Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 植物病理與微生物學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68245
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor劉瑞芬(Ruey-Fen Liou)
dc.contributor.authorYu-Seng Huangen
dc.contributor.author黃宇昇zh_TW
dc.date.accessioned2021-06-17T02:15:38Z-
dc.date.available2019-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-10-16
dc.identifier.citationAliferis, K. A., Faubert, D., and Jabaji, S. 2014. A metabolic profiling strategy for the dissection of plant defense against fungal pathogens. PLoS One 9:1-13. doi: 10.1371/journal.pone.0111930
Ann, P. J., Tsai, J. N., Wong, I. T., and Lin, C. Y. 2009. A simple technique, concentration and application schedule for using neutralized phosphorous acid to control Phytophthora Diseases. Plant Pathol. Bull. 18:155-165.
Babst, B. A., Sjödin, A., Jansson, S., and Orians, C. M. 2009. Local and systemic transcriptome responses to herbivory and jasmonic acid in Populus. Tree Genet. Genomes 5:459-474.
Berkey, R., Bendigeri, D., and Xiao, S. 2012. Sphingolipids and plant defense/disease: the “death” connection and beyond. Front. Plant Sci. 3:68.
Boya, P., Reggiori, F., and Codogno, P. 2013. Emerging regulation and functions of autophagy. Nat. Cell Biol. 15:713-720.
Brauc, S. D., Vooght, E., Claeys, M., Geuns, J. M., Hofte, M., and Angenon, G. 2012. Overexpression of arginase in Arabidopsis thaliana influences defense responses against Botrytis cinerea. Plant Biol. 14:39-45.
Burra, D. D., Berkowitz, O., Hedley, P. E., Jenny, M., Resjö, S., Levander, F., Liljeroth, E., Andreasson, E., and Alexandersson, E. 2014. Phosphite-induced changes of the transcriptome and secretome in Solanum tuberosum leading to resistance against Phytophthora infestans. BMC Plant Biol. 14:254.
Casati, P., Drincovich, M. F., Edwards, G. E., and Andreo, C. S. 1999. Malate metabolism by NADP-malic enzyme in plant defense. Photosynth. Res. 61: 99-105.
Cecchini, N. M., Monteoliva, M. I., and Alvarez, M. E. 2011. Proline dehydrogenase contributes to pathogen defense in Arabidopsis. Plant Physiol. 155:1947-1959.
Chaturvedi, R., Krothapalli, K., Makandar, R., Nandi, A., Sparks, A. A., Roth, M. R., Welti, R., and Shah, J. 2008. Plastid ω3-fatty acid desaturase-dependent accumulation of a systemic acquired resistance inducing activity in petiole exudates of Arabidopsis thaliana is independent of jasmonic acid. Plant J. 54: 106-117.
Chen, H., Mccaig, B. C., Melotto, M., He, S. Y., and Howe, G. A. 2004. Regulation of plant arginase by wounding, jasmonate, and the phytotoxin coronatine. J. Biol. Chem. 279:45998-46007.
Conconi, A., Miquel, M., Browse, J. A., and Ryan, C. A. 1996. Intracellular Levels of free linolenic and linoleic acids increase in tomato leaves in response to wounding. Plant Physiol. 111:797-803.
Coxon, K. M., Chakauya, E., Ottenhof, H. H., Whitney, H. M., Blundell, T. L., Abell, C., and Smith, A. G. 2005. Pantothenate biosynthesis in higher plants. Biochem. Soc. Trans. 33:743-746.
Dagdas, Y., Pandey, P., Sanguankiattichai, N., Tumtas, Y., Belhaj, K., Duggan, C., Segretin, M., Kamoun, S., and Bozkurt, T. O. 2017. Host autophagosomes are diverted to a plant-pathogen interface. bioRxiv. doi: https://doi.org/10.1101/102996
Dagdas, Y. F., Belhaj, K., Maqbool, A., Chaparro-Garcia, A., Pandey, P., Petre, B., Tabassum, N., Cruz-Mireles, N., Hughes, R. K., Sklenar, J., Win, J., Menke, F., Findlay, K., Banfield, M. J., Kamoun, S., and Bozkurt, T. O. 2016. An effector of the Irish potato famine pathogen antagonizes a host autophagy cargo receptor. eLife 5:e10856.
Daniel, R., and Guest, D. 2005. Defense responses induced by potassium phosphonate in Phytophthora palmivora-challenged Arabidopsis thaliana. Physiol. Mol. Plant Pathol. 67:194-201.
Deuschle, K., Funck, D., Forlani, G., Stransky, H., Biehl, A., Leister, D., Graaff, E., Kunze, R., and Frommer, W. B. 2004. The role of Δ(1)-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413-3425.
Donald, J. S. B. 1992. Evolution and kingdoms of organisms from the perspective of a mycologist. Mycologia 84:1-11.
Du, Z., Zhou, X., Ling, Y., Zhang, Z., and Su, Z. 2010. agriGO: a GO analysis toolkit for the agricultural community. Nucl. Acids Res. 38:W64-W70.
Eshraghi, L., Anderson, J., Aryamanesh, N., Shearer, B., McComb, J., Hardy, G. E. S., and O’Brien, P. A. 2011. Phosphite primed defense responses and enhanced expression of defense genes in Arabidopsis thaliana infected with Phytophthora cinnamomi. Plant Pathol. 60:1086-1095.
Ezaki, B., Higashi, A., Nanba, N., and Nishiuchi, T. 2016. An S-adenosyl methionine synthetase (SAMS) gene from Andropogon virginicus L. confers aluminum stress tolerance and facilitates epigenetic gene regulation in Arabidopsis thaliana. Front. Plant Sci. 7:1627.
Farre, J. C., and Subramani, S. 2016. Mechanistic insights into selective autophagy pathways: lessons from yeast. Nat. Rev. Mol. Cell Biol. 17:537-552.
Gong, B., Wang, X., Wei, M., Yang, F., Li, Y., and Shi, Q. 2016. Overexpression of S-adenosylmethionine synthetase 1 enhances tomato callus tolerance to alkali stress through polyamine and hydrogen peroxide cross-linked networks. Plant Cell 124:377-391.
Grünwald, N. J., Garbelotto, M., Goss, E. M., Heungens, K., and Prospero, S. 2012. Emergence of the sudden oak death pathogen Phytophthora ramorum. Trends Microbiol. 20:131-138.
Guest, D., and Grant, B. 1991. The complex action of phosphonates as antifungal agents. Biol. Rev. 66:159-187.
Haas, B. J., Kamoun, S., and Zody, M. C. 2009. Genome sequence and analysis of the Irish potato famine pathogen Phytophthora infestans. Nature 461:393-398.
Harms, K., Ramirez, I., and Peña-Cortés, H. 1998. Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol. 118:1057-1065.
He, C., and Klionsky, D. J. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67-93.
Hickman, C. 1958. Presidential address: Phytophthora—plant destroyer. Trans Br Mycological Soc. 41(1):1–13.
Hofius, D., Schultz-Larsen, T., Joensen, J., Tsitsigiannis, D. I., Petersen, N. H., Mattsson, O., Jørgensen, L. B., Jones, J. D., Mundy, J., and Petersen, M. 2009. Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137:773-83.
Hosack, D. A., Dennis, G., Sherman, B. T., Lane, H. C., and Lempicki, R. A. 2003. Identifying biological themes within lists of genes with EASE. Genome Biol. 4:R70.
Hu, T., Hu, Z., Zeng, H., Qv, X., and Chen, G. 2015. Tomato lipoxygenase D involved in the biosynthesis of jasmonic acid and tolerance to abiotic and biotic stress in tomato. Plant Biotechnol. Rep. 9:37-45.
Islam, M. Z., Ahn, S. Y., Kim, S. A., Lwack, Y. B., and Yun, H. K. 2016. Expression of genes related with defense responses against pathogen infections in Vitis flexuosa. Plant Breed. Biotechnol. 4:324–335.
Judelson, H. S., and Blanco, F. A. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nat. Rev. Microbiol. 3:47-58.
Jung, C., Lyou, S. H., Yeu, S., Kim, M. A., Rhee, S., Kim, M., Lee, J. S., Choi, Y. D., and Cheong, J. J. 2007. Microarray-based screening of jasmonate-responsive genes in Arabidopsis thaliana. Plant Cell Rep. 26:1053-1063.
Kabbage, M., Williams, B., and Dickman, M. B. 2013. Cell death control: the interplay of apoptosis and autophagy in the pathogenicity of Sclerotinia sclerotiorum. PLoS Pathog. 9:e1003287. doi: 10.1371/journal.ppat.1003287
Kachroo, A., and Kachroo, P. 2009. Fatty acid-derived signals in plant defense. Annu. Rev. Phytopathol. 47:153-176.
Kachroo, A., Venugopal, S. C., Lapchyk, L., Falcone, D., Hildebrand, D., and Kachroo, P. 2004. Oleic acid levels regulated by glycerolipid metabolism modulate defense gene expression in Arabidopsis. Proc. Natl. Acad. Sci. 101: 5152-5157.
Kaddes, A., Parisi, O., Berhal, C., Kaab, S. B., Fauconnier, M. L., Nasraoui, B., Jijakli, M. H., Massart, S., and Clerck, C. D. 2016. Evaluation of the effect of two volatile organic compounds on barley pathogens. Molecules 21:1124.
Katsiarimpa, A., Kalinowska, K., Anzenberger, F., Weis, C., Ostertag, M., Tsutsumi, C., Schwechheimer, C., Brunner, F., Hückelhoven, R., and Isono, E. 2013. The deubiquitinating enzyme AMSH1 and the ESCRT-III subunit VPS2.1 are required for autophagic degradation in Arabidopsis. Plant Cell 25:2236-2252.
Kebdani, N., Pieuchot, L., Deleury, E., Panabieres, F. Le., Berre, J. Y., and Gourgues, M. 2010. Cellular and molecular characterization of Phytophthora parasitica appressorium-mediated penetration. New Phytol. 185:248-257.
Kempema, L. A., Cui, X., Holzer, F. M., and Walling, L. L. 2007. Arabidopsis transcriptome changes in response to phloem-feeding silverleaf whitefly nymphs. Similarities and distinctions in responses to aphids. Plant Physiol. 143:849-865.
King, M., Reeve, W., Van Der Hoek, M. B., Williams, N., McComb, J., O'Brien, P. A., and Hardy, G. E. 2010. Defining the phosphite-regulated transcriptome of the plant pathogen Phytophthora cinnamomi. Mol. Genet. Genomics 284:425-435.
Koo, A. J. K., and Howe, G. A. 2007. Role of peroxisomal β-oxidation in the production of plant signaling compounds. Plant Signal. Behav. 2:20-22.
Kromann, P., Pérez, W. G., Taipe, A., Schulte-Geldermann, E., Sharma, B. P., Andrade-Piedra, J. L., and Forbes, G. A. 2012. Use of phosphonate to manage foliar potato late blight in developing countries. Plant Dis. 96:1008-1015.
Kroon, L. P. N. M., Brouwer, H., and Govers, F. 2012. The Genus Phytophthora anno 2012. Phytopathology 102:348-364.
Lai, Z., Wang, F., Zheng, Z., Fan, B., and Chen, Z. 2011. A critical role of autophagy in plant resistance to necrotrophic fungal pathogens. Plant J. 66:953-968.
Latijnhouwers, M. De., Wit, P. J., and Govers, F. 2003. Oomycetes and fungi: similar weaponry to attack plants. Trends Microbiol. 11:462-469.
Laudert, D., Pfannschmidt, U., Lottspeich, F., Hollander-Czytko, H., and Weiler, E. W. 1996. Cloning, molecular and functional characterization of Arabidopsis thaliana allene oxide synthase (CYP 74), the first enzyme of the octadecanoid pathway to jasmonates. Plant Mol. Biol. 31:323-335.
Laudert, D., and Weiler, E. W. 1998. Allene oxide synthase: a major control point in Arabidopsis thaliana octadecanoid signalling. Plant J. 15:675-684.
Lee, Y. H., Nadaraia, S., Gu, D., Becker, D. F., and Tanner, J. J. 2003. Structure of the proline dehydrogenase domain of the multifunctional PutA flavoprotein. Nat. Struct. Biol. 10:109-114.
Lenz, H. D., Haller, E., Melzer, E., Gust, A. A., and Nurnberger, T. 2011. Autophagy controls plant basal immunity in a pathogenic lifestyle-dependent manner. Autophagy 7:773-774.
Less, H., Angelovici, R., Tzin, V., and Galili, G. 2011. Coordinated gene networks regulating Arabidopsis plant metabolism in response to various stresses and nutritional cues. Plant Cell 23:1264-1271.
Li, Z., Hu, G., Liu, X., Zhou, Y., Li, Y., Zhang, X., Yuan, X., Zhang, Q., Yang, D., Wang, T., and Zhang, Z. 2016. Transcriptome sequencing identified genes and gene ontologies associated with early freezing tolerance in maize. Front. Plant Sci. 7:1477.
Lim, S., Borza, T., Peters, R. D., Coffin, R. H., Al-Mughrabi, K. I., Pinto, D. M., and Wang-Pruski, G. 2013. Proteomics analysis suggests broad functional changes in potato leaves triggered by phosphites and a complex indirect mode of action against Phytophthora infestans. J. Proteomics 93:207-223.
Liu, Y., Schiff, M., Czymmek, K., Talloczy, Z., Levine, B., and Dinesh-Kumar, S. P. 2005. Autophagy regulates programmed cell death during the plant innate immune response. Cell 121:567-577.
Liu, Y., Xiong, Y., and Bassham, D. C. 2009. Autophagy is required for tolerance of drought and salt stress in plants. Autophagy 5:954-963.
Machinandiarena, M. F., Lobato, M. C., Feldman, M. L., Daleo, G. R., and Andreu, A. B. 2012. Potassium phosphite primes defense responses in potato against Phytophthora infestans. J. Plant Physiol. 169:1417-1424.
Majumdar, R., Shao, L., Minocha, R., Long, S., and Minocha, S. C. 2013. Ornithine: The overlooked molecule in the regulation of polyamine metabolism. Plant Cell Physiol. 54:990-1004.
Massoud, K., Barchietto, T., Le Rudulier, T., Pallandre, L., Didierlaurent, L., Garmier, M., Ambard-Bretteville, F., Seng, J. M., and Saindrenan, P. 2012. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Plant Physiol. 159:286-298.
Mata-Perez, C., Sanchez-Calvo, B., Begara-Morales, J. C., Luque, F., Jiménez-Ruiz, J., Padilla, M. N., Fierro-Risco, J., Valderrama, R., Fernández-Ocaña, A., Corpas, F. J., and Barroso, J. B. 2015. Transcriptomic profiling of linolenic acid-responsive genes in ROS signaling from RNA-seq data in Arabidopsis. Front. Plant Sci. 6:122.
Matsui, K. 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9:274-280.
Mei, C., Qi, M., Sheng, G., and Yang, Y. 2006. Inducible overexpression of a rice allene oxide synthase gene increases the endogenous jasmonic acid level, PR gene expression, and host resistance to fungal infection. Mol. Plant-Microbe Interact. 19:1127-1137.
Mohanta, T. K., and Bae, H. 2015. The diversity of fungal genome. Biol. Proced. Online 17:8.
Molina, A., Hunt, M. D., and Ryals, J. A. 1998. Impaired fungicide activity in plants blocked in disease resistance signal transduction. Plant Cell 10:1903-1914.
Moreno, J. I., Martin, R., and Castresana, C. 2005. Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. Plant J. 41:451-463.
Mortimer, J. C., Yu, X., Albrecht, S., Sicilia, F., Huichalaf, M., Ampuero, D., Michaelson, L. V., Murphy, A. M., Matsunaga, T., Kurz, S., Stephens, E., Baldwin, T. C., Ishii, T., Napier, J. A., Weber, A. P., Handford, M. G., and Dupree, P. 2013. Abnormal glycosphingolipid mannosylation triggers salicylic acid–mediated responses in Arabidopsis. Plant Cell 25:1881-1894.
Murphy, A. M., Holcombe, L. J., and Carr, J. P. 2000. Characteristics of salicylic acid-induced delay in disease caused by a necrotrophic fungal pathogen in tobacco. Physiol. Mol. Plant Pathol. 57:47-54.
Nakahara, K. S., Masuta, C., Yamada, S., Shimura, H., Kashihara, Y., Wada, T. S., Meguro, A., Goto, K., Tadamura, K., Sueda, K., Sekiguchi, T., Shao, J., Itchoda, N., Matsumura, T., Igarashi, M., Ito, K., Carthew, R. W., and Uyeda, I. 2012. Tobacco calmodulin-like protein provides secondary defense by binding to and directing degradation of virus RNA silencing suppressors. Proc. Natl. Acad. Sci. 109:10113-10118.
Norman, D. J., Chen, J., Yuen, J. M. F., Mangravita-Novo, A., Byrne, D., and Walsh, L. 2006. Control of bacterial wilt of geranium with phosphorous acid. Plant Dis. 90:798-802.
Nyathi, Y., and Baker, A. 2006. Plant peroxisomes as a source of signalling molecules. Biochim. Biophys. Acta. 1763:1478-1495.
Oka, Y., Tkachi, N., and Mor, M. 2007. Phosphite inhibits development of the nematodes Heterodera avenae and Meloidogyne marylandi in cereals. Phytopathology 97:396-404.
Pathak, M. R., Teixeira Da Silva, J. A., and Wani, S. H., 2014. Polyamines in response to abiotic stress tolerance through transgenic approaches. GM Crops Food 5:87-96.
Peng, K. C., Wang, C. W., Wu, C. H., Huang, C. T., and Liou, R. F. 2015. Tomato SOBIR1/EVR homologs are involved in elicitin perception and plant defense against the Oomycete pathogen Phytophthora parasitica. Mol. Plant MicrobeInteract. 28:913-926.
Restrepo, S., Myers, K. L., Del Pozo, O., Martin, G. B., Hart, A. L., Buell, C. R., Fry, W. E., and Smart, C. D. 2005. Gene profiling of a compatible interaction between Phytophthora infestans and Solanum tuberosum suggests a role for carbonic anhydrase. Mol. Plant Microbe Interact. 18:913-922.
Reymond, P., Weber, H., Damond, M., and Farmer, E. E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707-720.
Roychoudhury, A., Basu, S., Sarkar, S. N., and Sengupta, D. N. 2008. Comparative physiological and molecular responses of a common aromatic indica rice cultivar to high salinity with non-aromatic indica rice cultivars. Plant Cell Rep. 27: 1395-1410.
Sato, D., Akashi, H., Sugimoto, M., Tomita, M., and Soga, T. 2013. Metabolomic profiling of the response of susceptible and resistant soybean strains to foxglove aphid, Aulacorthum solani Kaltenbach. J. Chromatogr. B: Analyt. Technol. Biomed. Life Sci. 925:95-103.
Scharte, J., Schæn, H., and Weis, E. 2005. Photosynthesis and carbohydrate metabolism in tobacco leaves during an incompatible interaction with Phytophthora nicotianae. Plant Cell Environ. 28:1421-1435.
Scheideler, M., Schlaich, N. L., Fellenberg, K., Beissbarth, T., Hauser, N. C., Vingron, M., Slusarenko, A. J., and Hoheisel, J. D. 2002. Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J. Biol. Chem. 277:10555-10561.
Scranton, M. A., Fowler, J. H., Girke, T., and Walling, L. L. 2013. Microarray analysis of tomato’s early and late wound response reveals new regulatory Targets for leucine aminopeptidase A. PLoS one 8:e77889. doi: 10.1371/journal.pone.0077889
Senthil-Kumar, M., and Mysore, K. S. 2012. Ornithine-delta-aminotransferase and proline dehydrogenase genes play a role in non-host disease resistance by regulating pyrroline-5-carboxylate metabolism-induced hypersensitive response. Plant Cell Environ. 35:1329-1343.
Shan, W., and Hardham, A. R. 2004. Construction of a bacterial artificial chromosome library, determination of genome size, and characterization of an Hsp70 gene family in Phytophthora nicotianae. Fungal Genet. Biol. 41:369-380.
Shoji-Kawata, S., and Levine, B. 2009. Autophagy, antiviral immunity, and viral countermeasures. Biochim. Biophys. Acta. 1793:1478-1484.
Sivasankar, S., Sheldrick, B., and Rothstein, S. J. 2000. Expression of allene oxide synthase determines defense gene activation in tomato. Plant Physiol. 122: 1335-1342.
Smeekens, S. 2000. Sugar-induced signal transduction in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51:49-81.
Stavely, J. R. 1979. Disease resistance in Nicotiana: procedures for experimental use. USDA Tech. Bull. 1586:87-110
Stolz, A., Ernst, A., and Dikic, I. 2014. Cargo recognition and trafficking in selective autophagy. Nat. Cell Biol. 16:495-501.
Stuttmann, J., Hubberten, H. M., Rietz, S., Kaur, J., Muskett, P., Guerois, R., Bednarek, P., Hoefgen, R., and Parker, J. E. 2011. Perturbation of Arabidopsis amino acid metabolism causes incompatibility with the adapted biotrophic pathogen Hyaloperonospora arabidopsidis. Plant Cell 23:2788-2803.
Van De Peer, Y., and De Wachter, R. 1997. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J. Mol. Evol. 45:619-630.
Wang, C. W., Miao, Y. H., and Chang, Y. S. 2014. A sterol-enriched vacuolar microdomain mediates stationary phase lipophagy in budding yeast. J. Cell Biol. 206:357-366.
Wang, Y., Meng, Y., Zhang, M., Tong, X., Wang, Q., Sun, Y., Quan, J., Govers, F., and Shan, W. 2011a. Infection of Arabidopsis thaliana by Phytophthora parasitica and identification of variation in host specificity. Mol. Plant Pathol. 12:187-201.
Wang, Y., Nishimura, M. T., Zhao, T., and Tang, D. 2011b. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 68:74-87.
Ward, J. L., Forcat, S., Beckmann, M., Bennett, M., Miller, S. J., Baker, J. M., Hawkins, N. D., Vermeer, C. P., Lu, C., Lin, W., Truman, W. M., Beale, M. H., Draper, J., Mansfield, J. W., and Grant, M. 2010. The metabolic transition during disease following infection of Arabidopsis thaliana by Pseudomonas syringae pv. tomato. Plant J. 63:443-457.
Wasternack, C., and Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and action in plant stress response, growth and development. Ann. Bot. 111:1021-1058.
Werner, S., Steiner, U., Becher, R., Kortekamp, A., Zyprian, E., and Deising, H. B. 2002. Chitin synthesis during in planta growth and asexual propagation of the cellulosic oomycete and obligate biotrophic grapevine pathogen Plasmopara viticola. FEMS Microbiol. Lett. 208:169-173.
Widjaja, I., Naumann, K., Roth, U., Wolf, N., Mackey, D., Dangl, J. L., Scheel, D., and Lee, J. 2009. Combining subproteome enrichment and Rubisco depletion enables identification of low abundance proteins differentially regulated during plant defense. Proteomics 9:138-147.
Wilkinson, C. J., Holmes, J. M., Dell, B., Tynan, K. M., McComb, J. A., Shearer, B. L., Colquhoun, I. J., and Hard, G. E. 2001. Effect of phosphite on in planta zoospore production of Phytophthora cinnamomi. Plant Pathol. 50:587-593.
Zhou, J., Wang, J., Cheng, Y., Chi, Y. J., Fan, B., Yu, J. Q., and Chen, Z. 2013. NBR1-mediated selective autophagy targets insoluble ubiquitinated protein aggregates in plant stress responses. PLoS Genet. 9:e1003196. doi: 10.1371/journal.pgen.1003196
Zulak, K. G., Khan, M. F., Alcantara, J., Schriemer, D. C., and Facchini, P. J. 2009. Plant defense responses in opium poppy cell cultures revealed by liquid chromatography-tandem mass spectrometry proteomics. Mol. Cell Proteomics8:86-98.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68245-
dc.description.abstract以亞磷酸處理植物對卵菌引起的病害有良好的防治效果,但亞磷酸誘導植物抗病所涉機制一直仍待深入探討。本研究應用生物晶片技術分析番茄轉錄體,發現無論是亞磷酸處理或對照組植株,於疫病菌(Phytophthora parasitica)感染初期,許多基礎代謝相關基因呈現表現差異,表示這些基因表現並非因亞磷酸處理而產生變化,而是疫病菌接種所致。這些基因大部分涉及降解物質,包含醣類、脂質及胺基酸等,這樣的現象可能與細胞遇到逆境時的能量需求有關。甘油脂(glycerolipid)、丙酸(propanoate)以及醣脂(glycosphingolipid)等脂質之代謝相關基因僅於亞磷酸處理植物被疫病菌感染時才特別表現,顯示其參與植物抗病的可能性。此外,晶片分析也顯示Atg3、Atg6與Atg18等自噬作用(autophagy)相關基因於番茄植株被疫病菌感染時,表現量明顯提升。為探討自噬作用於亞磷酸誘導抗性的角色,本研究以即時定量聚合酶鏈鎖反應分析基因表現,發現因應疫病菌侵染,對照組植物之Atg3, Atg6與Atg18等基因的表現明顯提升,但在亞磷酸處理植物的變化不大。另以eGFP標定自噬體(autophagosome)關鍵蛋白Atg8-2 (馬鈴薯ATG8CL的同源基因),發現對照組葉片被疫病菌感染時,會形成許多自噬體 ,顯示自噬作用會因應疫病菌侵染而發生,但在亞磷酸處理植物,自噬體的數量明顯減少。另外以Tobacco rattle virus (TRV)-mediated gene silencing靜默Atg3, Atg6, Atg8-2,或Atg18 (阿拉伯芥Atg18b之同源基因)的基因表現,對於植物感病度及亞磷酸誘導抗性並無顯著影響,但Atg8-4被靜默時,亞磷酸所誘導番茄的抗性明顯較差,顯示其可能參與亞磷酸誘發抗性的路徑。這些結果顯示植物與疫病菌的交互作用涉及許多代謝相關基因的差異表現,且脂質代謝的基因可能參與亞磷酸誘導抗性。另外,因應疫病菌接種,植物會大幅度啟動自噬作用,但在亞磷酸處理植物則不顯著;然而基因靜默Atg8-4會降低亞磷酸所誘導抗性,顯示自噬作用很可能參與亞磷酸誘導抗性。zh_TW
dc.description.abstractNeutralized phosphorous acid (NPA) is widely used for the management of plant diseases caused by oomycete pathogens including Phytophthora parasitica. While it has been proposed that phosphonate, the effective component of NPA, may function through enhancing plant resistance, the detailed mechanism remains to be elucidated. To identify genes which might play key roles in NPA-induced resistance, microarray analysis was performed. The results showed that various genes are differentially expressed in NPA- and water-pretreated (as a control) tomato plants in response to infection by P. parasitica, with many of them involved in primary metabolisms, such as degradation of carbohydrates, amino acids, and fatty acids. In addition, following pathogen infection, genes involved in lipid metabolism were identified only in NPA-pretreated plants, which suggests their involvement in NPA-induced resistance. As well, autophagy-related genes including Atg3, Atg6, and Atg18 (a homolog of Arabidopsis thalianaAtg18b) were significantly upregulated in NPA-pretreated tomato plants as shown by microarray data. However, analysis by qRT-PCR indicated that these genes are upregulated only in the control but not NPA-pretreated plants. Examination by confocal microscopy of the subcellular distribution of Atg8-2-GFP, a potato Atg8CL homolog encoding a key protein of the autophagosome, demonstrated that infection by P. parasitica induced in Nicotiana benthamiana epidermal cells the formation of abundant autophagosomes, which are significantly reduced in NPA-pretreated plants. Tobacco rattle virus-mediated gene silencing of Atg3, Atg6, Atg8-2, and Atg18 did not alter tomato susceptibility towards the pathogen regardless of NPA treatment. However, downregulation of Atg8-4 did enhance disease symptom in the NPA-treated plants. These results suggest an important role of primary metabolism in plant response towards infection of P. parasitica, as well as a role of lipid metabolism and Atg8-4 in NPA-induced resistance.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:15:38Z (GMT). No. of bitstreams: 1
ntu-106-R03633018-1.pdf: 8931636 bytes, checksum: 357801107c511639b6592aab2ac4fa62 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要…………………………………………………………………………………i
英文摘要………………………………………………………………………………ii
壹、 前言
一、 疫病菌簡介…………………………………………………………………1
二、 亞磷酸的應用與誘導抗性介紹………………………………………….......3
三、 自噬作用於植物與病原菌交互作用之角色………………………………5
四、 研究動機及策略……………………………………………………………9
貳、 材料與方法
一、 生物晶片結果分析…………………………………………………………10
二、 供試植物及菌種來源……………………………………………………….11
三、 亞磷酸處理試驗及疫病菌接種…………………………………………….11
四、 目標基因之胺基酸序列分析……………………………………………….13
五、 植物基因表現分析………………………………………………………….13
六、 基因靜默實驗……………………………………………………………….14
七、 在菸草植株短暫表現eGFP-Atg8-2………………………………………16
參、 結果
一、 番茄接種疫病菌轉錄體分析………………………………………………19
二、 以GO term enrichment探討接種後在亞磷酸處理組與對照組都呈現表現差異的基因…………………………………………………………………20
三、 以代謝路徑分析探討接種後在亞磷酸處理組與對照組都呈現表現差異的基因…………………………………………………………………………21
四、 以代謝路徑分析探討接種後僅在亞磷酸處理組或對照組具表現差異的基因…………………………………………………………………………….22
五、 自噬作用相關基因於亞磷酸誘導抗性分析………………………………23
肆、 討論
一、 番茄接種疫病菌後轉錄體的變化………………………………………….28
二、 亞磷酸誘導抗性基因探討…………………………………………………33
三、 自噬作用於亞磷酸誘導抗性探討………………………………………….34
四、 總結………………………………………………………………………….37
伍、 引用文獻………………………………………………………………………38
陸、 附表……………………………………………………………………………...51
柒、 附圖……………………………………………………………………………67
捌、 補充資料………………………………………………………………………...79
dc.language.isozh-TW
dc.subject亞磷酸zh_TW
dc.subject轉錄體分析zh_TW
dc.subject自噬作用zh_TW
dc.subject疫病菌zh_TW
dc.subject誘導抗性zh_TW
dc.subjecttranscriptome analysisen
dc.subjectinduced resistanceen
dc.subjectPhytophthora parasiticaen
dc.subjectphosphorous aciden
dc.subjectautophagyen
dc.title以轉錄體學探討亞磷酸誘導番茄對疫病菌之抗性zh_TW
dc.titleTranscriptome analysis of neutralized phosphorous acid-induced tomato resistance against Phytophthora parasiticaen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳仁治(Jen-Chih Chen),鍾嘉綾(Chia-Lin Chung),林乃君(Nai-Chun Lin)
dc.subject.keyword疫病菌,亞磷酸,誘導抗性,自噬作用,轉錄體分析,zh_TW
dc.subject.keywordautophagy,induced resistance,phosphorous acid,Phytophthora parasitica,transcriptome analysis,en
dc.relation.page91
dc.identifier.doi10.6342/NTU201704292
dc.rights.note有償授權
dc.date.accepted2017-10-16
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept植物病理與微生物學研究所zh_TW
顯示於系所單位:植物病理與微生物學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
8.72 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved