (N3). This study demonstrated that anti-PCV2 mouse antisera could be generated by specific synthetic peptides (C3 and N2) and recognized PCV2 viral protein. We found that the tertiary or linear form C-terminal sequence (C3) of PCV2 capsid peptide only appeared a local distribution in the nucleus of PCV2-infected PK cells, virus-like particles of PCV2 major appeared a local distribution in the cytoplasm, and ORF 6 protein of PCV2 were shown unusually in cytoplasm. Furthermore, most residues of the C1 and the C3 were presented on the surface of PCV2 CP, in the view of 3-D structure of the CP. The results indicated that these pigs had the highest C3-specific IgA level on Day 1 in 6 months of life (p < 0.01, paired Student’s t-test). These data demonstrated that PCV2-infected pigs had higher OD405 value of anti-C3 IgG on Day 1, Month 3 and Month 6 than that in Month 1 (p < 0.05, paired Student’s t-test). This suggested that suckling newborn piglets absorbed maternal transferring antibodies (C3-specific IgA and IgG) from colostrum and milk in the first 24 h. These pigs had higher anti-C3 IgM level in Month 3 and Month 6 than that on Day 1 (p < 0.01, paired Student’s t-test). This suggested that piglets developed the adaptive immune response by increase synthesis of globulin (C3-specific IgA, IgG, and IgM) at aged 3 months or after weaning. The specific antibody against the C3 were confirmed as the serological marker in PCV2-infected pigs. Further, we utilized the peptide (C3) mimetic carboxyl-terminus (C-terminus) of PCV2b CP (PCV2b-1A/1B) to induce humoral immunity for hybridomas preparation. The positive reactivity of the mAbs to PCV2 CP was demonstrated by western blot assay. Those mAbs also showed positive signals on PCV2b infected swine lymphocytes by indirect immunofluorescence staining. The mAb 1H3 bound to three minimal linear epitopes (P62, DPPLNP; P67, DPPLNPK; P73, LKDPPLKP), which was located at C-terminus of the capsid protein of PCV2b-1A/1B, PCV2b-1C, and PCV2a-2A respectively. The mAbs 3B2 bound to only one minimal linear epitopes (P59, KDPPLNP). The mAbs 6B8 bound to two minimal linear epitopes (P59 and P67). This data demonstrate the core motif (P62) within the P59 could be recognized by mAbs (3B2 and 6B8) in the free status by liquid phase blocking immunoassay (LPBI) but not be recognized in the fixed form on the plate by indirect ELISA (iELISA). However, the P73 could be recognized by mAb 1H3 by iELISA but no inhibition of the interactive binding of C3 and mAb 1H3 by LPBI. This study also indicated that IgM mAbs and defective Ig mAb have broad binding, moderate specificity and low affinity. This study confirm that mAbs have pluripotency of binding. It might be a phenomenon of antibody response to C-terminus of PCV2b CP.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:15:43Z (GMT). No. of bitstreams: 1
ntu-106-D00629004-1.pdf: 4026331 bytes, checksum: cc25c62fdaf9d9f4b409514430dbd10b (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝辭...............................................................................................................................ⅰ
Abstract in Chinese.....................................................................................................ⅲ Abstract ........................................................................................................................ⅴ Abbreviations................................................................................................................ⅷ
Contents..........................................................................................................................ⅸ
List of tables...................................................................................................................xii
List of figures................................................................................................................ xiii
1. Introduction............................................................................................................... 1
2. Materials and Methods .............................................................................................7
2.1. Peptides of PCV2 capsid protein, and non-capsid proteins.......................................8
2.2. Field porcine sera collected from a PCV2-unvaccinated conventional farrow-to-finish herd.................................................................................................................8
2.3. PCV2-negative porcine sera.....................................................................................10
2.4. Immunoreactivities of peptides with porcine antisera from a PCV2-unvaccinated conventional farrow-to-finish herd..........................................................................10
2.5. Preparation of mouse antisera against the PCV2 peptides.......................................11
2.6. Mouse antisera were tested by immunofluorescence assay (IFA)............................12
2.7. Mouse antisera were tested by western blotting.......................................................13
2.8. Swine isotype-specific antibody immunoassay for C3.............................................14
2.9. Amino acid sequence alignment of the PCV CP......................................................15
2.10. Generation of PCV2 capsid protein Structural Images..........................................15
2.11. Design of synthesized peptides sequence of the truncated C-terminus of PCV CP and negative control peptide....................................................................................16
2.12. Generation of mAbs against the C3...................................................................16
2.13. Isotyping of mAb...............................................................................................18
2.14. Suspending cells were fixed (SCF) on slide for IFA.........................................19
2.15. IFA of PBMCs slides.........................................................................................19
2.16. Imumunospecificities of mAbs were tested by western blotting.......................20
2.17. Epitope mapping................................................................................................21
2.18. Amino acid sequence alignment of the C-terminus of the PCV CP...................22
2.19. Liquid phase blocking immunoassay (LPBI) ....................................................22
3. Results .................................................................................................................. 24
3.1. Immunoreactivities of peptides with swine sera................................................. 25
3.2. Peptide-specific antibody response in mice........................................................ 26
3.3. Reactivity of PCV2 virus with various mouse antisera...................................... 26
3.4. Imumunospecificities of mouse antisera were assayed by western blotting…... 27
3.5. Detection of swine anti-C3 specific IgA, IgG, and IgM..................................... 27
3.6. Comparison between amino acid residues of six PCV2 CP............................... 28
3.7. Location of amino acid residues of C1, C2, and C3 on the 3D model of the PCV2 CP....................................................................................................................... 29
3.8. Production and Screening of hybridomas........................................................... 30
3.9. Isotyping of mAb................................................................................................ 30
3.10. IFA of PBMCs.................................................................................................. 30
3.11. Imumunospecificities of mAbs were assayed by western blotting................... 32
3.12. Epitope mapping................................................................................................32
3.13. Liquid phase blocking immunoassay……….....................................................34
3.14. Critical binding residues of mAbs on PCV2 capsid protein..............................35
4. Discussion...........................................................................................37
5. Conclusions.........................................................................................47
References..............................................................................................49
Tables....................................................................................................58
Figures...................................................................................................63
Appendix................................................................................................81
dc.language.isoen
dc.subject開放閱讀框蛋白質zh_TW
dc.subject胜?zh_TW
dc.subject殼鞘蛋白質的羧端zh_TW
dc.subject豬第二型環狀病毒zh_TW
dc.subject多能性結合zh_TW
dc.subject單株抗體zh_TW
dc.subject精細的抗原決定位zh_TW
dc.subjectPluripotency of bindingen
dc.subjectPeptideen
dc.subjectOpen reading frame proteinsen
dc.subjectFine epitopeen
dc.subjectMonoclonal antibodiesen
dc.subjectCarboxyl-terminus of the capsid proteinen
dc.subjectPorcine circovirus type 2en
dc.title豬第二型環狀病毒抗原決定位之篩選zh_TW
dc.titleEpitope Determination of Porcine Circovirus Type 2en
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee王金和(Ching-ho Wang),張雯(Wen Chang),吳漢忠(Han-Chung Wu),陳啟銘(Chi-Min Chen),鄭謙仁(Chian-Ren Jeng)
dc.subject.keyword豬第二型環狀病毒,胜?,開放閱讀框蛋白質,精細的抗原決定位,單株抗體,殼鞘蛋白質的羧端,多能性結合,zh_TW
dc.subject.keywordPorcine circovirus type 2,Peptide,Open reading frame proteins,Fine epitope,Monoclonal antibodies,Carboxyl-terminus of the capsid protein,Pluripotency of binding,en
dc.relation.page86
dc.identifier.doi10.6342/NTU201704287
dc.rights.note有償授權
dc.date.accepted2017-10-16
dc.contributor.author-college獸醫專業學院zh_TW
dc.contributor.author-dept獸醫學研究所zh_TW
顯示於系所單位:獸醫學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved